Advertisement

Efficient Unsupervised Image Segmentation by Optimum Cuts in Graphs

  • Hans H. C. Bejar
  • Lucy A. C. Mansilla
  • Paulo A. V. MirandaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

In this work, a method based on optimum cuts in graphs is proposed for unsupervised image segmentation, that can be tailored to different objects, according to their boundary polarity, by extending the Oriented Image Foresting Transform (OIFT). The proposed method, named UOIFT, encompasses as a particular case the single-linkage algorithm by minimum spanning tree (MST), establishing important theoretical contributions, and gives superior segmentation results compared to other approaches commonly used in the literature, usually requiring a lower number of image partitions to isolate the desired regions of interest. The method is supported by new theoretical results involving the usage of non-monotonic-incremental cost functions in directed graphs. The results are demonstrated using a region adjacency graph of superpixels in medical and natural images.

Keywords

Unsupervised segmentation Image Foresting Transform Graph-cut measure 

Notes

Acknowledgements

Thanks to CNPq (308985/2015-0, 486988/2013-9, FINEP1266/13), FAPESP (2014/12236-1, 2016/21591-5), NAP eScience and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001 for funding.

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Alexandre, E., Chowdhury, A., Falcão, A., Miranda, P.: IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. In: 28th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 337–344 (2015)Google Scholar
  3. 3.
    Audigier, R., Lotufo, R.: Seed-relative segmentation robustness of watershed and fuzzy connectedness approaches. In: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 61–68, October 2007Google Scholar
  4. 4.
    Carballido-Gamio, J., Belongie, S., Majumdar, S.: Normalized cuts in 3D for spinal MRI segmentation. IEEE Trans. Med. Imaging 23(1), 36–44 (2004)CrossRefGoogle Scholar
  5. 5.
    Ccacyahuillca Bejar, H.H., Miranda, P.A.: Oriented relative fuzzy connectedness: theory, algorithms, and its applications in hybrid image segmentation methods. EURASIP J. Image Video Process. 2015(1), 21 (2015)CrossRefGoogle Scholar
  6. 6.
    Ciesielski, K.C., Falcão, A.X., Miranda, P.A.V.: Path-value functions for which dijkstra’s algorithm returns optimal mapping. J. Math. Imaging Vis. 60(7), 1025–1036 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. J. Math. Imaging Vis. 60(4), 479–502 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. PAMI 26(1), 19–29 (2004)CrossRefGoogle Scholar
  9. 9.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)CrossRefGoogle Scholar
  10. 10.
    Feng, W., Xiang, H., Zhu, Y.: An improved graph-based image segmentation algorithm and its GPU acceleration. In: 2011 Workshop on Digital Media and Digital Content Management, pp. 237–241, May 2011Google Scholar
  11. 11.
    Guimarães, S., Kenmochi, Y., Cousty, J., Jr., Z.P., Najman, L.: Hierarchizing graph-based image segmentation algorithms relying on region dissimilarity. Math. Morphol. Theory Appl. 2(1), 55–75 (2017)Google Scholar
  12. 12.
    Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimelfarb, G. et al. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2012. Lecture Notes in Computer Science, vol. 7626. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34166-3_13
  13. 13.
    Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_47CrossRefGoogle Scholar
  14. 14.
    Mansilla, L.A.C., Miranda, P.A.V., Cappabianco, F.A.M.: Oriented image foresting transform segmentation with connectivity constraints. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2554–2558, September 2016Google Scholar
  15. 15.
    Mansilla, L., Miranda, P.: Image segmentation by oriented image foresting transform: handling ties and colored images. In: 18th International Conference on Digital Signal Processing (DSP), pp. 1–6. IEEE, Santorini, July 2013Google Scholar
  16. 16.
    Mansilla, L.A.C., Miranda, P.A.V.: Image segmentation by oriented image foresting transform with geodesic star convexity. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8047, pp. 572–579. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40261-6_69CrossRefGoogle Scholar
  17. 17.
    Miranda, P., Mansilla, L.: Oriented image foresting transform segmentation by seed competition. IEEE Trans. Image Process. 23(1), 389–398 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    de Moraes Braz, C., Miranda, P.A.V.: Image segmentation by image foresting transform with geodesic band constraints. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4333–4337, October 2014Google Scholar
  19. 19.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  20. 20.
    Silva, A.G., Lotufo, R.D.A.: Efficient computation of new extinction values from extended component tree. Pattern Recogn. Lett. 32(1), 79–90 (2011)CrossRefGoogle Scholar
  21. 21.
    Souza, R., Rittner, L., Machado, R., Lotufo, R.: iamxt: Max-tree toolbox for image processing and analysis. SoftwareX 6, 81–84 (2017)CrossRefGoogle Scholar
  22. 22.
    Vargas-Muñoz, J.E., Chowdhury, A.S., Barreto-Alexandre, E., Galvão, F.L., Miranda, P.A.V., Falcão, A.X.: An iterative spanning forest framework for superpixel segmentation abs/1801.10041 (2018). http://arxiv.org/abs/1801.10041
  23. 23.
    Wang, S., Sinkind, J.: Image segmentation with ratio cut. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 675–690 (2003)CrossRefGoogle Scholar
  24. 24.
    Wang, S., Siskind, J.: Image segmentation with minimum mean cut. In: International Conference on Computer Vision (ICCV), vol. 1, pp. 517–525 (2001)Google Scholar
  25. 25.
    Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its applications to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)CrossRefGoogle Scholar
  26. 26.
    Zhang, M., Alhajj, R.: Improving the graph-based image segmentation method. In: 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2006), pp. 617–624, November 2006Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hans H. C. Bejar
    • 1
  • Lucy A. C. Mansilla
    • 1
  • Paulo A. V. Miranda
    • 1
    Email author
  1. 1.Department of Computer Science, Institute of Mathematics and StatisticsUniversity of São PauloSão PauloBrazil

Personalised recommendations