Skip to main content

Calculation Method to Include Water on Deck Effects

  • Chapter
  • First Online:
Contemporary Ideas on Ship Stability

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 119))

  • 1192 Accesses

Abstract

Green water is an important issue regarding ships stability as it may dramatically change the loading of the ship compared to its dry deck condition. Until now, computational methods capturing this event are very time consuming as they often try to capture the complete dynamics of the flow over the vessel’s structure and deck using CFD. Such methods are not practical when dealing with numerous lengthy time domain simulations for long term stability assessments. MARIN has developed a fast method to be implemented in its 6 DOF time domain program FREDYN. This method has as objectives to be as fast as possible, even real time if achievable, but at the same time take into account correctly the mass of water flooding on the deck during green water events. The method is based on pre-computing the steady forward speed wave pattern and diffracted and radiated waves. The steady wave is computed for a series of sailing conditions using the in-house 3D linear panel code DAWSON. The diffracted and radiated waves are pre-computed using in-house 2D strip theory potential code SHIPMO for a series of frequencies and sailing conditions. A ship generated wave is then computed at each time step during the simulation using the current position and motions of the ship. This improves the computation of a realistic wave elevation consisting of the incident, steady, diffracted and radiated waves along the hull of the ship. This wave profile is then used to feed our flooding module which computes flows in tanks, compartments and through openings. This flooding model is based on a quasi-static Bernoulli formulation and empirical discharge coefficients. It is used to compute the flow over the bulwarks and through the freeing ports to the deck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

z :

Incoming wave [m]

\( \tilde{\zeta } \) :

Diffracted wave [m]

\( \tilde{\zeta } \) :

Radiated wave [m]

\( \omega \) :

Wave frequency [s−1]

\( \kappa \) :

Wave number [–]

n :

Index for frequency [–]

i :

Index for section [–]

\( \varepsilon \) :

Incoming wave phase [–]

\( \tilde{\varepsilon } \) :

Diffraction wave phase [–]

\( \phi_{rad} \) :

Radiation potential [kg/ms2]

References

  • de Kat J.O. and Paulling J.R., ‘Prediction of extreme motions and capsizing of ships and offshore vehicles’, Proc. of the 20th OMAE Conference, Rio de Janeiro, June 2001.

    Google Scholar 

  • Van Walree F., ‘Seakeeping deck Edge Immersion Model Tests’, MARIN Report 22810-1-CPS, 2010.

    Google Scholar 

Download references

Acknowledgements

This research is performed for the Cooperative Research Navies. The permission of the CRN to publish the results is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans van Walree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carette, N.F.A.J., van Walree, F. (2019). Calculation Method to Include Water on Deck Effects. In: Belenky, V., Spyrou, K., van Walree, F., Almeida Santos Neves, M., Umeda, N. (eds) Contemporary Ideas on Ship Stability. Fluid Mechanics and Its Applications, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-00516-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00516-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00514-6

  • Online ISBN: 978-3-030-00516-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics