Skip to main content

Multi-class Cell Segmentation Using CNNs with F\(_1\)-measure Loss Function

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Included in the following conference series:

Abstract

Cell segmentation is one of the fundamental problems in biomedical image processing as it is often mandatory for the quantitative analysis of biological processes. Sometimes, a binary segmentation of the cells is not sufficient, for instance if biologists are interested in the appearance of specific cell parts. Such a setting requires multiple foreground classes, which can significantly increase the complexity of the segmentation task. This is especially the case if very fine structures need to be detected. Here, we propose a method for multi-class segmentation of Drosophila macrophages in in-vivo fluorescence microscopy images to segment complex cell structures such as the lamellipodium and filopodia. Our approach is based on a convolutional neural network, more specifically the U-net architecture. The network is trained using a loss function based on the F\(_1\)-measure which we have extended for multi-class scenarios to account for class imbalances in the image data. We compare the F\(_1\)-measure loss function to a weighted cross entropy loss and show that the CNN outperforms other segmentation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J.: Cell proposal network for microscopy image analysis. In: IEEE International Conference on Image Processing (ICIP), pp. 3199–3203 (2016)

    Google Scholar 

  2. Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J.: Cell segmentation proposal network for microscopy image analysis. In: Proceedings of Deep Learning and Data Labeling for Medical Applications, pp. 21–29 (2016)

    Google Scholar 

  3. Aydin, A.S., Dubey, A., Dovrat, D., Aharoni, A., Shilkrot, R.: CNN based yeast cell segmentation in multi-modal fluorescent microscopy data. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 753–759 (2017)

    Google Scholar 

  4. Barry, D.J., Durkin, C.H., Abella, J.V., Way, M.: Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J. Cell Biol. 209(1), 163–180 (2015)

    Article  Google Scholar 

  5. Bergeest, J., Rohr, K.: Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals. Med. Image Anal. 16(7), 1436–1444 (2012)

    Article  Google Scholar 

  6. Bernier-Latmani, J., Petrova, T.V.: High-resolution 3D analysis of mouse small-intestinal stroma. Nat. Protoc. 119(9), 1617–1629 (2016)

    Article  Google Scholar 

  7. Bian, A., Scherzinger, A., Jiang, X.: An enhanced multi-label random walk for biomedical image segmentation using statistical seed generation. In: Proceedings of International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS), pp. 748–760 (2017)

    Chapter  Google Scholar 

  8. Bredies, K., Wolinski, H.: An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images. Comput. Vis. Sci. 14(7), 341–352 (2011)

    Article  Google Scholar 

  9. Castilla, C., Maska, M., Sorokin, D.V., Meijering, E., de Solorzano, C.O.: Segmentation of actin-stained 3D fluorescent cells with filopodial protrusions using convolutional neural networks. In: International Symposium on Biomedical Imaging (ISBI), pp. 413–417 (2018)

    Google Scholar 

  10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part II, pp. 424–432 (2016)

    Chapter  Google Scholar 

  11. Espinoza, E., Martinez, G., Frerichs, J., Scheper, T.: Cell cluster segmentation based on global and local thresholding for in-situ microscopy. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 542–545 (2006)

    Google Scholar 

  12. Essa, E., Xie, X., Errington, R.J., White, N.S.: A multi-stage random forest classifier for phase contrast cell segmentation. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3865–3868 (2015)

    Google Scholar 

  13. Hilsenbeck, O., et al.: FastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics 33(13), 2020–2028 (2017)

    Article  Google Scholar 

  14. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia (MM), pp. 675–678 (2014)

    Google Scholar 

  15. Klemm, S., Scherzinger, A., Drees, D., Jiang, X.: Barista - a graphical tool for designing and training deep neural networks. CoRR abs/1802.04626 (2018). http://arxiv.org/abs/1802.04626

  16. Lammel, U., et al.: The drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 14(1), 1366–1380 (2014)

    Article  Google Scholar 

  17. Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: ICML Workshop: Challenges in Representation Learning (WREPL) (2013)

    Google Scholar 

  18. Marcuzzo, M., Quelhas, P., Campilho, A., Mendonça, A.M., Campilho, A.: Automated arabidopsis plant root cell segmentation based on SVM classification and region merging. Comput. Biol. Med. 39(9), 785–793 (2009)

    Article  Google Scholar 

  19. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  20. Pastor-Pellicer, J., Zamora-Martínez, F., Boquera, S.E., Bleda, M.J.C.: F-measure as the error function to train neural networks. In: Proceedings of International Work-Conference on Artificial Neural Networks (IWANN), Part I, pp. 376–384 (2013)

    Chapter  Google Scholar 

  21. Pinidiyaarachchi, A., Wählby, C.: Seeded watersheds for combined segmentation and tracking of cells. In: Roli, F., Vitulano, S. (eds.) Proceedings of Image Analysis and Processing (ICIAP), pp. 336–343 (2005)

    Chapter  Google Scholar 

  22. Raza, S., Cheung, L., Epstein, D.B.A., Pelengaris, S., Khan, M., Rajpoot, N.M.: Mimo-net: a multi-input multi-output convolutional neural network for cell segmentation in fluorescence microscopy images. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), pp. 337–340 (2017)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part III, pp. 234–241 (2015)

    Google Scholar 

  24. Rüder, M., Nagel, B.M., Bogdan, S.: Analysis of cell shape and cell migration of Drosophila macrophages in vivo. In: Gautreau, A. (ed.) Cell Migration. MMB, vol. 1749, pp. 227–238. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7701-7_17

    Chapter  Google Scholar 

  25. Sadanandan, S.K., Ranefall, P., Wählby, C.: Feature augmented deep neural networks for segmentation of cells. In: Proceedings of European Conference on Computer Vision (ECCV) Workshops, Part I, pp. 231–243 (2016)

    Google Scholar 

  26. Sander, M., Squarr, A.J., Risse, B., Jiang, X., Bogdan, S.: Drosophila pupal macrophages - a versatile tool for combined ex vivo and in vivo imaging of actin dynamics at high resolution. Eur. J. Cell Biol. 92(10–11), 349–354 (2013)

    Article  Google Scholar 

  27. Scherzinger, A., Klemm, S., Berh, D., Jiang, X.: CNN-based background subtraction for long-term in-vial FIM imaging. In: Proceedings of International Conference on Computer Analysis of Images and Patterns (CAIP), Part I, pp. 359–371 (2017)

    Chapter  Google Scholar 

  28. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  29. Valen, D.A.V., et al.: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12(11), e1005177 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scherzinger, A., Hugenroth, P., Rüder, M., Bogdan, S., Jiang, X. (2019). Multi-class Cell Segmentation Using CNNs with F\(_1\)-measure Loss Function. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics