Skip to main content

Information-Theoretic Active Learning for Content-Based Image Retrieval

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

We propose Information-Theoretic Active Learning (ITAL), a novel batch-mode active learning method for binary classification, and apply it for acquiring meaningful user feedback in the context of content-based image retrieval. Instead of combining different heuristics such as uncertainty, diversity, or density, our method is based on maximizing the mutual information between the predicted relevance of the images and the expected user feedback regarding the selected batch. We propose suitable approximations to this computationally demanding problem and also integrate an explicit model of user behavior that accounts for possible incorrect labels and unnameable instances. Furthermore, our approach does not only take the structure of the data but also the expected model output change caused by the user feedback into account. In contrast to other methods, ITAL turns out to be highly flexible and provides state-of-the-art performance across various datasets, such as MIRFLICKR and ImageNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayache, S., Quénot, G.: Evaluation of active learning strategies for video indexing. Sig. Process.: Image Commun. 22(7), 692–704 (2007)

    Google Scholar 

  2. Brinker, K.: Incorporating diversity in active learning with support vector machines. In: International Conference on Machine Learning (ICML), pp. 59–66 (2003)

    Google Scholar 

  3. Cardoso, T.N., Silva, R.M., Canuto, S., Moro, M.M., Gonçalves, M.A.: Ranked batch-mode active learning. Inf. Sci. 379, 313–337 (2017)

    Article  Google Scholar 

  4. Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian image retrieval system, pichunter: theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9(1), 20–37 (2000)

    Article  Google Scholar 

  5. Demir, B., Bruzzone, L.: A novel active learning method in relevance feedback for content-based remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 53(5), 2323–2334 (2015)

    Article  Google Scholar 

  6. Deselaers, T., Paredes, R., Vidal, E., Ney, H.: Learning weighted distances for relevance feedback in image retrieval. In: International Conference on Pattern Recognition (ICPR), pp. 1–4. IEEE (2008)

    Google Scholar 

  7. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 524–531. IEEE (2005)

    Google Scholar 

  8. Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Labeling examples that matter: relevance-based active learning with Gaussian processes. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 282–291. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_31

    Chapter  Google Scholar 

  9. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_37

    Chapter  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: Example: ZIP code data (Ch. 11.7). In: The Elements of Statistical Learning. Springer Series in Statistics, New York (2001)

    Google Scholar 

  11. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput. Graph. Stat. 1(2), 141–149 (1992)

    Google Scholar 

  12. Giang, N.T., Tao, N.Q., Dung, N.D., The, N.T.: Batch mode active learning for interactive image retrieval. In: 2014 IEEE International Symposium on Multimedia (ISM), pp. 28–31. IEEE (2014)

    Google Scholar 

  13. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in Gaussian processes. In: International Conference on Machine Learning (ICML), pp. 265–272. ACM (2005)

    Google Scholar 

  14. Guo, Y., Greiner, R.: Optimistic active-learning using mutual information. In: IJCAI, vol. 7, pp. 823–829 (2007)

    Google Scholar 

  15. Guo, Y., Schuurmans, D.: Discriminative batch mode active learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 593–600 (2008)

    Google Scholar 

  16. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: Proceedings of the 2008 ACM International Conference on Multimedia Information Retrieval, MIR 2008. ACM, New York (2008)

    Google Scholar 

  17. Jain, P., Kapoor, A.: Active learning for large multi-class problems. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 762–769. IEEE (2009)

    Google Scholar 

  18. Johns, E., Mac Aodha, O., Brostow, G.J.: Becoming the expert - interactive multi-class machine teaching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2616–2624. IEEE (2015)

    Google Scholar 

  19. Käding, C., Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Active learning and discovery of object categories in the presence of unnameable instances. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4343–4352 (2015)

    Google Scholar 

  20. Käding, C., Rodner, E., Freytag, A., Mothes, O., Barz, B., Denzler, J.: Active learning for regression tasks with expected model output changes. In: British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  21. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with Gaussian processes for object categorization. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8. IEEE (2007)

    Google Scholar 

  22. Krause, A., Guestrin, C.: Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach. In: International Conference on Machine Learning (ICML), pp. 449–456. ACM (2007)

    Google Scholar 

  23. Li, X., Guo, Y.: Adaptive active learning for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 859–866 (2013)

    Google Scholar 

  24. Lütz, A., Rodner, E., Denzler, J.: I want to know more–efficient multi-class incremental learning using Gaussian processes. Pattern Recogn. Image Anal. 23(3), 402–407 (2013)

    Article  Google Scholar 

  25. Niblack, C.W., et al.: QBIC project: querying images by content, using color, texture, and shape. In: Storage and Retrieval for Image and Video Databases, vol. 1908, pp. 173–188. International Society for Optics and Photonics (1993)

    Google Scholar 

  26. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning, vol. 1. MIT Press, Cambridge (2006)

    Google Scholar 

  27. Rodner, E., Freytag, A., Bodesheim, P., Fröhlich, B., Denzler, J.: Large-scale Gaussian process inference with generalized histogram intersection kernels for visual recognition tasks. Int. J. Comput. Vis. 121(2), 253–280 (2017)

    Article  Google Scholar 

  28. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  31. Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: ACM International Conference on Multimedia, pp. 107–118. ACM (2001)

    Google Scholar 

  32. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vis. 113(2), 113–127 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhu, J., Wang, H., Yao, T., Tsou, B.K.: Active learning with sampling by uncertainty and density for word sense disambiguation and text classification. In: International Conference on Computational Linguistics, vol. 1 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation as part of the priority programme “Volunteered Geographic Information: Interpretation, Visualisation and Social Computing” (SPP 1894, contract number DE 735/11-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Barz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2338 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barz, B., Käding, C., Denzler, J. (2019). Information-Theoretic Active Learning for Content-Based Image Retrieval. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics