Skip to main content

Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

We propose a novel idea to introduce regularization based on second order total generalized variation (\(\text {TGV}\)) into optimization frameworks based on functional lifting. The proposed formulation extends a recent sublabel-accurate relaxation for multi-label problems and thus allows for accurate solutions using only a small number of labels, significantly improving over previous approaches towards lifting the total generalized variation. Moreover, even recent sublabel accurate methods exhibit staircasing artifacts when used in conjunction with common first order regularizers such as the total variation (\(\text {TV}\)). This becomes very obvious for example when computing derivatives of disparity maps computed with these methods to obtain normals, which immediately reveals their local flatness and yields inaccurate normal maps. We show that our approach is effective in reducing these artifacts, obtaining disparity maps with a smooth normal field in a single optimization pass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/tum-vision/prost.

References

  1. Alberti, G., Bouchitté, G., Dal Maso, G.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16(3), 299–333 (2003)

    Article  MathSciNet  Google Scholar 

  2. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  3. Bouchitté, G.: Recent convexity arguments in the calculus of variations. In: Lecture Notes from the 3rd International Summer School on the Calculus of Variations, Pisa (1998)

    Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 648–655 (1998)

    Google Scholar 

  5. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A.: Convex representation for lower semicontinuous envelopes of functionals in \(L^1\). J. Convex Anal. 8(1), 149–170 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Cremers, D., Strekalovskiy, E.: Total cyclic variation and generalizations. J. Math. Imaging Vis. 47(3), 258–277 (2012)

    Article  MathSciNet  Google Scholar 

  8. Ferstl, D., Reinbacher, C., Ranftl, R., Rüther, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: Proceedings of International Conference on Computer Vision, pp. 993–1000. IEEE (2013)

    Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  10. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-valued labeling. SIAM J. Imaging Sci. 6(3), 1626–1664 (2013)

    Article  MathSciNet  Google Scholar 

  11. Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation methodology for depth estimation on 4D light fields. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_2

    Chapter  Google Scholar 

  12. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  13. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  14. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: IEEE International Conference on Computer Vision (ICCV) (2009)

    Google Scholar 

  15. Moellenhoff, T., Laude, E., Moeller, M., Lellmann, J., Cremers, D.: Sublabel-accurate relaxation of nonconvex energies. In: Proceedings of International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  16. Möllenhoff, T., Cremers, D.: Sublabel-accurate discretization of nonconvex free-discontinuity problems. In: International Conference on Computer Vision (ICCV), Venice, Italy, October 2017

    Google Scholar 

  17. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  18. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imaging Sci. 3, 1122–1145 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. In: IEEE Intelligent Vehicles Symposium (2012)

    Google Scholar 

  20. Ranftl, R., Pock, T., Bischof, H.: Minimizing TGV-based variational models with non-convex data terms. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 282–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_24

    Chapter  Google Scholar 

  21. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  22. Strecke, M., Alperovich, A., Goldluecke, B.: Accurate depth and normal maps from occlusion-aware focal stack symmetry. In: Proceedings of International Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  23. Zach, C., Häne, C., Pollefeys, M.: What is optimized in convex relaxations for multilabel problems: connecting discrete and continuously inspired map inference. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 157–170 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC Starting Grant “Light Field Imaging and Analysis” (LIA 336978, FP7-2014) and the SFB Transregio 161 “Quantitative Methods for Visual Computing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Strecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strecke, M., Goldluecke, B. (2019). Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics