Skip to main content

Selection of Methods for Intuitive, Haptic Control of the Underwater Vehicle’s Manipulator

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Abstract

This paper is the early report of available market and scientific solutions allowing intuitive control. Manipulator control is presented in form of the Human Machine Interaction loop that describes both machine possibilities of sensing the human control and human possibilities of sensing the machine state. The survey is presented in form of the description and discussion of the advantages, disadvantages and usability of the available solutions. The aim of the research is to chose the proper path of development of the new way of intuitive control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adikari, S., McDonald, C.: User and usability modeling for HCI/HMI: a research design. In: 2006 International Conference on Information and Automation, pp. 151–154 (2006). https://doi.org/10.1109/ICINFA.2006.374099

  2. Blachuta, M., Grygiel, R., Czyba, R., Szafranski, G.: Attitude and heading reference system based on 3D complementary filter. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 851–856 (2014). https://doi.org/10.1109/MMAR.2014.6957468

  3. Blackler, A., Popovic, V., Mahar, D.P.: Intuitive use of products. In: Design Research Society (DSR) International Conference: Common Ground, pp. 1–15. Staffordshire University Press (2002)

    Google Scholar 

  4. Bosscher, P.M., Summer, M.D.: Telematic interface with control signal scaling based on force sensor feedback (2014). US Patent 8,918,215

    Google Scholar 

  5. Gîrbacia, F., Postelnicu, C., Voinea, G.D.: Towards using natural user interfaces for robotic arm manipulation. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 188–193. Springer, Heidelberg (2019)

    Google Scholar 

  6. Hildebrandt, M., Christensen, L., Kerdels, J., Albiez, J., Kirchner, F.: Realtime motion compensation for ROV-based tele-operated underwater manipulators. In: OCEANS 2009-EUROPE, pp. 1–6. IEEE (2009)

    Google Scholar 

  7. Hinchet, R., Vechev, V., Shea, H., Hilliges, O.: Dextres: wearable haptic feedback for grasping in VR via a thin form-factor electrostatic brake. In: The 31st Annual ACM Symposium on User Interface Software and Technology, pp. 901–912. ACM (2018)

    Google Scholar 

  8. Jhang, L.H., Santiago, C., Chiu, C.S.: Multi-sensor based glove control of an industrial mobile robot arm. In: 2017 International Automatic Control Conference (CACS), pp. 1–6. IEEE (2017)

    Google Scholar 

  9. Katyal, K.D., Brown, C.Y., Hechtman, S.A., Para, M.P., McGee, T.G., Wolfe, K.C., Murphy, R.J., Kutzer, M.D., Tunstel, E.W., McLoughlin, M.P., et al.: Approaches to robotic teleoperation in a disaster scenario: from supervised autonomy to direct control. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1874–1881. IEEE (2014)

    Google Scholar 

  10. Kim, T.W., Marani, G., Yuh, J.: Underwater vehicle manipulators, pp. 407–422. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-16649-0_17

  11. Kofman, J., Wu, X., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Ind. Electron. 52(5), 1206–1219 (2005)

    Article  Google Scholar 

  12. Le Ba, N., Oh, S., Sylvester, D., Kim, T.T.H.: A 256 pixel, 21.6 \(\mu \)w infrared gesture recognition processor for smart devices. Microelectron. J. 86, 49–56 (2019)

    Article  Google Scholar 

  13. Li, S., Rameshwar, R., Votta, A.M., Onal, C.D.: Intuitive control of a robotic arm and hand system with pneumatic haptic feedback. IEEE Rob. Autom. Lett. 4(4), 4424–4430 (2019)

    Article  Google Scholar 

  14. Li, Z., Huang, B., Ajoudani, A., Yang, C., Su, C.Y., Bicchi, A.: Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations. IEEE Trans. Rob. 34(1), 264–271 (2017)

    Article  Google Scholar 

  15. Liang, H., Yuan, J., Thalmann, D., Zhang, Z.: Model-based hand pose estimation via spatial-temporal hand parsing and 3D fingertip localization. Vis. Comput. 29(6–8), 837–848 (2013)

