Skip to main content

Mathematical Modeling of Some Physical Phenomena Through Dynamical Systems

  • Chapter
  • First Online:
Models and Theories in Social Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 179))

Abstract

The differential equations and system of differential equations represent the kernel of the mathematical modeling, offering tools to predict the natural phenomena from science, technics, medicine, biology, etc. In this chapter we will analyze the phase portraits of different dynamical systems linear and non-linear, the lagrangian formalism of a problem encountered in aerodynamics and averaging method for nonlinear differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belousov, B.P.: Periodicheski deistvuyushchaya reaktsia i ee mekhanism [Periodically acting reaction and its mechanism]. In: Sbornik referatov po radiotsionnoi meditsine [Collection of Abstracts on Radiation Medicine], 1958, pp. 14–147. Moscow, Medgiz (1959)

    Google Scholar 

  • Bârzu, A., Bourceanu, G., Onel, L.: Nonlinear dynamics. MatrixRom, Bucharest (2003)

    Google Scholar 

  • Broer, H., Takens, F.: Dynamical Systems and Chaos. Springer, Berlin (2009)

    Google Scholar 

  • Carstea, C., Enache-David, N., Sangeorzan, L.: Fractal model for simulation and inflation control. In: Bulletin of the Transilvania University of Brasov. Series III: Mathematics, Informatics, Physics, vol. 7(56), issue 2, pp. 161–168 (2014)

    Google Scholar 

  • Coayla-Teran, E.A., Mohammed, S.-E.A., Ruffino, P.R.C.: Theorems along hyperbolic stationary trajectories. South. Ill. Univ. Carbondale OpenSIUC 2, 1–18 (2007)

    MATH  Google Scholar 

  • Enache-David, N., Sangeorzan, L.: An application on web path personalization. In: Proceedings of the 27th International Business Information Management Association Conference - Innovation Management and Education Excellence Vision 2020: From Regional Development Sustainability to Global Economic Growth, Milan, Italy, pp. 2843–2848 (2016)

    Google Scholar 

  • Florea, O., Purcaru, M.: Mathematical modeling and the stability study of some chemical phenomena. Proc. AFASES 1, 525–529 (2012)

    Google Scholar 

  • Kuznetsov, N.V.: Stability and Oscillations of Dynamical Systems: Theory and Applications. Jyvaskyla Studies of Computing (2008)

    Google Scholar 

  • Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos 13(1), 47–106 (2003)

    Article  MathSciNet  Google Scholar 

  • Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)

    Article  Google Scholar 

  • Lungu, N., Chisalita, A.: Dynamical Systems And Chaos. MatrixRom, Bucharest (2007)

    Google Scholar 

  • Lupu, M., Postelnicu, A., Deaconu, A.: A Study on the flutter stability of dynamic aeroelastic systems. In: Proceedings CDM , pp. 37–46. Brasov (2001)

    Google Scholar 

  • Obadeanu, V., Neamtu, M.: Systemes dynamiques differentielles a controle optimal formulation lagrangienne (II). Novi Sad J. Math. 29(3), 211–220 (1999)

    MathSciNet  MATH  Google Scholar 

  • Quandt, J.: On the Hartman–Grobman theorem for maps. J. Differ. Equ. 64(2), 154–164 (1986)

    Article  MathSciNet  Google Scholar 

  • Sangeorzan, L., David, N.: Some methods of generating fractals and encoding images. In: Proceedings of the 2nd International Conference on Symmetry and Antisymmetry in Mathematics, Formal Languages and Computer Science, Satellite Conference of 3ECM, Brasov, Romania, Transilvania University Publishing House, pp. 337–342 (2000)

    Google Scholar 

  • Urban, R., Hoskova-Mayerova, S.: Threat life cycle and its dynamics. Deturope 9(2), 93–109 (2017)

    Google Scholar 

  • Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  Google Scholar 

  • Wilson, G.: Hilbert’s sixteeen problem. Topology 17(1), 55–73 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Ana Florea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Florea, O.A. (2019). Mathematical Modeling of Some Physical Phenomena Through Dynamical Systems. In: Flaut, C., Hošková-Mayerová, Š., Flaut, D. (eds) Models and Theories in Social Systems. Studies in Systems, Decision and Control, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-00084-4_4

Download citation

Publish with us

Policies and ethics