Skip to main content

Adaptive Position and Force Tracking Control in Teleoperation System with Time-Varying Delays

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11741))

Included in the following conference series:

Abstract

In this work, a novel position and force tracking control scheme are proposed in teleoperation system under time-varying delay and uncertain dynamics. First, two new auxiliary variables are designed for the master controller and slave controller. Second, the adaptive control laws based on Radial Basis Function (RBF) neural network are proposed. Then, the Lyapunov theory is used to verify the stability of the closed-loop teleoperation system. The main contribution of this work is the position error, position error integral, and force error are introduced into the auxiliary variable for the controller design to obtain the better position and force tracking effect. Finally, the system with the proposed control method is simulated to show effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imaida, T., Yokokohji, Y., Doi, T., Oda, M., Yoshikwa, T.: Ground space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans. Robot. Autom. 147(3), 499–511 (2004). https://doi.org/10.1109/TRA.2004.825271

    Article  Google Scholar 

  2. Haddadi, A., Razi, K., Hashtrudi-Zaad, K.: Operator dynamics consideration for less conservative coupled stability condition in bilateral teleoperation. IEEE/ASME Trans. Mechatron. 20(5), 2463–2475 (2015). https://doi.org/10.1109/TMECH.2014.2385637

    Article  Google Scholar 

  3. Xiong, P.W., Zhu, X.D., Song, A.G., Hu, L.Y., Liu, X.P.P., Feng, L.H.: A target grabbing strategy for telerobot based on improved stiffness display device. IEEE-CAA J. Autom. Sinica. 4(4), 661–667 (2016). https://doi.org/10.1109/JAS.2016.7510256

    Article  Google Scholar 

  4. Chan, L.P., Naghdy, F., Stirling, D.: Application of adaptive controllers in teleoperation systems: a survey. IEEE Trans. Hum.-Mach. Syst. 44(3), 337–352 (2014). https://doi.org/10.1109/THMS.2014.2303983

    Article  Google Scholar 

  5. Lu, Z., Huang, P., Liu, Z.: Predictive approach for sensorless bimanual teleoperation under random time delays with adaptive fuzzy control. Trans. Ind. Electron. 65(3), 2439–2448 (2018). https://doi.org/10.1109/TIE.2017.2745445

    Article  Google Scholar 

  6. Anderson, R., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control. 34(5), 494–501 (1989). https://doi.org/10.1109/9.24201

    Article  MathSciNet  Google Scholar 

  7. Anderson, R.J., Spong, M.W.: Asymptotic stability for force reflecting teleoperators with time delay. Int. J. Robot. Res. 11(2), 135–149 (1992). https://doi.org/10.1177/027836499201100204

    Article  Google Scholar 

  8. Sun, D., Naghdy, F., Du, H.: Application of wave-variable control to bilateral teleoperation systems: a survey. Ann. Rev. Control 38(1), 12–31 (2014). https://doi.org/10.1016/j.arcontrol.2014.03.002

    Article  Google Scholar 

  9. Yang, C.G., Wang, X.J., Li, Z.J., Li, Y.A., Sun, C.Y.: Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2125–2136 (2017). https://doi.org/10.1109/TSMC.2016.2615061

    Article  Google Scholar 

  10. Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006). https://doi.org/10.1109/TRO.2005.862037

    Article  Google Scholar 

  11. Liu, Y.C., Khong, M.H.: Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE-ASME Trans. Mechatron. 20(5), 2550–2562 (2015). https://doi.org/10.1109/TMECH.2015.2388555

    Article  Google Scholar 

  12. Xie, X.L., Hou, Z.G., Cheng, L., Ji, C., Tan, M., Yu, H.: Adaptive neural network tracking control of robot manipulators with prescribed performance. Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng. 225(16), 790–797 (2010). https://doi.org/10.1177/0959651811398853

    Article  Google Scholar 

  13. Yang, Y.N., Ge, C., Wang, H., Li, X.Y., Hua, C.C.: Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Franklin Inst. Eng. Appl. Math. 352(2), 1850–1866 (2015). https://doi.org/10.1016/j.jfranklin.2015.01.032

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Z.W., Chen, Z., Liang, B., Zhang, B.: A novel adaptive finite time controller for bilateral teleoperation system. Acta Astronaut. 144, 263–270 (2018). https://doi.org/10.1016/j.actaastro.2017.12.046

    Article  Google Scholar 

  15. Zhang, H.C., Song, A.G., Shen, S.B.: Adaptive finite-time synchronization control for teleoperation system with varying time delays. IEEE Access 6, 40940–40949 (2018). https://doi.org/10.1109/ACCESS.2018.2857802

    Article  Google Scholar 

  16. Hashemzadeh, F., Tavakoli, M.: Position and force tracking in nonlinear teleoperation systems under varying delays. Robotica 33(4), 1003–1016 (2015). https://doi.org/10.1017/S026357471400068X

    Article  Google Scholar 

  17. Ganjefar, S., Rezaei, S., Hashemzadeh, F.: Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay. Mech. Syst. Signal Process. 86, 308–324 (2017). https://doi.org/10.1016/j.ymssp.2016.09.023

    Article  Google Scholar 

  18. Amini, H., Rezaei, S.M., Zareinejad, M., Ghafarirad, H.: Enhanced time delayed linear bilateral teleoperation system by external force estimation. Trans. Inst. Measure. Control 35(5), 637–647 (2013). https://doi.org/10.1177/0142331212464643

    Article  Google Scholar 

  19. Chan, L.P., Naghdy, F., Stirling, D.: Position and force tracking for non-linear haptic telemanipulator under varying delays with an improved extended active observer. Robot. Auton. Syst. 75, 145–160 (2016). https://doi.org/10.1016/j.robot.2015.10.007

    Article  Google Scholar 

  20. Azimifar, F., Abrishamkar, M., Farzaneh, B., Sarhan, A.A.D., Amini, H.: Improving teleoperation system performance in the presence of estimated external force. Robot. Comput.-Integr. Manuf. 46, 86–93 (2017). https://doi.org/10.1016/j.rcim.2016.12.004

    Article  Google Scholar 

  21. Adel, O., Farid, F, Toumi, R.: Bilateral control of nonlinear teleoperation system using parallel force/position control approach and online environment estimation. In: 21st International Conference on Methods and Models in Automation and Robotics, pp. 1110–1115. IEEE Press (2017)

    Google Scholar 

  22. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New York (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Key Research and Development Program of China under Grant No.2016YFB1001301, in part by the National Natural Science Foundation of China under Grant No.91648206 and No. U1713210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Song, A., Li, H. (2019). Adaptive Position and Force Tracking Control in Teleoperation System with Time-Varying Delays. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11741. Springer, Cham. https://doi.org/10.1007/978-3-030-27532-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27532-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27531-0

  • Online ISBN: 978-3-030-27532-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics