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Abstract. In this work, a method based on optimum cuts in graphs
is proposed for unsupervised image segmentation, that can be tailored
to different objects, according to their boundary polarity, by extending
the Oriented Image Foresting Transform (OIFT). The proposed method,
named UOIFT, encompasses as a particular case the single-linkage algo-
rithm by minimum spanning tree (MST), establishing important theo-
retical contributions, and gives superior segmentation results compared
to other approaches commonly used in the literature, usually requiring a
lower number of image partitions to isolate the desired regions of inter-
est. The method is supported by new theoretical results involving the
usage of non-monotonic-incremental cost functions in directed graphs.
The results are demonstrated using a region adjacency graph of super-
pixels in medical and natural images.

Keywords: Unsupervised segmentation · Image Foresting Transform ·
Graph-cut measure

1 Introduction

Unsupervised segmentation is an important problem in computer vision, since
perceptual grouping plays a powerful role in human visual perception [25]. In this
context, the method must decide what are the relevant image regions without
user guidance, based on color and texture similarity or local contrast.

The unsupervised over-segmentation of an image into compact regions of
similar and connected pixels is commonly called superpixels [1,22]. It can greatly
reduce the computational time of computer vision algorithms, by replacing the
rigid structure of the pixel grid [1]. In graph-based methods, it allows the fast
creation of a Region Adjacency Graph (RAG), drastically reducing the number
of graph elements compared to the graph at the pixel level (Figs. 1a-b).

Several graph-based methods have been proposed for unsupervised seg-
mentation, including watersheds [3], mean cut [24], ratio cut [23], normalized
cuts [4,19], and minimum spanning tree (MST) based methods [7,9–12,26].
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For instance, Felzenszwalb and Huttenlocher proposed an efficient segmentation
algorithm that evaluates a predicate for measuring the evidence for a boundary
between two regions, which produces segmentations satisfying global properties,
although based on greedy decisions [9]. Other methods include the usage of com-
ponent trees [20,21], which can also be combined with watersheds, allowing the
selection of catchment basins according to their extinction values.

Seed-based methods for region-based image segmentation are known to pro-
vide satisfactory results for several applications, being usually easy to extend
to multi-dimensional images. In this work, we extend a seed-based method,
named Oriented Image Foresting Transform (OIFT) [15,17], to perform unsu-
pervised image segmentation, leading to a new method based on optimum cuts
in graphs, named UOIFT, that can be tailored to different objects, according
to their boundary polarity. OIFT has been demonstrated to be an effective and
efficient solution for the segmentation of a given target object based on user pro-
vided seeds, allowing the incorporation of several high-level constraints, including
shape constraints [16,18] and connectivity priors [14].

The proposed method is based on the Image Foresting Transform (IFT) [8]
algorithm, which has linearithmic implementations, being much faster compared
to other methods based on cuts in graphs [4,19,23,24]. Differently from [13], our
method exploits non-monotonic-incremental cost functions in directed graphs.

The proposed method encompasses as a particular case the single-linkage
algorithm by MST, establishing important theoretical contributions, and
requires a lower number of image partitions to isolate the desired regions of
interest as compared to other approaches commonly used in the literature.

Figures 1c–h present the central idea of this work, which is to explore
the boundary polarity in the unsupervised segmentation of images in directed
graphs. Figure 1a shows a synthetic image containing dark and bright regions
to be segmented in five different regions. Regular unsupervised methods, based
on undirected graphs, such as watersheds, cannot distinguish the different types
of boundary polarity, giving as output a mixture of bright and dark regions, as
shown in Figs. 1c-d. Our proposed method can favor a particular polarity, giving
the results shown in Figs. 1e-f or Figs. 1g-h.

2 Graph Concepts

We consider a weighted digraph G as a triple 〈V ,A, ω〉, where V is a nonempty
set of vertices or nodes, A is a set of ordered pairs of distinct vertices called arcs
or directed edges, and ω : A → R represents the weights associated to the arcs.

An image can be interpreted as a weighted digraph G = 〈V ,A, ω〉, whose
nodes V are the image pixels (or superpixels) in its image domain and whose
arcs are the ordered pairs 〈s, t〉 ∈ A of neighboring pixel (superpixels), e.g.,
4-neighborhood in case of 2D images. The digraph G is symmetric if for any of
its arcs 〈s, t〉 ∈ A, the pair 〈t, s〉 is also an arc of G, but we can have ω(〈s, t〉) �=
ω(〈t, s〉). The transpose GT of G is the unique weighted digraph on the same set
of vertices V with all arcs reversed compared to the corresponding arcs in G.
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(a) Input image (b) Superpixels (c) Single-linkage (d) Seeds

(e) UOIFT (f) Seeds (g) UOIFT (h) Seeds

Fig. 1. (a) Input image with 320 × 200 pixels. (b) Image divided into 640 superpixels
by IFT-SLIC [2]. (c) The segmentation into five regions by a single-linkage algorithm
using the MST of the RAG. (d) Candidate seeds ranked by their energies by UOIFT
without boundary polarity lead to the same result depicted in (c). The UOIFT results
into five regions and seeds ranked by their energies, with polarity favoring transitions:
(e-f) from bright to dark pixels and (g-h) from dark to bright pixels.

For a given image graph G = 〈V ,A, ω〉, a path π = 〈t1, t2, . . . , tn〉 is a
sequence of adjacent nodes (i.e., 〈ti, ti+1〉 ∈ A, i = 1, 2, . . . , n − 1) with no
repeated vertices (ti �= tj for i �= j). A path πt = 〈t1, t2, . . . , tn = t〉 is a path
with terminus at a node t. When we want to explicitly indicate the origin of
the path, the notation πs�t = 〈t1 = s, t2, . . . , tn = t〉 may also be used, where
s stands for the origin and t for the destination node. A path is trivial when
πt = 〈t〉. A path πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc
〈s, t〉. To notation Π(G) is used to indicate the set of all possible paths in a
graph G.

A predecessor map is a function P that assigns to each node t in V either
some other adjacent node in V , or a distinctive marker nil not in V — in which
case t is said to be a root of the map. A spanning forest is a predecessor map
which contains no cycles — i.e., one which takes every node to nil in a finite
number of iterations. For any node t ∈ V , a spanning forest P defines a path πP

t

recursively as 〈t〉 if P (t) = nil, and πP
s · 〈s, t〉 if P (t) = s �= nil.

A connectivity function f : Π(G) → R computes a value f(πt) for any path
πt, usually based on arc weights. A path πt is optimum if f(πt) ≤ f(τt) for
any other path τt in G. The optimum-path value Vopt(t) is uniquely defined by
Vopt(t) = minπt∈Π(G){f(πt)}. An optimum-path forest P is a spanning forest
where all paths πP

t for t ∈ V are optimum.
The cost of a trivial path πt = 〈t〉 is usually given by a handicap value H(t).

For example, H(t) = 0 for all t ∈ S and H(t) = ∞ otherwise, where S is a seed
set. The costs for non-trivial paths follow a path-extension rule. For example:

fmax(πs · 〈s, t〉) = max{fmax(πs), ω(〈s, t〉)} (1)
fΣ(πs · 〈s, t〉) = fΣ(πs) + ω(〈s, t〉) (2)
fω(πs · 〈s, t〉) = ω(〈s, t〉) (3)
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The max-arc path-cost function fmax and the additive path-cost function
fΣ with ω(〈s, t〉) � 0 are Monotonic-Incremental cost functions (MI), while fω

indicates a non-monotonic-incremental cost function.
The image foresting transform (IFT) [8] (Algorithm 1) computes the path-

cost map V , which is precisely Vopt in the case of MI functions [6]. It is also
optimized in handling infinite costs, by storing in Q only the nodes with finite-
cost path, assuming without loss of generality that Vopt(t) < +∞ for all t ∈ V .

Algorithm 1 – IFT Algorithm

Input: Image graph G = 〈V ,A, ω〉, initial labeling function λ : V →
{1, . . . , k} and path-cost function f .

Output: Optimum-path forest P , label map L : V → {1, . . . , k} and the path-
cost map V , which is precisely Vopt in the case of MI functions.

Auxiliary: Priority queue Q, variable tmp, and set of nodes F .

1. For each t ∈ V, do
2. Set P (t) ← nil, L(t) ← λ(t) and V (t) ← f(〈t〉).
3. Set F ← ∅.
4. If V (t) �= +∞, then insert t in Q.
5. While Q �= ∅, do
6. Remove s from Q such that V (s) is minimum.
7. Add s to F .
8. For each node t such that 〈s, t〉 ∈ A and t /∈ F , do
9. Compute tmp ← f(πP

s · 〈s, t〉).
10. If tmp < V (t), then
11. If V (t) �= +∞, then remove t from Q.
12. Set P (t) ← s, V (t) ← tmp, L(t) ← L(s).
13. Insert t in Q.

3 Efficient Optimum Cuts in Graphs

For a given partition of the graph nodes in two sets X and V \ X, let C(X) =
{〈s, t〉 ∈ A | s ∈ X and t /∈ X} denote the set of arcs in its cut from X to
V \ X. Consider the following energy formulation:

E(X) = min
〈s,t〉∈C(X )

ω(〈s, t〉) (4)

Let U(x, y) = {X ⊂ V | x ∈ X and y ∈ V \ X} denote the universe of
all possible partitions separating the nodes x and y, where y represents the
background. By using x and y as internal and external seeds, respectively,
the OIFT algorithm [17] computes an optimum partition Xopt ∈ U(x, y) by
maximizing the above energy (Eq. 4) in a symmetric directed graph, that is,
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E(Xopt) = maxX∈U(x,y) E(X). OIFT is build upon the IFT framework by con-
sidering the following path function in a symmetric digraph:

f♂(〈t〉) =
{−1 if t ∈ S1 ∪ S0

+∞ otherwise

f♂(πr�s · 〈s, t〉) =
{

ω(〈s, t〉) if r ∈ S1

ω(〈t, s〉) otherwise (5)

where, in this work, we use S1 = {x} and S0 = {y}. The set Xopt ∈ U(x, y) by
OIFT is defined from the forest P computed by Algorithm 1 with f♂, by taking
the pixels that were conquered by paths rooted in S1 = {x} [15].

For the purpose of unsupervised segmentation, for a given reference point r in
the background, we would like to find a node t′ ∈ V \{r}, resulting in a partition
of maximum energy among all results in

⋃
t∈V\{r} U(t, r). Fortunately, t′ can be

efficiently obtained by taking t′ = arg maxt∈VV (t), where V is the cost map by
IFT using fmax with S = {r} in the transpose graph, according to Lemma 1
from [5]. This result can be equally obtained by taking as V the cost map by
IFT using fω with S = {r} in the transpose graph, but this later approach
has the advantage that it allows us to rank the nodes according to their non-
increasing order of values, such that the next cut with maximum energy can be
easily selected (Figs. 1d, f, h). In this way we can create a hierarchy of partitions
according to the following proposed algorithm:

Algorithm 2 – Unsupervised OIFT Algorithm (UOIFT)

Input: Image graph G = 〈V,A, ω〉, a background reference node r and the
desired number of regions k.

Output: Graph partition into k regions.

1. Compute V : V → R by IFT with fw and S = {r} in transpose graph GT .
2. Sort the nodes in a non-increasing order of costs in V , getting {t1, t2, . . . , tn},

such that V (ti) ≥ V (ti+1), i = 1, . . . , n − 1, where n = |V|.
3. For each ti, i = 1, . . . , k − 1, compute the graph partition of the strongly connected

component containing ti, separating its reference node from ti by OIFT, and mark
ti as the reference node of the new obtained partition.

Algorithm 2 generates a hierarchical segmentation by successive binary divi-
sions, leading at the end to a segmentation with k partitions. Each IFT execution
has linearithmic complexity in the number of involved nodes. Since UOIFT is
based on multiple OIFTs executions (at each iteration being applied to smaller
graphs), we considered a Region Adjacency Graph (RAG), where the regions are
the superpixels computed by IFT-SLIC [2,22] of size 10 × 10 pixels, rather than
using the pixels directly (Fig. 1b). The initial reference node for the background
was taken to be the first top/left superpixel in the image. In order to exploit the
boundary polarity, we consider the following arc weight assignment:

ω(〈s, t〉) =

⎧⎨
⎩

|I(t) − I(s)| × (1 + α) if I(s) > I(t)
|I(t) − I(s)| × (1 − α) if I(s) < I(t)
|I(t) − I(s)| otherwise

(6)
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where the weights ω(〈s, t〉) are a combination of an undirected dissimilarity mea-
sure |I(t) − I(s)| between neighboring superpixels s and t, multiplied by an
orientation factor for α ∈ [−1, 1], such that α < 0 favors the segmentation of
dark objects in a brighter background (Fig. 1g) and α > 0 favors the opposite
orientation (Fig. 1e), and I(t) is the mean intensity inside superpixel t.

We conducted experiments, comparing the proposed unsupervised segmen-
tation by OIFT with other graph-base methods. In the following, MST denotes
the clustering of the previously described RAG nodes, obtained by succes-
sive removals of edges of maximum weight from the minimum spanning tree,
where ω(〈s, t〉) = |I(t) − I(s)|, which is related to the nearest-neighbor (single-
linkage) algorithm. FH denotes the unsupervised approach by Felzenszwalb and
Huttenlocher [9], which computes a predicate for measuring the evidence for a
boundary between two regions based on the minimum spanning tree computed in
the RAG graph. EF+WS indicates the IFT-based watershed transform [3], after
a volume extinction filter [20] set to preserve k leaves of the Min-tree, in order
to consider only the most relevant catchment basins of a morphological gradient
by a disk of radius 1. We used the code for the extinction filter available in the
iamxt toolbox [21]. Note that Algorithm 2 encompasses as a particular case the
single-linkage algorithm (MST) for α = 0.0, since its first step corresponds to a
MST computation for α = 0.0 and each V (ti) on its second step corresponds to
an edge of maximum weight in the MST.

(a) Input image (b) Superpixels (c) UOIFTα 0.9
k 10 (d) MSTk 10 (e) MSTk 73

(f) FHk 29 (g) FHk 46 (h) EF+WSk 10 (i) EF+WSk 44 (j) EF+WSk 100

Fig. 2. Segmentation results for a real MR image of the foot. In order to properly
segment the talus bone, MST required k = 73, FH k = 46 and EF+WS k = 44, while
UOIFT could get it using k = 10 only.

We performed experiments using 40 slice images from real MR images of the
foot to segment the talus bone (Fig. 2) and 40 slice images from CT cervical spine
studies of 10 subjects to segment the spinal-vertebra. We computed the mean
accuracy curve of all the methods for different values of k (Fig. 3). For each value
of k, we computed the Dice similarity coefficient between the ground truth and
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Fig. 3. The mean curves of Dice accuracy of the best union of produced regions for
different values of k and methods, to segment: (a) talus bone and (b) spinal-vertebra.

the best union of segmented regions leading to the object. Since the method by
Felzenszwalb and Huttenlocher only provides indirect control over the number of
generated regions, in our plot, we are showing for FH the mean number of regions
obtained for each value of its input parameter. The results indicate that UOIFT
requires a lower value of k compared to the other approaches to generate the
talus bone and the spinal-vertebra for different values of α, due to its boundary
polarity information, demonstrating the robustness of UOIFT.

Regarding the computational time, for an image of 256 × 256 pixels, to com-
pute 625 superpixels by IFT-SLIC takes 203.4 ms and the final clustering into
300 regions by UOIFT in the RAG takes only 13.15 ms, in an Intel Core i3-5005U
CPU @ 2.00 GHz×4. As future work, we intend to extend UOIFT to consider
more sophisticated predicates based on the following works [7,10–12,26].
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11. Guimarães, S., Kenmochi, Y., Cousty, J., Jr., Z.P., Najman, L.: Hierarchizing
graph-based image segmentation algorithms relying on region dissimilarity. Math.
Morphol. Theory Appl. 2(1), 55–75 (2017)
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