    Article  Google Scholar 

  16. Lu, Z., Zhang, Y., Cheng, D., Wang, S., et al.: Method of dual manipulator human-friendly control based on wireless motion capture technology. In: 2018 11th International Workshop on Human Friendly Robotics (HFR), pp. 31–35. IEEE (2018)

    Google Scholar 

  17. Ma, J., Khang, G.: Quantification and adjustment of pressure and vibration elicited by transcutaneous electrical stimulation. Int. J. Precis. Eng. Manuf. 19(8), 1233–1238 (2018)

    Article  Google Scholar 

  18. MacKenzie, I.S.: Input devices and interaction techniques for advanced computing. Virt. Environ. Adv. Interf. Des., 437–470 (1995)

    Google Scholar 

  19. Mardiyanto, R., Utomo, M.F.R., Purwanto, D., Suryoatmojo, H.: Development of hand gesture recognition sensor based on accelerometer and gyroscope for controlling arm of underwater remotely operated robot. In: 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 329–333 (2017). https://doi.org/10.1109/ISITIA.2017.8124104

  20. Nuelle, K., Schulz, M.J., Aden, S., Dick, A., Munske, B., Gaa, J., Kotlarski, J., Ortmaier, T.: Force Sensing, Low-Cost Manipulator in Mobile Robotics. In: 3rd IEEE International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 22–24 April 2017, pp. 196–201. IEEE (2017)

    Google Scholar 

  21. Premarathna, C.P., Ruhunage, I., Chathuranga, D.S., Lalitharatne, T.D.: Haptic feedback system for an artificial prosthetic hand for object grasping and slip detection: a preliminary study. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2304–2309. IEEE (2018)

    Google Scholar 

  22. Stańczyk, K., Poświata, A., Roksela, A., Mikulski, M.: Assessment of muscle fatigue, strength and muscle activation during exercises with the usage of robot luna EMG, among patients with multiple sclerosis. In: International Conference on Information Technologies in Biomedicine, pp. 117–128. Springer, Heidelberg (2019)

    Google Scholar 

  23. Suau, X., Alcoverro, M., López-Méndez, A., Ruiz-Hidalgo, J., Casas, J.R.: Real-time fingertip localization conditioned on hand gesture classification. Image Vis. Comput. 32(8), 522–532 (2014)

    Article  Google Scholar 

  24. Wang, K.J., Zheng, C.Y., Mao, Z.H.: Human-centered, ergonomic wearable device with computer vision augmented intelligence for VR multimodal human-smart home object interaction. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 767–768. IEEE (2019)

    Google Scholar 

  25. Yamakawa, Y., Matsui, Y., Ishikawa, M.: Human–robot collaborative manipulation using a high-speed robot hand and a high-speed camera. In: 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 426–429. IEEE (2018)

    Google Scholar 

  26. Zhang, H., Yan, X., Li, H.: Ergonomic posture recognition using 3D view-invariant features from single ordinary camera. Autom. Constr. 94, 1–10 (2018)

    Article  Google Scholar 

  27. Zhang, K., Follmer, S.: Electrostatic adhesive brakes for high spatial resolution refreshable 2.5 D tactile shape displays. In: 2018 IEEE Haptics Symposium (HAPTICS), pp. 319–326. IEEE (2018)

    Google Scholar 

Download references

Acknowledgments

The research is financed by Polish National Centre for Research and Development under project number POIR.01.01.01-00-0266/18: Inteligentny, efektywny system prowadzenia specjalistycznych prac podwodnych (Smart and effective system for performing specialized subsea works) realized by SR Robotics sp. z o.o.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Grzejszczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grzejszczak, T., Babiarz, A., Bieda, R., Jaskot, K., Kozyra, A., Ściegienka, P. (2020). Selection of Methods for Intuitive, Haptic Control of the Underwater Vehicle’s Manipulator. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_43

Download citation

Publish with us

Policies and ethics