Skip to main content

Introduction

  • Chapter
  • First Online:
Continuum Modeling in Mechanobiology
  • 857 Accesses

Abstract

This chapter provides some historical background on mechanobiology and discusses the differences between biomechanics and mechanobiology. The processes of growth, remodeling, and morphogenesis are introduced, and an overview of some of the challenges encountered in mathematical modeling of biological systems are given. Finally, the chapter reviews some of the biology used in this book, with an emphasis on developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, my own definition of mechanobiology has evolved over the years (Taber 2016).

  2. 2.

    Interestingly, tissue engineering has been around since at least the mid-1900s (Hayashi and Boehm 1952)

  3. 3.

    Residual stress is the stress remaining in a body when all external loads are removed.

  4. 4.

    Just my opinion, based on decades of experience with modeling.

  5. 5.

    Additional biology specific to growth and remodeling will be included in chapters that focus on these subjects.

  6. 6.

    Motor proteins move along filaments using energy provided by ATP hydrolysis.

References

  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. W.W. Norton, New York

    Google Scholar 

  • Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16:20190233

    Article  Google Scholar 

  • Ascenzi A (1993) Biomechanics and Galileo Galilei. J Biomech 26:95–100

    Article  Google Scholar 

  • Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed 29:568–581

    Article  Google Scholar 

  • Berger KS (2012) The developing person: through childhood and adolescence, 9th edn. Worth Publishers, New York

    Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    MATH  Google Scholar 

  • Bouvier M (1989) The biology and composition of bone. In: S. C. Cowin (Ed.), Bone mechanics. CRC Press, Boca Raton, FL, pp. 1–13

    Google Scholar 

  • Butcher JT, Markwald RR (2007) Valvulogenesis: the moving target. Philos Trans R Soc Lond B Biol Sci 362:1489–1503

    Article  Google Scholar 

  • Carter DR and Wong M (1988) The role of mechanical loading histories in the development of diarthrodial joints. J. Orthop. Res. 6:804–816

    Article  Google Scholar 

  • Chanet S, Martin AC (2014) Mechanical force sensing in tissues. In: Progress in molecular biology and translational science, vol 126. Elsevier, New York, pp 317–352

    Google Scholar 

  • Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221:117–145

    Article  Google Scholar 

  • Coulombre AJ, Coulombre JL (1958) Intestinal development. I. Morphogenesis of the villi and musculature. J Embryol Exp Morphol 6:403–411

    Google Scholar 

  • Cowin SC (2001) The false premise of Wolff’s law. In: Cowin SC (ed) Bone biomechanics handbook. CRC Press, Boca Raton, pp 30-1–15

    Google Scholar 

  • Fedorchak GR, Kaminski A, Lammerding J (2014) Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 115:76–92

    Article  Google Scholar 

  • Felsenthal N, Zelzer E (2017) Mechanical regulation of musculoskeletal system development. Development 144:4271–4283

    Article  Google Scholar 

  • Fischman DA (1972) Development of striated muscle. In: G. H. Bourne (Ed.), The structure and function of muscle. Elsevier, New York, pp. 75–148

    Chapter  Google Scholar 

  • Fung YC (1991) What are the residual stresses doing in our blood vessels? Ann Biomed Eng 19:237–249

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  • Fung YC (1997) Biomechanics: circulation, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hayashi T, Boehm GAW (1952) Artificial muscle. Sci Am 187:18–21

    Article  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  • Jacobs CR, Huang H, Kwon RY (2013) Introduction to cell mechanics and mechanobiology. Garland Science, New York

    Google Scholar 

  • Kirby ML (2007) Cardiac development. Oxford University Press, Oxford

    Google Scholar 

  • Koch JC (1917) The laws of bone architecture. Am J Anat 21:177–298

    Article  Google Scholar 

  • LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 269:H571–H582

    Google Scholar 

  • Lowery LA, Sive H (2009) Totally tubular: the mystery behind function and origin of the brain ventricular system. Bioessays 31:446–458

    Article  Google Scholar 

  • Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61

    Article  Google Scholar 

  • Manasek FJ, Nugent J, O’Connor M (1983) Control of early embryonic heart morphogenesis: a hypothesis. In: Development of the vascular system. Pitman, London, pp 4–19

    Google Scholar 

  • Manner J (2000) Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259:248–262

    Article  Google Scholar 

  • Nussbaum MC (1985) Aristotle’s de motu animalium: text with translation, commentary, and interpretive essays. Princeton University Press, Princeton

    Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  • Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2014) Campbell biology, 10th edn. Pearson, Boston

    Google Scholar 

  • Richardson LF (1922) Weather prediction by numerical methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Risau W, Feinberg RN, Sherer GK, Auerbach R (1991) Vasculogenesis, angiogenesis, and endothelial cell differentiation during embryonic development. In: The development of the vascular system. Karger, Basel, pp 58–68

    Google Scholar 

  • Roux W (1885) Beiträge zur morphologie der funktionellen anpassung. Arch Anat Physiol Anat Abt:120–185

    Google Scholar 

  • Sadava D, Hillis DM, Heller HC, Berenbaum M (2011) Life: the science of biology, 9th edn. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Sadler TW (2012) Langman’s medical embryology, 12th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337

    Article  Google Scholar 

  • Shyer AE, Tallinen T, Nerurkar NL, Wei ZY, Gil ES, Kaplan DL, Tabin CJ, Mahadevan L (2013) Villification: how the gut gets its villi. Science 342:212–218

    Article  Google Scholar 

  • Streeter DD, Berne RM, Sperelakis N, Geiger SR (1979) Gross morphology and fiber geometry of the heart. In: Handbook of physiology, section 2: The cardiovascular system, volume I: The heart. American Physiological Society, Bethesda, pp 61–112

    Google Scholar 

  • Szczesny SE, Mauck RL (2017) The nuclear option: evidence implicating the cell nucleus in mechanotransduction. J Biomech Eng 139(2): 021006

    Article  Google Scholar 

  • Taber LA (2006) Biophysical mechanisms of cardiac looping. Int J Dev Biol 50:323–332

    Article  Google Scholar 

  • Taber LA (2016) Editorial. Biomech Model Mechanobiol 15:759–760

    Article  Google Scholar 

  • Thompson DW (1942) On growth and form. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wolff J (1986) The law of bone remodeling. Springer, Berlin

    Book  Google Scholar 

  • Wolpert L (2008) The triumph of the embryo. Courier Corporation, Chelmsford

    Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taber, L.A. (2020). Introduction. In: Continuum Modeling in Mechanobiology. Springer, Cham. https://doi.org/10.1007/978-3-030-43209-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43209-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43207-2

  • Online ISBN: 978-3-030-43209-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics