Skip to main content

Eigenvalue Problems of Ordinary Differential Equations

  • Chapter
  • First Online:
Mechanical Vibrations

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 992 Accesses

Abstract

Eigenvalue problem of ordinary differential equations is considered. We present the definition of the Green functions and reduce some eigenvalue problems to homogeneous Fredholm integral equation with the Green function as kernel. A solution algorithm is suggested by the use of which numerical solutions are given for some vibration problems of circular plates subjected to constant radial in plane load and for the vibratory behavior of beams loaded by an axially force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The line of thought in section Eigenvalue problems of ordinary differential equations is based mainly on the book [1] by Lothar Collatz (1910–1990).

  2. 2.

    George Green (1793–1841).

  3. 3.

    Józef Höené-Wroński (1776–1853).

  4. 4.

    Eric Ivar Fredholm (1866–1927).

  5. 5.

    James Mercer (1883–1932).

References

  1. L. Collatz, Eigenwertaufgaben mit Technischen Anwendungen. Russian edn. in 1968 (Akademische Verlagsgesellschaft Geest & Portig K.G., Leipzig, 1963)

    Google Scholar 

  2. E. Kamke, Über die Definiten Selbstadjungierten Eigenwertaufgaben bei gewöhnlichen Differentialgleichungen IV. Math. Z. 48, 67–100 (1942)

    Article  MathSciNet  Google Scholar 

  3. L. Collatz, The Numerical Treatment of Differential Equations, 3rd edn. (Springer, Berlin, 1966)

    Google Scholar 

  4. N.M. Matveev, Analytic Theory of Differential Equations [in Russian] (Leningrad Pedagogic University, St. Petersburg, 1989)

    Google Scholar 

  5. M. Bocher, Some theorems concerning linear differential equations of the second order. Bull. Am. Math. Soc. 6(7), 279–280 (1901)

    Article  MathSciNet  Google Scholar 

  6. M. Bocher, Boundary problems and Green’s functions for linear differential and difference equations. Ann. Math. 13.1/4, 71–88 (1911–1912)

    Google Scholar 

  7. E.L. Ince, Ordinary Differential Equations. (a) (Longmans, Green and Co., London, 1926), pp. 256–258

    Google Scholar 

  8. J.M. Höené-Wronski, Réfutation de la Théorie des Fonctions Analytiques de Lagrange (Blankenstein, Paris, 1812)

    Google Scholar 

  9. N. Szűcs, Vibrations of circular plates subjected to an in-plane load. GÉP LVIII.5-6 (2007 (in Hungarian)), pp. 41–47

    Google Scholar 

  10. N. Szűcs, G. Szeidl, Vibration of circular plates subjected to constant radial load in their plane. J. Comput. Appl. Mech. 12(1), 57–76 (2017). https://doi.org/10.32973/jcam.2017.004

  11. I. Kozák, Strength of Materials V. - Thin Walled Structures and the Theory of Plates and Shells (in Hungarian). Tankönyvkiadó (Publisher of Textbooks) (Budapest, Hungary, 1967), pp. 287–291

    Google Scholar 

  12. G.B. Arken, H.J. Weber, Mathematical Methods for Physicists, 7th edn. (Elsevier/Academic, Amsterdam, 2005)

    Google Scholar 

  13. E.I. Fredholm, On a new method for solving the Dirichlet problem. Sur une nouvelle méthode pour la résolution du probléme de Dirichlet. Stockh. Öfv. 57, 39–46 (1900)

    Google Scholar 

  14. E.I. Fredholm, Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903). https://doi.org/10.1007/bf02421317

  15. W.V. Lovitt, Linear Integral Equations (McGraw-Hill, New York, 1924)

    Google Scholar 

  16. J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. A 209, 441–458 (1909). https://doi.org/10.1098/rsta.1909.0016

  17. R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. 1 (Interscience Publishers, New York, 1953), pp. 148–150

    Google Scholar 

  18. C.T.H. Baker, in The Numerical Treatment of Integral Equations - Monographs on Numerical Analysis, ed. by L. Fox, J. Walsh (Clarendon Press, Oxford, 1977)

    Google Scholar 

  19. C.A. Brebbia, I. Dominguez, Boundary Elements, an Introductory Course, 2nd edn. (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Szeidl .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szeidl, G., Kiss, L. (2020). Eigenvalue Problems of Ordinary Differential Equations. In: Mechanical Vibrations. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-45074-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45074-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45073-1

  • Online ISBN: 978-3-030-45074-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics