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Abstract. This paper introduces a new definition of entropy for hyper-
graphs. It takes into account the fine structure of a hypergraph by con-
sidering its partial hypergraphs, leading to an entropy vector. This allows
for more precision in the description of the underlying complexity of the
hypergraph. Properties of the proposed definitions are analyzed.
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1 Introduction

The concept of entropy has been introduced to measure the amount of informa-
tion contained or delivered by an information source. Its purpose is to model
the combinatorial possibilities of the different states of a given set. Naturally,
these different states are modeled by a probability distribution of their occur-
rences. This makes it possible to have a “relatively simple” (in terms of sum-
marization) vision of the content of the information of the objects under study.
It is therefore primarily a probabilistic theory of information. After its intro-
duction, this notion has been developed in different parts of sciences, such as
dynamic systems, computer science, stochastic theory, among others. Introduc-
ing entropy into information theory is credited to Shannon [15]. This notion has
been adapted to quantum physics by von Neumann using the spectrum of the
density matrix [13].

More recently this notion has been adapted to the Laplacian of a graph,
thus showing the utility of this concept in graph theory and its application in
particular in image analysis [7,10–12].

Hypergraphs (generalizing the notion of graphs with higher arity of edges) are
useful to model real data where relationships between different data items have
to be taken into account. This includes images, where relations between pixels
or regions can involve more than two elements (e.g. proximity, parallelism...).
A combinatorial object such as a hypergraph can be very complicated, and the
introduction of an entropy measure on such a structure is a relevant way to
assess this complexity. This measure can be used in feature selection methods
such as in [19] or for other tasks such as compression or similarity assessment.
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Usual approaches rely on the Laplacian of hypergraphs, in a similar way as for
graphs. In previous work [6], we defined similarities between hypergraphs based
on mathematical morphology on hypergraphs [5] and valuations in lattices [4,16],
from which partitions and entropies can be defined, e.g. up to a morphological
transformation, to introduce additional filtering and gain in robustness. In all
these approaches, the entropy is defined as a single number, considering the
hypergraph globally.

In this paper, we propose to define the entropy of a hypergraph as a vector, by
using substructures - namely partial hypergraphs. An entropy vector associated
with n random variables is a kind of generalization of Shannon’s entropy, which
links domains such as geometry, combinatorics and information theory [9]. In this
paper we introduce a new concept of entropy called entropy vector associated
with a hypergraph. It is based on the incidence matrix I(H) associated with the
hypergraph H, more precisely on I(H)I(H)t, as well as all the main sub-matrices
of I(H)I(H)t. The defined vector conveys much more detailed information than
the information measured by conventional entropy.

In Sect. 2, basic definitions on hypergraphs are recalled, and the notations
used in this paper are introduced. In Sect. 3, the usual notion of entropy of
a hypergraph is given, for which we show a few properties that are useful in
this paper. The main contribution of this paper is introduced in Sect. 4, where a
definition of entropy vector of a hypergraph is proposed, and in the next sections,
where properties are analyzed. A lattice structure is introduced in Sect. 5. Since
complexity can be a concern, a fast approximate calculus method is proposed in
Sect. 6. Finally links with the Zeta function are suggested in Sect. 7.

2 Preliminaries

Let us first recall some useful notions on hypergraphs [3,8]. A hypergraph H
denoted by H = (V,E = {ei, i = 1...m}) is defined as a pair of a finite set
V (vertices) and a finite family {ei, i = 1...m} of hyperedges. In this paper we
consider only simple hypergraphs (i.e. without repeated hyperedges), and E is
hence a set. Hyerpedges can be considered equivalently as subsets of vertices or
as a relation between vertices of V . The first interpretation is considered here,
and we will note x ∈ ei the fact that a vertex x ∈ V belongs to the hyperedge ei.
In this paper, it is further assumed that E is non-empty and that each hyperedge
is non-empty (i.e. ∀ei ∈ E, ei �= ∅). We denote by r(H) the rank of H, defined
as r(H) = maxe∈E |e|.

In order to study the fine structure of an hypergraph, the following notions
are important in this paper:

– A partial hypergraph H ′ of H generated by J ⊆ {1...m} is a hypergraph
(V ′, {ej , j ∈ J}), where ∪j∈Jej ⊆ V ′ ⊆ V . In the sequel we will suppose that
V ′ = V . This will be denoted by H ′ ≤ H.

– Given a subset V ′ ⊆ V , a subhypergraph H ′ of H is the partial hypergraph
H ′ = (V ′, {ei, ei ∈ E | ei ⊆ V ′}).
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– The induced subhypergraph H ′ of H with V ′ ⊆ V is the hypergraph defined
as H ′ = (V ′, E′) with E′ = {e′ = {e∩V ′} | e ∈ E and e∩V ′ �= ∅}. Note that
if V ′ = V and hypergraphs are considered without empty hyperedges, then
H ′ = H.

– A hypergraph H = (V,E) is isomorphic to a hypergraph H ′ = (V ′, E′)
(H 
 H ′), if there exist a bijection f : V → V ′ and a bijection π : {1...m} →
{1...m′}, where m = |E| and m′ = |E′|, which induce a bijection g : E → E′

(i.e. g(e) = {f(x) | x ∈ e}) such that g(ei) = e′
π(i) for all ei ∈ E and

e′
π(i) ∈ E′. The mapping f is then called isomorphism of hypergraphs.

Finally, let us introduce some notations on symmetric matrices. Let A ∈
Mn×n(R), A = ((ai,j))i,j∈{1...n} be a symmetric matrix on R. Let α =
{α1, . . . αt, } ⊆ {1, . . . n}. We denote by A(α;α) the submatrix of A generated
by keeping only the rows and columns of A indexed by α, i.e.

A(α;α) = ((bi,j))i,j∈{1...t}, bi,j = aαi,αj
, αi, αj ∈ α.

Such a matrix is called principal submatrix of A. If α = {1, 2, . . . , k}, k ≤ n,
A(α;α) is called leading principal submatrix of A.

3 Entropy of a Hypergraph

Let (H,V ) be a simple hypergraph with |V | = n, |E| = m. Let I(H) =
((ai,j))(i,j)∈{1...m}×{1...n} be the incidence matrix of H: ai,j = 1, if xj ∈ ei

and ai,j = 0 otherwise. We consider the matrix m × m defined as:

L(H) = I(H)I(H)t = ((|ei ∩ ej |))i,j∈{1...m}.

This matrix is positive semi-definite. Its eigenvalues λi(L(H)), i = 1...m, are
positive and can be ordered as follows:

0 ≤ λ1(L(H)) ≤ λ2(L(H)) ≤ . . . ≤ λm(L(H)).

Lemma 1. The trace of the matrix L(H) is the sum of the degrees d(x) of the
vertices x of H (i.e. the number of hyperedges that contain x):

Tr(L(H)) =
∑

x∈V

d(x).

Proof. Tr(L(H)) =
∑m

i=1 λi =
∑

e∈E |e| =
∑

x∈V d(x).

�
Let us define:

μi =
λi(L(H))∑m
i=1 λi(L(H))

=
λi(L(H))
Tr(L(H))

.

The μi are the eigenvalues of the normalized matrix

L(H) =
1

Tr(L(H))
L(H)

which is also positive semi-definite.
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Classically, the Shannon entropy of the hypergraph H (see e.g. [8]) is defined
as:

S(H) = −
m∑

i=1

μi log2(μi).

Note that other forms of entropy exist, such as the Renyi entropy for instance,
which is defined for a hypergraph H as:

Rs(H) =
1

1 − s
ln(

m∑

i=1

μs
i ), s ≥ 0.

In this paper we mostly consider Shannon entropy, except in Sect. 7.

Proposition 1. Let H = (V,E) be a simple hypergraph without isolated vertex,
without empty hyperedge, and with |V | = n and |E| = m (m > 0). We have the
two following properties:

(a) S(H) = 0 if and only if |E| = 1,
(b) S(H) = log2(n) − log2(r(H)) = log2(m), where r(H) (the rank of H) is a

constant equal to n
m , if and only if H is uniform (i.e. ∀e ∈ E, |e| = r(H))

and the intersection of any two distinct hyperedges is empty (i.e. for all e, e′

in E such that e �= e′, |e ∩ e′| = 0).

Proof. (a) Assume that |E| = 1. Then L(H) is reduced to a scalar value, which
is non-zero since e �= ∅, and the unique normalized eigenvalue is μ = 1. Hence
S(H) = −1 log2(1) = 0.

Conversely, suppose that S(H) = 0. Since E �= ∅ and H does not contain
any empty hyperedge, then S(H) = 0 implies that ∀i, μi = 0 or μi = 1. Since
hyperegdes are not empty, μi = 0 is not possible, and since

∑
i μi = 1, there is

a unique eigenvalue, equal to 1. Hence |E| = 1.
(b) Assume now that H is uniform, with |e| = r(H) for each hyperedge e,

and that for all e, e′ ∈ E such that e �= e′, |e ∩ e′| = 0. Note that in this case
L(H) is diagonal and so λi = |ei| = r(H). Since e ∩ e′ = ∅, d(x) = 1 for each
vertex x and from Lemma 1, Tr(L(H)) =

∑
x∈V d(x) = n. This corresponds to

a situation where vertices are uniformly distributed among the hyperedges, i.e.
r(H) = n

m . Therefore we have:

S(H) = −
m∑

i=1

μi log2(μi)

= −
∑

e∈E

|e|
Tr(L(H))

log2(
|e|

Tr(L(H))
)

= − mr(H)
n

log2(
r(H)

n
)

= − log2(
r(H)

n
) = log2(n) − log2(r(H)) = log2(m).
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Conversely suppose that S(H) = log2(n) − log2(r(H)) = log2(m). This implies
n = mr(H).

Moreover from Lemma 1, from |e| ≤ r(H) for all e by definition of r(H), and
since

∑
x∈V d(x) ≥ n (no isolated vertex), we have:

n ≤
∑

e∈E

|e| =
∑

x∈V

d(x) ≤ mr(H) = n.

It follows that
∑

x∈V d(x) = n = Tr(L(H)).
It also follows that

∑
e∈E |e| = n = mr(H). Since E �= ∅ and there is no

empty hyperedge, we can derive that |e| = r(H) for all e ∈ E. This means that
H is uniform, and since n = mr(H), for all e, e′ ∈ E such that e �= e′, we have
|e ∩ e′| = 0. Note that in this case the matrix L(H) is diagonal, and for all
i ∈ {1, 2, . . . m}, μi = λi

Tr(L(H)) = r(H)
n .

�
This proposition shows that the entropy is closely related with the parameters

of the hypergraph. Note that Case b implicitly assumes that n
m is an integer.

Moreover, Case a is a consequence of Case b.
A straightforward extension of this result deals with hypergraphs that may

contain isolated vertices. A similar result holds by replacing n by n′, the number
of non-isolated vertices (i.e. that belong to at least one hyperedge).

4 Entropy Vector Associated with a Hypergraph

Now, we built on the classical definition of hypergraph entropy to propose a new
entropy, defined as a vector, based on a finer analysis of the structure of the
hypergraph by considering all its partial hypergraphs.

Definition 1 (Entropy vector). Let H = (V,E) be a hypergraph. For i ≤ m
(m = |E|), let

SEi(H) = {S(Hi) | Hi = (V,Ei),Hi ≤ H, |Ei| = i}

be the set of entropy values of all partial hypergraphs of H whose set of hyperedges
has cardinality i, arranged in increasing order.

The entropy vector of the hypergraph H is then the vector:

SE(H) = (SE1(H), SE2(H), . . . SEm(H))

with 2m − 1 coordinates.

Note that if H ′ ≤ H then it is easy to see that the matrix L(H ′) is a principal
submatrix of L(H).

From Proposition 1, the vector S(H) begins with at least m values equal to 0.
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Example 1. Let us illustrate this definition on a very simple example, illustrated
in Fig. 1, for a hypergraph H with three hyperedges.

e

e

e

1

2

3

Fig. 1. A simple example of hypergraph, with three hyperedges (indicated by blue
lines): e1 contains three vertices, e2 and e3 both contain two vertices, with one common
vertex. (Color figure online)

Let us compute the entropy vector:

– For SE1, there are three partial hypergraphs containing one hyperedge (e1,
e2 and e3, respectively), and SE1 = (0, 0, 0).

– For SE2, there are three partial hypergraphs containing two hyperedges. For

(e1, e2), the matrix L is equal to
(

3 0
0 2

)
, with eigenvalues 2 and 3, and the

corresponding entropy is equal to s1 = − 2
5 log2

2
5 − 3

5 log2
3
5 
 0.29. The

same reasoning applies for (e1, e3). For (e2, e3), the matrix L is equal to(
2 1
1 2

)
, with eigenvalues 1 and 3, and the corresponding entropy is equal to

s2 = − 1
4 log2

1
4 − 3

4 log2
3
4 
 0.24. Then SE2 = (s2, s1, s1) 
 (0.24, 0.29, 0.29).

– For SE3, there is one partial hypergraph containing three hyperedges, i.e.

H. The matrix L is equal to

⎛

⎝
3 0 0
0 2 1
0 1 2

⎞

⎠, with eigenvalues 1, 3 and 3, and the

corresponding entropy is equal to s3 = − 1
7 log2

1
7 − 2 3

7 log2
3
7 
 0.44. Hence

SE3 = (s3) 
 (0.44).
– Finally, the entropy vector is

SE(H) = (0, 0, 0, s2, s1, s1, s3) 
 (0, 0, 0, 0.24, 0.29, 0.29, 0.44).

Proposition 2. Let H = (V,E) and H ′ = (V ′, E′) be two isomorphic hyper-
graphs. Then there is a permutation σ such that

SE(H) = (SE1(H), SE2(H), SE3(H) . . . , SEm(H)) =

SE(H ′) =
(
SE′

σ(1)(H), SE′
σ(2)(H), SE′

σ(3)(H) . . . , SE′
σ(m)(H)

)
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Proof. Let I(H) and I(H ′) be the incidence matrices of H and H ′, respectively.
Since H and H ′ are isomorphic there are two permutation matrices P and Q
such that

I(H ′) = PI(H)Qt.

Consequently
I(H ′)t = QI(H)tP t

and
I(H ′)I(H ′)t = PI(H)QtQI(H)tP t.

Therefore we obtain

L(H ′) = PL(H)P t and L(H ′) = PL(H)P t.

It is well known that if A = PBP t (with P−1 = P t) then A and B have the same
eigenvalues. The matrix P represents the isomorphism and gives rise to the per-
mutation σ (the permutation on vertices induces a permutation on hyperedges).
The isomorphism guarantees that the two hypergraphs have the same structure.
Hence their sets of partial hypergraphs are in one-to-one correspondence and
each partial hypergraph of H is isomorphic to a partial hypergraph of H ′. The
result follows.

�

5 Partial Ordering and Lattice Structure

In this section we further analyze the properties of partial ordering on hyper-
graphs and on vector entropy, which result in lattice structures.

We first recall results from [5].

Definition 2. Let H be the set of isomorphism classes of hypergraphs. A partial
order ≤f on H is defined as: ∀H ′,H ∈ H, H ′ ≤f H if ∃V ′ ⊆ V such that H ′ is
isomorphic (by f) to the subhypergraph of H induced by V ′.

It is clear that ≤f is a partial order relation. We denote by =f the corresponding
equality, and by <f the corresponding strict ordering.

Hereafter, we will denote a class by a representative hypergraph H in this
class.

Proposition 3 ([5]). The structure (H,≤f ) is a complete lattice. The supre-
mum of any H1 = (V1, E1),H2 = (V2, E2) is sup{H1,H2} = H1 ∨ H2 =
(V1∪V2, E1∪E2), and the infimum inf{H1,H2} is the maximum common induced
subhypergraph (and their extensions to any family).

Let us now move to the vector entropy. Let V be a set of vectors. A
partial order is defined on V as follows. For x = (x1, x2, . . . xk) ∈ V and
y = (y1, y2, . . . yt) ∈ V, x ≤ y if ∀i ≤ min(k, t), xi ≤ yi. Note that this relation
is equivalent to the usual Pareto ordering, if the shortest length vector (say x,
i.e. k ≤ t) is completed by t−k components equal to 0. The set V endowed with
this partial ordering is called an ordered vector set.
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Proposition 4. The set SEH = {SE(H) | H ∈ H} is an ordered vector set.

Note that while each SEi(H) has its values increasingly ordered, this is not the
case for SE(H). Proposition 4 means that a partial ordering can be defined on
SEH, as defined above.

Proposition 5. The set SEH endowed with the partial ordering ≤ is a lattice.

Proof. It is clear that the partial ordering ≤ (Pareto-like ordering) gives rise
to a supremum (least upper-bound) and an infimum (greatest lower bound) for
any finite family of SE(H). The supremum is computed as the component-wise
maximum and the infimum as the component-wise minimum. It is bounded by
0, obtained for H = (V,E = {e}) from Proposition 1, so any infinite family has
also an infimum.

�
Proposition 6. Let H = (V,E) and H ′ = (V ′, E′). If H ′ ≤f H, then
SE(H ′) ≤ SE(H).

Proof. Let H = (V,E) and H ′ = (V ′, E′) such that H ′ ≤f H, with |E| = m and
|E′| = m′. Two cases arise:

1. If H ′ =f H then, by Proposition 2 there is a permutation σ such that
SEσ(H) = SE(H).

2. If H ′ <f H then by definition there is an induced subhypergraph H ′′ =
(V ′′, E′′) of H which is isomorphic to H ′. From Proposition 2, L(H ′) and
L(H ′′) have the same eigenvalues, and moreover, since f is an isomorphism
between H ′ and H ′′, there is a permutation σ (which comes from f) such
that

∀i, 1 ≤ i ≤ m′, SEσ(i)(H ′) ≤ SEi(H ′′).

Since H ′ <f H then m′ < m, hence 2m′ − 1 < 2m − 1. Hence, by adding
2m − 1 − (2m′ − 1) components equal to 0 in (SEσ(1)(H), SEσ(2)(H), . . . ,
SEσ(m′)(H)) at a good place we obtain a vector with 2m − 1 components
such that

SE(H ′) ≤ SE(H).

�
Let H = (V,E) and H ′ = (V ′, E′) be two hypergraphs such that V =

{x1, x2, . . . xn}, V ′ = {x′
1, x

′
2, . . . x

′
n′}, E = {e1, e2, . . . em}, E′ = {e′

1, e
′
2, . . . e

′
m′}.

Let I(H) = ((ai,j))(i,j)∈{1...m}×{1...n} and I(H ′) = ((a′
i,j))(i,j)∈{1...m′}×{1...n′}.

Let H ′′ = H ∪ H ′ = (V ∪ V ′, E ∪ E′). Its incidence matrix is built as follows:
add rows and columns with 0’s in I(H) (respectively I(H ′)) for vertices and
hyperedges present in H ′ and not in H (respectively present in H and not in H ′),
so as to get two matrices of size m′′ × n′′ whose generic terms are still denoted
ai,j and a′

i,j . Then the matrix I(H ′′) has m′′ rows corresponding to E ∪ E′,
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n′′ columns corresponding to V ∪ V ′, and coefficients a′′
i,j = max(ai,j , a

′
i,j), for

1 ≤ i ≤ m′′, 1 ≤ j ≤ n′′.
We define H∩H ′ = (V ∩V ′, E∩E′) in the same way by suppressing rows and

columns in I(H) and I(H ′) corresponding to non-common vertices and edges,
and by replacing max by min to define the coefficients of the resulting incidence
matrix.

Clearly both L(H ∪ H ′) and L(H ∩ H ′) are well defined.

6 An Algorithm for Approximate Calculus of the
Entropy Vector

When the size of the hypergraph increases, the entropy vector may become
very costly. Suggestions to reduce the complexity would be to disregard partial
hypergraphs with very few hyperedges (bringing reduced information), or in
contrast with near to m hyperedges (and hence less relevant). Another way
would be to order the hyperedges in order of increasing cardinality and to take
the leading principal matrices.

In this section, we propose approximations that alleviate two main drawbacks
to calculate the entropy vectors.

The first drawback is the calculation of the eigenvalues. Since entropy is a
mean value of the information, we can take an approximate value. Recall that
log(x) = log(1+ (x− 1)) 
 x− 1 for −1 ≤ x− 1 ≤ 1. Since μi ∈ [0, 1], and hence
μi − 1 ∈ [−1, 0], S(H) = −∑m

i=1 μi log2(μi) can be approximated by:

−
m∑

i=1

μi(1 − μi) = Tr(L(H)) − Tr(L(H)2)

= 1 − 1
(∑

e∈E |e|)2
(

∑

e∈E

|e|2 +
∑

e∈E

∑

e′∈Ae

|e ∩ e′|2
)

(1)

where Ae = {e′ ∈ E | e′ �= e and e ∩ e′ �= ∅}. This expression is easy to compute.
The second drawback is that we have 2m −1 principal matrices. We can take

only the leading principal matrices, hence, we have to manage m − 1 matrices
and we get an entropy vector with m − 1 components. In this case the order of
the hyperedges in the matrix L(H) is important: if we permute two hyperedges
in L(H), for instance the first one with the last one, we may change SE(H). This
comes from Eq. 1. Consequently we have to find an appropriate order on hyper-
edges. We sort hyperedges when building L(H) so that e is before e′ (denoted
by e � e′) if:
– |e| < |e′|, or
– |e| = |e′| and

∑
a∈Ae

|e ∩ a| ≤ ∑
a′∈Ae′ |e′ ∩ a′|.

The case where |e| = |e′| and
∑

a∈Ae
|e ∩ a| =

∑
a′∈Ae′ |e′ ∩ a′| is not important

because it does not change Eq. 1, hence we can choose to put either e before e′

or e′ before e. Relation � is a pre-order (both reflexive and symmetric relation).
After pre-ordering L(H), the vector SE(H) is canonically associated to this
matrix.
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7 Zeta Function and Entropy

In this section, we suggest some links between the Zeta function and the notion
of hypergraph entropy.

The Zeta spectral function plays an important role in areas where linear
operators are often present [17], that is in most fields of physics. It has also been
introduced on graphs and in image analysis [11,18]. Define now the spectral Zeta
function of a hypergraph H = (V,E), with |E| = m, as:

ζH(s) = Tr(L(H)−s) =
m∑

i=1,μi �=0

μ−s
i

In a similar way as for entropy, we can define the spectral Zeta vector function.
It is easy to show that the derivative of ζ with respect to s can be expressed

as:

ζ
′
H(s) =

ζH(s)
ds

= −
m∑

i=1

μ−s
i ln(μi).

Consequently we have:

ζ
′
H(−1) = −

m∑

i=1

μi ln(μi) = ln(2)S(H),

ζ
′
H(0) = −

m∑

i=1

ln(μi) = − ln(
m∏

i=1

μi) = − ln(det(L(H))).

The following result also holds.

Proposition 7. Let H = (V,E) be a simple hyperpgraph, with |E| = m, and
strictly positive eigenvalues of L(H). The Zeta function is related to the Renyi
entropy by the following equation:

∀s ≥ 0, ζH(−s) = e(1−s)Rs(H)

Proof. We have, for s ≥ 0:

(1 − s)Rs(H) = ln(
m∑

i=1

μs
i )

and

e(1−s)Rs(H) =
m∑

i=1

μs
i = ζH(−s)

�
These relations show how to relate spectro-analytic theory to information

theory. This is of great importance, especially in dynamic networks seen as a
series of hypergraphs. Indeed the notion of dynamical Zeta functions are an
important tool to analyze chaotic dynamical systems [2,14] and should be effec-
tive in quantifying and tracking the evolution of entropy vectors, by applying
the results in this section to the entropy values of all partial hypergraphs.
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8 Conclusion

In this paper, a new measure of entropy for hypergraphs was proposed, defined
as a vector. It generalizes Shannon entropy, representing a richer information on
the complexity of a hypergraph, taking into account all its partial hypergraphs,
hence its sub-structures. Algebraic properties were proved, as well as some links
with the Zeta function.

Future work aims at exploring further the proposed notion, including addi-
tional properties and applications, in particular for image description. For
instance, as suggested in [6], a hypergraph could be built from an image con-
sidering pixels or regions resulting from an over-segmentation as vertices, and
hyperedges could be defined from relations (e.g. neighborhood, grey-levels or
colors, spatial relations between regions...). Looking at the sub-structures of the
hypergraph would then provide a description of the image complexity which
would be finer and more precise than a global description.

For concrete applications to be tractable, the computation cost may be an
issue for even moderately large hypergraphs, since the size of the entropy vec-
tor grows exponentially with the number of hyperedges. We suggested a few
ways to address this issue in Sect. 6. Other could be developed, for instance by
choosing randomly partial hypergraphs, or by looking at specific patterns in the
hypergraph.

Another extension of hypergraph entropy to sequences of entropy values was
proposed in [1]. The approach we proposed here is different since all the par-
tial hypergraphs are considered, instead of centroid expansion subgraphs as in
this earlier work. In future work it would be also interesting to compare both
approaches based on their respective properties, as well as on concrete examples.

Another direction of research consists in extending the proposed notion to
other forms of entropy (such as Renyi entropy), to weighted hyperedges (for
instance using the distance between vertices), to weighted terms in the matrix
L(H) (e.g. using a distance between two hyperedges ei and ej to weight |ei∩ej |),
or more generally to attributed hypergraphs.
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