Advertisement

A New Entropy for Hypergraphs

  • Isabelle BlochEmail author
  • Alain Bretto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

This paper introduces a new definition of entropy for hypergraphs. It takes into account the fine structure of a hypergraph by considering its partial hypergraphs, leading to an entropy vector. This allows for more precision in the description of the underlying complexity of the hypergraph. Properties of the proposed definitions are analyzed.

Keywords

Hypergraphs Entropy Algebraic and graphical structures 

References

  1. 1.
    Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. Pattern Recogn. 54, 229–240 (2016)CrossRefGoogle Scholar
  2. 2.
    Baladi, V.: Dynamical zeta functions. In: Branner, B., Hjorth, P. (eds.) Real and Complex Dynamical Systems. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 464, pp. 1–26. Springer, Dordrecht (1995).  https://doi.org/10.1007/978-94-015-8439-5_1CrossRefzbMATHGoogle Scholar
  3. 3.
    Berge, C.: Hypergraphs. Elsevier Science Publisher, The Netherlands (1989)zbMATHGoogle Scholar
  4. 4.
    Birkho, G.: Lattice Theory, vol. 25, 3rd edn. American Mathematical Society, Providence (1979)Google Scholar
  5. 5.
    Bloch, I., Bretto, A.: Mathematical morphology on hypergraphs, application to similarity and positive kernel. Comput. Vis. Image Underst. 117(4), 342–354 (2013)CrossRefGoogle Scholar
  6. 6.
    Bloch, I., Bretto, A., Leborgne, A.: Robust similarity between hypergraphs based on valuations and mathematical morphology operators. Discrete Appl. Math. 183, 2–19 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Braunstein, S.L., Ghosh, S., Severini, S.: The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states. Ann. Comb. 10(3), 291–317 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bretto, A.: Hypergraph Theory: An Introduction. Mathematical Engineering. Springer, New York (2013).  https://doi.org/10.1007/978-3-319-00080-0CrossRefzbMATHGoogle Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)Google Scholar
  10. 10.
    Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inf. Sci. 181(1), 57–78 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from von Neumann entropy. Pattern Recogn. Lett. 33(15), 1958–1967 (2012)CrossRefGoogle Scholar
  12. 12.
    Lin, H., Zhou, B.: On the von Neumann entropy of a graph. Discrete Appl. Math. 247, 448–455 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik, vol. 38. Springer, New york (1955)zbMATHGoogle Scholar
  14. 14.
    Shanker, O.: Graph zeta function and dimension of complex network. Mod. Phys. Lett. B 21(11), 639–644 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Simovici, D.: Betweenness, metrics and entropies in lattices. In: 38th IEEE International Symposium on Multiple Valued Logic, ISMVL 2008, pp. 26–31 (2008)Google Scholar
  17. 17.
    Voros, A.: Spectral zeta functions. Adv. Stud. Pure Math. 21, 327–358 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recogn. 42(11), 2589–2606 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Hancock, E.: Hypergraph based information-theoretic feature selection. Pattern Recogn. Lett. 33, 1991–1999 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LTCI, Télécom ParisTech, Université Paris-SaclayParisFrance
  2. 2.NormandieUnicaen, GREYC CNRS-UMR 6072CaenFrance

Personalised recommendations