Skip to main content

Lung Carcinoma

  • Chapter
  • First Online:
Genomic Medicine

Abstract

Over the past decade, extensive research has led to the identification of several recurrent and mutually exclusive driver oncogene alterations underlying lung cancer pathogenesis.

With further understanding of these genetic alterations as biomarkers and the advent of targeted therapies, molecular diagnostic testing of tumor samples has become an integral part of daily pathology practice. As such, the surgical pathologist has assumed a pivotal role in patient management, responsible for the delivery of accurate prognostic and predictive molecular genomic data in the context of tumor morphology. Working knowledge of the molecular biology of lung cancer and the basic technical aspects of testing are therefore important for all surgical pathologists to appropriately accomplish this role.

In this chapter we provide a basic overview of established and emerging clinically relevant driver alterations in lung carcinoma, affecting key oncogenes including EGFR, KRAS, ALK, BRAF, HER2, PIK3CA, MEK1, MET, AKT, RET, ROS1, and NTRK1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. https://doi.org/10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  2. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. https://doi.org/10.1126/science.1099314.

    Article  CAS  PubMed  Google Scholar 

  3. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11. https://doi.org/10.1073/pnas.0405220101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daly JM, Jannot CB, Beerli RR, Graus-Porta D, Maurer FG, Hynes NE. Neu differentiation factor induces ErbB2 down-regulation and apoptosis of ErbB2-overexpressing breast tumor cells. Cancer Res. 1997;57(17):3804–11.

    CAS  PubMed  Google Scholar 

  5. Graus-Porta D, Beerli RR, Hynes NE. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol. 1995;15(3):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riese DJ 2nd, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998;20(1):41–8. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<41::AID-BIES7>3.0.CO;2-V.

    Article  PubMed  Google Scholar 

  7. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305(5687):1163–7. https://doi.org/10.1126/science.1101637.

    Article  CAS  PubMed  Google Scholar 

  8. D’Angelo SP, Park B, Azzoli CG, Kris MG, Rusch V, Ladanyi M, et al. Reflex testing of resected stage I through III lung adenocarcinomas for EGFR and KRAS mutation: report on initial experience and clinical utility at a single center. J Thorac Cardiovasc Surg. 2011;141(2):476–80. https://doi.org/10.1016/j.jtcvs.2010.08.026.

    Article  CAS  PubMed  Google Scholar 

  9. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55. https://doi.org/10.1093/jnci/dji112.

    Article  CAS  PubMed  Google Scholar 

  10. He M, Capelletti M, Nafa K, Yun CH, Arcila ME, Miller VA, et al. EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma. Clin Cancer Res. 2012;18(6):1790–7. https://doi.org/10.1158/1078-0432.CCR-11-2361.

    Article  CAS  PubMed  Google Scholar 

  11. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12(2):220–9. https://doi.org/10.1158/1535-7163.MCT-12-0620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13(1):e23–31. https://doi.org/10.1016/S1470-2045(11)70129-2.

    Article  CAS  PubMed  Google Scholar 

  13. Pillai RN, Ramalingam SS. The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr Oncol Rep. 2012;14(2):105–10. https://doi.org/10.1007/s11912-012-0213-4.

    Article  CAS  PubMed  Google Scholar 

  14. Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68(13):4971–6. https://doi.org/10.1158/0008-5472.CAN-07-6158.

    Article  CAS  PubMed  Google Scholar 

  15. Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol. 2009;27(26):4232–5. https://doi.org/10.1200/JCO.2009.23.6661.

    Article  CAS  PubMed  Google Scholar 

  16. Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275–83. https://doi.org/10.1158/1078-0432.CCR-08-0168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6. https://doi.org/10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  18. Takeuchi K, Choi YL, Soda M, Inamura K, Togashi Y, Hatano S, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008;14(20):6618–24. https://doi.org/10.1158/1078-0432.CCR-08-1018.

    Article  CAS  PubMed  Google Scholar 

  19. Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115(8):1723–33. https://doi.org/10.1002/cncr.24181.

    Article  CAS  PubMed  Google Scholar 

  20. Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15(9):3143–9. https://doi.org/10.1158/1078-0432.CCR-08-3248.

    Article  CAS  PubMed  Google Scholar 

  21. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203. https://doi.org/10.1016/j.cell.2007.11.025.

    Article  CAS  PubMed  Google Scholar 

  22. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13(10):1011–9. https://doi.org/10.1016/S1470-2045(12)70344-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12(11):1004–12. https://doi.org/10.1016/S1470-2045(11)70232-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–57. https://doi.org/10.1038/sj.onc.1203957.

    Article  CAS  PubMed  Google Scholar 

  25. Ou SH, Tan J, Yen Y, Soo RA. ROS1 as a ‘druggable’ receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev Anticancer Ther. 2012;12(4):447–56. https://doi.org/10.1586/era.12.17.

    Article  CAS  PubMed  Google Scholar 

  26. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81. https://doi.org/10.1038/nm.2658.

    Article  CAS  PubMed  Google Scholar 

  27. Suehara Y, Arcila M, Wang L, Hasanovic A, Ang D, Ito T, et al. Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res. 2012;18:6599. https://doi.org/10.1158/1078-0432.CCR-12-0838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gu TL, Deng X, Huang F, Tucker M, Crosby K, Rimkunas V, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One. 2011;6(1):e15640. https://doi.org/10.1371/journal.pone.0015640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008;68(9):3389–95. https://doi.org/10.1158/0008-5472.CAN-07-6186.

    Article  CAS  PubMed  Google Scholar 

  30. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70. https://doi.org/10.1200/JCO.2011.35.6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54. https://doi.org/10.1038/nature00766.

    Article  CAS  PubMed  Google Scholar 

  32. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62(23):6997–7000.

    CAS  PubMed  Google Scholar 

  33. Naoki K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 2002;62(23):7001–3.

    CAS  PubMed  Google Scholar 

  34. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29(15):2046–51. https://doi.org/10.1200/JCO.2010.33.1280.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 2008;68(22):9375–83. https://doi.org/10.1158/0008-5472.CAN-08-2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet 2008;Chapter 10:Unit 10.11. https://doi.org/10.1002/0471142905.hg1011s57.

  37. Gautschi O, Pauli C, Strobel K, Hirschmann A, Printzen G, Aebi S, et al. A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J Thorac Oncol. 2012;7(10):e23–4. https://doi.org/10.1097/JTO.0b013e3182629903.

    Article  PubMed  Google Scholar 

  38. Rudin CM, Hong K, Streit M. Molecular characterization of acquired resistance to the BRAF inhibitor dabrafenib in a patient with BRAF-mutant non-small-cell lung cancer. J Thorac Oncol. 2013;8(5):e41–2. https://doi.org/10.1097/JTO.0b013e31828bb1b3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland A, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16. https://doi.org/10.1016/S1470-2045(17)30679-4.

    Article  CAS  PubMed  Google Scholar 

  40. www.FDA.GOV. FDA grants regular approval to dabrafenib and trametinib combination for metastatic NSCLC with BRAF V600E mutation. 2018.

    Google Scholar 

  41. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469–72. https://doi.org/10.1038/nm.3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farago AF, Taylor MS, Doebele RC, Zhu VW, Kummar S, Spira AI, et al. Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precis Oncol. 2018;2018. https://doi.org/10.1200/PO.18.00037.

  43. Farago AF, Azzoli CG. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small cell lung cancer. Transl Lung Cancer Res. 2017;6(5):550–9. https://doi.org/10.21037/tlcr.2017.08.02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, et al. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol. 2015;10(12):1670–4. https://doi.org/10.1097/01.JTO.0000473485.38553.f0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riely GJ, Marks J, Pao W. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009;6(2):201–5. https://doi.org/10.1513/pats.200809-107LC.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Y, Ren Y, Fang Z, Li C, Fang R, Gao B, et al. Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clin Oncol. 2010;28(30):4616–20. https://doi.org/10.1200/JCO.2010.29.6038.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14(18):5731–4. https://doi.org/10.1158/1078-0432.CCR-08-0646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arcila M, Lau C, Nafa K, Ladanyi M. Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn. 2011;13(1):64–73. https://doi.org/10.1016/j.jmoldx.2010.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Le Calvez F, Mukeria A, Hunt JD, Kelm O, Hung RJ, Taniere P, et al. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res. 2005;65(12):5076–83. https://doi.org/10.1158/0008-5472.CAN-05-0551.

    Article  PubMed  Google Scholar 

  50. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 2005;65(5):1642–6.

    Article  CAS  PubMed  Google Scholar 

  51. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431(7008):525–6.

    Article  CAS  PubMed  Google Scholar 

  52. Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18(18):4910–8. https://doi.org/10.1158/1078-0432.CCR-12-0912.

    Article  CAS  PubMed  Google Scholar 

  53. Ross HJ, Blumenschein GR Jr, Aisner J, Damjanov N, Dowlati A, Garst J, et al. Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer. Clin Cancer Res. 2010;16(6):1938–49.

    Article  CAS  PubMed  Google Scholar 

  54. Yap TA, Vidal L, Adam J, Stephens P, Spicer J, Shaw H, et al. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J Clin Oncol. 2010;28(25):3965–72.

    Article  CAS  PubMed  Google Scholar 

  55. Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007;67(24):11924–32.

    Article  CAS  PubMed  Google Scholar 

  56. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7. https://doi.org/10.1200/JCO.2018.77.9777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kris MG, Camidge DR, Giaccone G, Hida T, Li BT, O’Connell J, et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol. 2015;26(7):1421–7. https://doi.org/10.1093/annonc/mdv186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Azzoli CG, Krug LM, Miller VA, Kris MG, Mass R. Trastuzumab in the treatment of non-small cell lung cancer. Semin Oncol. 2002;29(1 Suppl 4):59–65.

    Article  CAS  PubMed  Google Scholar 

  59. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30. https://doi.org/10.1200/JCO.2015.63.4600.

    Article  CAS  PubMed  Google Scholar 

  60. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9. https://doi.org/10.1158/2159-8290.CD-15-0285.

    Article  CAS  PubMed  Google Scholar 

  61. Jenkins RW, Oxnard GR, Elkin S, Sullivan EK, Carter JL, Barbie DA. Response to crizotinib in a patient with lung adenocarcinoma harboring a MET splice site mutation. Clin Lung Cancer. 2015;16(5):e101–4. https://doi.org/10.1016/j.cllc.2015.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kollmannsberger CK, Sharma S, Shapiro G, Chi KN, Christensen J, Tassell VR. Phase I study of receptor tyrosine kinase (RTK) inhibitor, MGCD265, in patients (pts) with advanced solid tumors. ASCO Annual Meeting 2015. J Clin Oncol. 2015;33(15_suppl):2589.

    Article  Google Scholar 

  63. Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34(8):794–802. https://doi.org/10.1200/JCO.2015.62.0674.

    Article  CAS  PubMed  Google Scholar 

  64. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol. 2009;4(1):5–11. https://doi.org/10.1097/JTO.0b013e3181913e0e.

    Article  PubMed  Google Scholar 

  65. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9. https://doi.org/10.1158/2159-8290.CD-14-1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22(11):2109–19. https://doi.org/10.1101/gr.145144.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50. https://doi.org/10.1038/nature13385.

    Article  CAS  Google Scholar 

  68. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66(1):283–9. https://doi.org/10.1158/0008-5472.CAN-05-2749.

    Article  CAS  PubMed  Google Scholar 

  69. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7. https://doi.org/10.1073/pnas.0710370104.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27(10):1667–74. https://doi.org/10.1200/JCO.2008.19.1635.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen HJ, Mok TS, Chen ZH, Guo AL, Zhang XC, Su J, et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. Pathol Oncol Res. 2009;15(4):651–8. https://doi.org/10.1007/s12253-009-9167-8.

    Article  CAS  PubMed  Google Scholar 

  72. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43. https://doi.org/10.1126/science.1141478.

    Article  CAS  PubMed  Google Scholar 

  73. Kubo T, Yamamoto H, Lockwood WW, Valencia I, Soh J, Peyton M, et al. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer. 2009;124(8):1778–84. https://doi.org/10.1002/ijc.24150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99(11):2280–5. https://doi.org/10.1111/j.1349-7006.2008.00916.x.

    Article  CAS  PubMed  Google Scholar 

  75. Cappuzzo F, Janne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol. 2009;20(2):298–304. https://doi.org/10.1093/annonc/mdn635.

    Article  CAS  PubMed  Google Scholar 

  76. Go H, Jeon YK, Park HJ, Sung SW, Seo JW, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5(3):305–13. https://doi.org/10.1097/JTO.0b013e3181ce3d1d.

    Article  PubMed  Google Scholar 

  77. Arcila ME, Oxnard GR, Nafa K, Riely GJ, Solomon SB, Zakowski MF, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011;17(5):1169–80. https://doi.org/10.1158/1078-0432.CCR-10-2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. https://doi.org/10.1126/scitranslmed.3002003.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17(1):77–88. https://doi.org/10.1016/j.ccr.2009.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581–8.

    Article  CAS  PubMed  Google Scholar 

  81. Phay JE, Shah MH. Targeting RET receptor tyrosine kinase activation in cancer. Clin Cancer Res. 2010;16(24):5936–41. https://doi.org/10.1158/1078-0432.CCR-09-0786.

    Article  CAS  PubMed  Google Scholar 

  82. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005;16(4–5):441–67. https://doi.org/10.1016/j.cytogfr.2005.05.010.

    Article  CAS  PubMed  Google Scholar 

  83. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–7. https://doi.org/10.1038/nm.2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4. https://doi.org/10.1038/nm.2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chaft JE, Arcila ME, Paik PK, Lau C, Riely GJ, Pietanza MC, et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther. 2012;11(2):485–91. https://doi.org/10.1158/1535-7163.MCT-11-0692.

    Article  CAS  PubMed  Google Scholar 

  86. Kawano O, Sasaki H, Endo K, Suzuki E, Haneda H, Yukiue H, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54(2):209–15. https://doi.org/10.1016/j.lungcan.2006.07.006.

    Article  PubMed  Google Scholar 

  87. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012;30(3):282–90. https://doi.org/10.1200/JCO.2011.36.1360.

    Article  CAS  PubMed  Google Scholar 

  88. Hyman DM, Snyder AE, Carvajal RD, Gerecitano JF, Voss MH, Ho AL, et al. Parallel phase Ib studies of two schedules of buparlisib (BKM120) plus carboplatin and paclitaxel (q21 days or q28 days) for patients with advanced solid tumors. Cancer Chemother Pharmacol. 2015;75(4):747–55. https://doi.org/10.1007/s00280-015-2693-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mayer IA, Abramson VG, Isakoff SJ, Forero A, Balko JM, Kuba MG, et al. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2014;32(12):1202–9. https://doi.org/10.1200/JCO.2013.54.0518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vansteenkiste JF, Canon JL, De Braud F, Grossi F, De Pas T, Gray JE, et al. Safety and efficacy of buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the phase II BASALT-1 study. J Thorac Oncol. 2015;10(9):1319–27. https://doi.org/10.1097/JTO.0000000000000607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994;77(6):841–52.

    Article  CAS  PubMed  Google Scholar 

  92. Mansour SJ, Candia JM, Gloor KK, Ahn NG. Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ. 1996;7(2):243–50.

    CAS  PubMed  Google Scholar 

  93. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994;265(5174):966–70.

    Article  CAS  PubMed  Google Scholar 

  94. Arcila ME, Drilon A, Sylvester BE, Lovly CM, Borsu L, Reva B, et al. MAP2K1 (MEK1) mutations define a distinct subset of lung adenocarcinoma associated with smoking. Clin Cancer Res. 2015;21(8):1935–43. https://doi.org/10.1158/1078-0432.CCR-14-2124.

    Article  CAS  PubMed  Google Scholar 

  95. Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008;68(14):5524–8. https://doi.org/10.1158/0008-5472.CAN-08-0099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22(1):259–67. https://doi.org/10.1158/1078-0432.CCR-14-3212.

    Article  CAS  PubMed  Google Scholar 

  97. Majewski IJ, Mittempergher L, Davidson NM, Bosma A, Willems SM, Horlings HM, et al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J Pathol. 2013;230(3):270–6. https://doi.org/10.1002/path.4209.

    Article  CAS  PubMed  Google Scholar 

  98. Ou SI, Horn L, Cruz M, Vafai D, Lovly CM, Spradlin A, et al. Emergence of FGFR3-TACC3 fusions as a potential by-pass resistance mechanism to EGFR tyrosine kinase inhibitors in EGFR mutated NSCLC patients. Lung Cancer. 2017;111:61–4. https://doi.org/10.1016/j.lungcan.2017.07.006.

    Article  PubMed  Google Scholar 

  99. Riely GJ, Yu HA. EGFR: the paradigm of an oncogene-driven lung cancer. Clin Cancer Res. 2015;21(10):2221–6. https://doi.org/10.1158/1078-0432.CCR-14-3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92. https://doi.org/10.1056/NEJMoa044238.

    Article  CAS  PubMed  Google Scholar 

  101. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7. https://doi.org/10.1158/1078-0432.CCR-12-2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105(6):2070–5. https://doi.org/10.1073/pnas.0709662105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Soria JC, Ramalingam SS. Osimertinib in EGFR mutation-positive advanced NSCLC. N Engl J Med. 2018;378(13):1262–3. https://doi.org/10.1056/NEJMc1801669.

    Article  PubMed  Google Scholar 

  104. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, et al. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res. 2018;25:1063. https://doi.org/10.1158/1078-0432.CCR-18-1102.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 2018;8(12):1529–39. https://doi.org/10.1158/2159-8290.CD-18-1022.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118–33. https://doi.org/10.1158/2159-8290.CD-16-0596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53. https://doi.org/10.1016/j.jmoldx.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  108. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018;20(2):129–59. https://doi.org/10.1016/j.jmoldx.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  109. Jordan EJ, Kim HR, Arcila ME, Barron DA, Chakravarty D, Gao J, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7:596. https://doi.org/10.1158/2159-8290.CD-16-1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Arcila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arcila, M.E., Chang, J.C., Tafe, L.J. (2020). Lung Carcinoma. In: Tafe, L., Arcila, M. (eds) Genomic Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-22922-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22922-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22921-4

  • Online ISBN: 978-3-030-22922-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics