Skip to main content

Bioenergetics and Metabolic Changes in the Failing Heart

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1455 Accesses

Abstract

In the failing heart, there are changes in energy substrate metabolism whose etiology and effects are poorly understood. These changes may contribute to deterioration in cardiac contractility as well as to increasing left ventricular remodeling that are the landmarks of the failing heart. Early in HF, the myocardial substrate selection is relatively normal; however, with further HF progression, there is a downregulation of fatty acid oxidation (FAO), increased glycolysis and glucose oxidation, decreased mitochondrial respiratory chain activity, and abnormal mitochondrial OXPHOS.

Since the literature is abundant on the subject of acquired and inherited lipid disorders in the development of coronary artery disease and stroke (e.g., cholesterol, the apolipoproteins and HDL/LDL, we have decided to omit these subjects. In this chapter, we deal with the metabolic changes that occur in progressive HF, particularly on the mechanisms that regulate metabolic genes expression and metabolic signaling pathways, the effects of these metabolic changes on cardiac performance; the effect of abnormal myocardial substrate metabolism on HF progression, and finally on the effect of therapeutic use of cardiac substrate metabolism in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842

    Article  PubMed  CAS  Google Scholar 

  2. Kanda H, Nohara R, Hasegawa K, Kishimoto C, Sasayama S (2000) A nuclear complex containing PPARa/RXR is markedly downregulated in the hypertrophied rat left ventricular myocardium with normal systolic function. Heart Vessels 15:191–196

    Article  PubMed  CAS  Google Scholar 

  3. Tian Q, Barger BM (2006) Deranged energy substrate metabolism in the failing heart. Curr Hypertens Rep 8:465–471

    Article  PubMed  Google Scholar 

  4. Liang X, Le W, Zhang D, Schulz H (2001) Impact of the intramitochondrial enzyme organization on fatty acid organization. Biochem Soc Trans 29:279–282

    Article  PubMed  CAS  Google Scholar 

  5. Jackson S, Schaefer J, Middleton B, Turnbull DM (1995) Characterization of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl CoA hydratase. Biochem Biophys Res Commun 214:247–253

    Article  PubMed  CAS  Google Scholar 

  6. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  PubMed  CAS  Google Scholar 

  7. Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264:C761–C782

    PubMed  CAS  Google Scholar 

  8. Printz RL, Koch S, Potter LR, O’Doherty RM, Tiesinga JJ, Moritz S, Granner DK (1993) Hexokinase II mRNA and gene structure, regulation by insulin, and evolution. J Biol Chem 268:5209–5219

    PubMed  CAS  Google Scholar 

  9. Uyeda K (1979) Phosphofructokinase. Adv Enzymol Relat Areas Mol Biol 48:193–244

    PubMed  CAS  Google Scholar 

  10. Hue L, Rider MH (1987) Role of fructose 2, 6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J 245: 313–324

    PubMed  CAS  Google Scholar 

  11. Depre C, Rider MH, Veitch K, Hue L (1993) Role of fructose 2, 6-bisphosphate in the control of heart glycolysis. J Biol Chem 268:13274–13279

    PubMed  CAS  Google Scholar 

  12. Kiffmeyer WR, Farrar WW (1991) Purification and properties of pig heart pyruvate kinase. J Protein Chem 10:585–591

    Article  PubMed  CAS  Google Scholar 

  13. Sugden MC, Langdown ML, Harris RA, Holness MJ (2000) Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply. Biochem J 352:731–738

    Article  PubMed  CAS  Google Scholar 

  14. Denton RM, McCormack JG, Rutter GA, Burnett P, Edgell NJ, Moule SK, Diggle TA (1996) The hormonal regulation of pyruvate dehydrogenase complex. Adv Enzyme Regul 36:183–198

    Article  PubMed  CAS  Google Scholar 

  15. Huang B, Wu P, Popov KM, Harris RA (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52:1371–1376

    Article  PubMed  CAS  Google Scholar 

  16. Opie LH, Sack MN (2002) Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J Mol Cell Cardiol 34:1077–1089

    Article  PubMed  CAS  Google Scholar 

  17. Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279:H1490–H1501

    PubMed  CAS  Google Scholar 

  18. Shelley HJ (1961) Cardiac glycogen in different species before and after birth. Br Med Bull 17:137–156

    Google Scholar 

  19. Schneider CA, Nguyêñ VTB, Taegtmeyer H (1991) Feeding and fasting determine postischemic glucose utilization in isolated working rat hearts. Am J Physiol 260:H542–H548

    PubMed  CAS  Google Scholar 

  20. Moule SK, Denton RM (1997) Multiple pathways involved in the metabolic effects of insulin. Am J Cardiol 80:41A–49A

    Article  PubMed  CAS  Google Scholar 

  21. Goodwin GW, Arteaga JR, Taegtmeyer H (1995) Glycogen turnover in the isolated working rat heart. J Biol Chem 270:9234–9240

    Article  PubMed  CAS  Google Scholar 

  22. Morgan HE, Parmeggiani A (1964) Regulation of glycogenolysis in muscle, II: control of glycogen phosphorylase reaction in isolated perfused heart. J Biol Chem 239:2435–2439

    PubMed  CAS  Google Scholar 

  23. Goodwin G, Ahmad F, Taegtmeyer H (1996) Preferential oxidation of glycogen in isolated working rat heart. J Clin Invest 97:1409–1416

    Article  PubMed  CAS  Google Scholar 

  24. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33:243–257

    Article  PubMed  CAS  Google Scholar 

  25. Gollob MH (2003) Glycogen storage disease as a unifying mechanism of disease in the PRKAG2 cardiac syndrome. Biochem Soc Trans 31:228–231

    Article  PubMed  CAS  Google Scholar 

  26. Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF (2003) 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol 284:R936–R944

    PubMed  CAS  Google Scholar 

  27. Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW, Kemp BE, Stapleton D (2003) AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 13:867–871

    Article  PubMed  CAS  Google Scholar 

  28. Glatz JF, Storch J (2001) Unraveling the significance of cellular fatty acid binding-protein. Curr Opin Lipidol 12:267–274

    Article  PubMed  CAS  Google Scholar 

  29. Liao J, Chan CP, Cheung YC, Lu JH, Luo Y, Cautherley GW, Glatz JF, Renneberg R (2009) Human heart-type fatty acid-binding protein for on-site diagnosis of early acute myocardial infarction. Int J Cardiol 133:420–423

    Article  PubMed  Google Scholar 

  30. McCann CJ, Glover BM, Menown IB, Moore MJ, McEneny J, Owens CG, Smith B, Sharpe PC, Young IS, Adgey JA (2008) Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur Heart J 29:2843–2850

    Article  PubMed  CAS  Google Scholar 

  31. Abel ED (2004) Glucose transport in the heart. Front Biosci 9:201–215

    Article  PubMed  CAS  Google Scholar 

  32. Flier JS, Mueckler MM, Usher P, Lodish HF (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235:1492–1495

    Article  PubMed  CAS  Google Scholar 

  33. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503

    PubMed  CAS  Google Scholar 

  34. Chou SW, Chiu LL, Cho YM, Ho HY, Ivy JL, Ho CF, Kuo CH (2004) Effect of systemic hypoxia on GLUT4 protein expression in exercised rat heart. Jpn J Physiol 54:357–363

    Article  PubMed  CAS  Google Scholar 

  35. Till M, Kolter T, Eckel J (1997) Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes. Am J Cardiol 80:85A–89A

    Article  PubMed  CAS  Google Scholar 

  36. Rattigan S, Appleby GJ, Clark MG (1991) Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta 1094:217–223

    Article  PubMed  CAS  Google Scholar 

  37. Wojtaszewski JF, Higaki Y, Hirshman MF, Michael MD, Dufresne SD, Kahn CR, Goodyear LJ (1999) Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest 104:1257–1264

    Article  PubMed  CAS  Google Scholar 

  38. Coven DL, Hu X, Cong L, Bergeron R, Shulman GI, Hardie DG, Young LH (2003) Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285:E629–E636

    PubMed  CAS  Google Scholar 

  39. Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377:151–155

    Article  PubMed  CAS  Google Scholar 

  40. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928

    Article  PubMed  CAS  Google Scholar 

  41. Desrois M, Sidell RJ, Gauguier D, King LM, Radda GK, Clarke K (2004) Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res 61: 288–296

    Article  PubMed  CAS  Google Scholar 

  42. Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, Kahn CR (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    Article  PubMed  CAS  Google Scholar 

  43. Kaczmarczyk SJ, Andrikopoulos S, Favaloro J, Domenighetti AA, Dunn A, Ernst M, Grail D, Fodero-Tavoletti M, Huggins CE, Delbridge LM, Zajac JD, Proietto J (2003) Threshold effects of glucose transporter-4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy. J Mol Endocrinol 31:449–459

    Article  PubMed  CAS  Google Scholar 

  44. Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJ, Frazier OH, Taegtmeyer H (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209

    Article  PubMed  CAS  Google Scholar 

  45. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  PubMed  CAS  Google Scholar 

  46. Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H (2002) Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106:407–411

    Article  PubMed  CAS  Google Scholar 

  47. Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 34:25–33

    Article  PubMed  CAS  Google Scholar 

  48. Nikolaidis LA, Sturzu A, Stolarski C, Elahi D, Shen YT, Shannon RP (2004) The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res 61:297–306

    Article  PubMed  CAS  Google Scholar 

  49. Shah A, Shannon RP (2003) Insulin resistance in dilated cardiomyopathy. Rev Cardiovasc Med 4:S50–S57

    PubMed  Google Scholar 

  50. Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10:142–148

    Article  PubMed  Google Scholar 

  51. Clodi M, Resl M, Stelzeneder D, Pacini G, Tura A, Mörtl D, Struck J, Morgenthaler NG, Bergmann A, Riedl M, Anderwald-Stadler M, Luger A, Pacher R, Hülsmann M (2009) Interactions of glucose metabolism and chronic heart failure. Exp Clin Endocrinol Diabetes 117:99–106

    Article  PubMed  CAS  Google Scholar 

  52. Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG (1999) Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 42:246–253

    Article  PubMed  CAS  Google Scholar 

  53. Nuutila P, Maki M, Laine H, Knuuti MJ, Ruotsalainen U, Luotolahti M, Haaparanta M, Solin O, Jula A, Koivisto VA, Voipio-Pulkki LM, Yki-Jarvinen H (1995) Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. J Clin Invest 96:1003–1009

    Article  PubMed  CAS  Google Scholar 

  54. Paternostro G, Clarke K, Heath J, Seymour AM (1995) Radda GK Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res 30:205–211

    PubMed  CAS  Google Scholar 

  55. Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667

    Article  PubMed  CAS  Google Scholar 

  56. Brownsey RW, Boone AN, Allard MF (1997) Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovasc Res 34:3–24

    Article  PubMed  CAS  Google Scholar 

  57. Vannucci SJ, Rutherford T, Wilkie MB, Simpson IA (2000) Lauder JM Prenatal expression of the GLUT4 glucose transporter in the mouse. Dev Neurosci 22:274–282

    Article  PubMed  CAS  Google Scholar 

  58. Santalucia T, Boheler KR, Brand NJ, Sahye U, Fandos C, Vinals F, Ferre J, Testar X, Palacin M, Zorzano A (1999) Factors involved in GLUT-1 glucose transporter gene transcription in cardiac muscle. J Biol Chem 274:17626–17634

    Article  PubMed  CAS  Google Scholar 

  59. Taegtmeyer H, Sharma S, Golfman L, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in normal and diseased heart. Ann N Y Acad Sci 1015:1–12

    Article  CAS  Google Scholar 

  60. Young LH, Coven DL, Russell RR 3rd (2000) Cellular and molecular regulation of cardiac glucose transport. J Nucl Cardiol 7:267–276

    Article  PubMed  CAS  Google Scholar 

  61. Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H (1998) Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4:1269–1275

    Article  PubMed  CAS  Google Scholar 

  62. Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H (2001) Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism 50:1083–1090

    Article  PubMed  CAS  Google Scholar 

  63. Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME (2005) Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Am J Physiol Heart Circ Physiol 288:H2400–H2411

    Article  PubMed  CAS  Google Scholar 

  64. Srere PA, Sumegi B, Sherry AD (1987) Organizational aspects of the citric acid cycle. Biochem Soc Symp 54:173–178

    PubMed  CAS  Google Scholar 

  65. Ishibashi S (1999) Cooperation of membrane proteins and cytosolic proteins in metabolic regulation – involvement of binding of hexokinase to mitochondria in regulation of glucose metabolism and association and complex formation between membrane proteins and cytosolic proteins in regulation of active oxygen production. Yakugaku Zasshi 119:16–34

    PubMed  CAS  Google Scholar 

  66. Lehman JJ, Kelly DP (2002) Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev 7:175–185

    Article  PubMed  CAS  Google Scholar 

  67. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26

    Article  PubMed  CAS  Google Scholar 

  68. Brackett JC, Sims HF, Rinaldo P et al (1995) Two a-subunit donor splice site mutations cause human trifunctional protein deficiency. J Clin Invest 95:2076–2082

    Article  PubMed  CAS  Google Scholar 

  69. Kelly DP, Gordon JI, Alpers R, Strauss AW (1989) The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem 264:18921–18925

    PubMed  CAS  Google Scholar 

  70. Schonberger J, Seidman CE (2001) Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am J Hum Genet 69:249–260

    Article  PubMed  CAS  Google Scholar 

  71. Roe CR, Ding JH (2001) Mitochondrial fatty acid oxidation ­disorders. In: Scriver C et al (eds) Metabolic and molecular basis of inherited disease, vol 2. McGraw-Hill, New York, pp 2297–2326

    Google Scholar 

  72. D’Adamo P, Fassone L, Gedeon A et al (1997) The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 61:862–867

    Article  PubMed  Google Scholar 

  73. Jethva R, Bennett MJ, Vockley J (2008) Short-chain acyl-coenzyme A dehydrogenase deficiency. Mol Genet Metab 95:195–200

    Article  PubMed  CAS  Google Scholar 

  74. Sims HF, Brackett JC, Powell CK, Treem WR, Hale DE, Bennett MJ, Gibson B, Shapiro S (1995) Strauss AW The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci USA 92:841–845

    Article  PubMed  CAS  Google Scholar 

  75. Matern D, Strauss AW, Hillman SL, Mayatepek E, Millington DS, Trefz FK (1999) Diagnosis of mitochondrial trifunctional protein deficiency in a blood spot from the newborn screening card by tandem mass spectrometry and DNA analysis. Pediatr Res 46:45–49

    Article  PubMed  CAS  Google Scholar 

  76. Strauss AW, Powell CK, Hale DE et al (1995) Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci USA 92:10496–10500

    Article  PubMed  CAS  Google Scholar 

  77. Mathur A, Sims HF, Gopalakrishnan D et al (1999) Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. Circulation 99:1337–1343

    Article  PubMed  CAS  Google Scholar 

  78. Brivet M, Boutron A, Slama A, Costa C, Thuillier L, Demaugre F, Rabier D, Saudubray JM, Bonnefont JP (1999) Defects in activation and transport of fatty acids. J Inherit Metab Dis 22:428–441

    Article  PubMed  CAS  Google Scholar 

  79. Nezu J, Tamai I, Oku A et al (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21:91–94

    Article  PubMed  CAS  Google Scholar 

  80. Iacobazzi V, Invernizzi F, Baratta S, Pons R, Chung W, Garavaglia B, Dionisi-Vici C, Ribes A, Parini R, Huertas MD, Roldan S, Lauria G, Palmieri F, Taroni F (2004) Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency. Hum Mutat 24:312–320

    Article  PubMed  CAS  Google Scholar 

  81. Iacobazzi V, Pasquali M, Singh R, Matern D, Rinaldo P (2004) Amat di San Filippo C, Palmieri F, Longo N. Response to therapy in carnitine/acylcarnitine translocase (CACT) deficiency due to a novel missense mutation. Am J Med Genet 126:150–155

    Article  Google Scholar 

  82. Feillet F, Steinmann G, Vianey-Saban C, de Chillou C, Sadoul N, Lefebvre E, Vidailhet M (2003) Bollaert PE.Adult presentation of MCAD deficiency revealed by coma and severe arrythmias. Intensive Care Med 29:1594–1597

    Article  PubMed  CAS  Google Scholar 

  83. Finocchiaro G, Ito M, Ikeda Y, Tanaka K (1988) Molecular cloning and nucleotide sequence of cDNAs encoding the alpha-subunit of human electron transfer flavoprotein. J Biol Chem 263:15773–15780

    PubMed  CAS  Google Scholar 

  84. Okamoto F, Tanaka T, Sohmiya K, Kawamura K (1998) CD36 abnormality and impaired myocardial long-chain fatty acid uptake in patients with hypertrophic cardiomyopathy. Jpn Circ J 62: 499–504

    Article  PubMed  CAS  Google Scholar 

  85. Sookoian S, Garcia SI, Porto PI, Dieuzeide G, Gonzalez CD, Pirola CJ (2005) Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J Mol Endocrinol 35:373–380

    Article  PubMed  CAS  Google Scholar 

  86. Doney AS, Fischer B, Lee SP, Morris AD, Leese G, Palmer CN (2005) Association of common variation in the PPARA gene with incident myocardial infarction in individuals with type 2 diabetes: A Go-DARTS study. Nucl Recept 3:4

    Article  PubMed  CAS  Google Scholar 

  87. Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D (1996) A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 12:385–389

    Article  PubMed  CAS  Google Scholar 

  88. Neuwald AF (1997) Barth syndrome may be due to an acyltransferase deficiency. Curr Biol 7:R465–R466

    Article  PubMed  CAS  Google Scholar 

  89. Vreken P, Valianpour F, Nijtmans LG et al (2000) Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 279:378–382

    Article  PubMed  CAS  Google Scholar 

  90. Kelly DP, Strauss AW (1994) Inherited cardiomyopathies. N Eng J Med 330:913–919

    Article  CAS  Google Scholar 

  91. Hale DE, Batshaw ML, Coates PM, Frerman FE, Goodman SI, Singh I, Stanley CA (1985) Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketotic hypoglycemia. Pediatr Res 19:666–671

    PubMed  CAS  Google Scholar 

  92. Rocchiccioli F, Wanders RJ, Aubourg P et al (1990) Deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase: a cause of lethal myopathy and cardiomyopathy in early childhood. Pediatr Res 28:657–662

    Article  PubMed  CAS  Google Scholar 

  93. Strauss AW, Powell CK (1995) Hale DE et al Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci USA 92:10496–10500

    Article  PubMed  CAS  Google Scholar 

  94. Tein I, Haslam RH, Rhead WJ, Bennett MJ, Becker LE, Vockley J (1999) Short-chain acyl-CoA dehydrogenase deficiency: a cause of ophthalmoplegia and multicore myopathy. Neurology 52:366–372

    Article  PubMed  CAS  Google Scholar 

  95. Engel AG, Angelini C (1973) Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 179:899–902

    Article  PubMed  CAS  Google Scholar 

  96. Stanley CA, Treem WR, Hale DE, Coates PM (1990) A genetic defect in carnitine transport causing primary carnitine deficiency. Prog Clin Biol Res 321:457–464

    PubMed  CAS  Google Scholar 

  97. Roschinger W, Muntau AC, Duran M et al (2000) Carnitine-acylcarnitine translocase deficiency: metabolic consequences of an impaired mitochondrial carnitine cycle. Clin Chim Acta 298:55–68

    Article  PubMed  CAS  Google Scholar 

  98. Olpin SE, Allen J, Bonham JR et al (2001) Features of carnitine palmitoyltransferase type I deficiency. J Inherit Metab Dis 24: 35–42

    Article  PubMed  CAS  Google Scholar 

  99. Demaugre F, Bonnefont JP, Colonna M, Cepanec C, Leroux JP, Saudubray JM (1991) Infantile form of carnitine palmitoyltransferase II deficiency with hepatomuscular symptoms and sudden death. Physiopathological approach to carnitine palmitoyltransferase II deficiencies. J Clin Invest 87:859–864

    Article  PubMed  CAS  Google Scholar 

  100. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189

    Article  PubMed  CAS  Google Scholar 

  101. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  PubMed  CAS  Google Scholar 

  102. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG (1997) Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272:H2313–H2319

    PubMed  CAS  Google Scholar 

  103. Marzo I, Brenner C, Zamzani N et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2 related proteins. J Exp Med 187:1261–1271

    Article  PubMed  CAS  Google Scholar 

  104. Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761

    Article  PubMed  CAS  Google Scholar 

  105. Hickson-Bick DL, Buja ML, McMillin JB (2000) Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol 32:511–519

    Article  PubMed  CAS  Google Scholar 

  106. DeVries JE, Vork MM, Roemen TH et al (1997) Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 38:1384–1394

    CAS  Google Scholar 

  107. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB (2001) Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling. Antioxid Redox Signal 3:71–79

    Article  PubMed  CAS  Google Scholar 

  108. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W (2001) Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 276:38061–38067

    PubMed  CAS  Google Scholar 

  109. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB (2000) A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 279: H2124– H2132

    PubMed  CAS  Google Scholar 

  110. Malhotra R, Brosius FC (1999) Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274:12567–12575

    Article  PubMed  CAS  Google Scholar 

  111. Lin Z, Weinberg JM, Malhotra R, Merritt SE, Holzman LB, Brosius FC (2000) GLUT-1 reduces hypoxia-induced apoptosis and JNK pathway activation. Am J Physiol Endocrinol Metab 278:E958–E966

    PubMed  CAS  Google Scholar 

  112. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    Article  PubMed  CAS  Google Scholar 

  113. Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R (1000) Komuro I Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102:2873–2879

    Article  Google Scholar 

  114. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes 51:1938–1948

    Article  PubMed  CAS  Google Scholar 

  115. Kelly DP, Hale DE, Rutledge SL et al (1992) Molecular basis of inherited medium-chain acyl-CoA dehydrogenase deficiency causing sudden child death. J Inherit Metab Dis 15:171–180

    Article  PubMed  CAS  Google Scholar 

  116. Tanaka K, Yokota I, Coates PM (1992) Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat 1:271–279

    Article  PubMed  CAS  Google Scholar 

  117. Andresen BS, Jensen TG, Bross P et al (1994) Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene. Am J Hum Genet 54:975–988

    PubMed  CAS  Google Scholar 

  118. Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF (1995) Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci USA 92:10496–10500

    Article  PubMed  CAS  Google Scholar 

  119. Mathur A, Sims HF, Gopalakrishnan D, Gibson B, Rinaldo P, Vockley J, Hug G, Strauss AW (1999) Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. Circulation 99:1337–1343

    Article  PubMed  CAS  Google Scholar 

  120. Bonnefont JP, Taroni F, Cavadini P et al (1996) Molecular analysis of carnitine palmitoyltransferase II deficiency with hepatocardiomuscular expression. Am J Hum Genet 58:971–978

    PubMed  CAS  Google Scholar 

  121. Taroni F, Verderio E, Fiorucci S et al (1992) Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc Natl Acad Sci USA 89:8429–8433

    Article  PubMed  CAS  Google Scholar 

  122. Ibdah JA, Zhao Y, Viola J, Gibson B, Bennett MJ, Strauss AW (2001) Molecular prenatal diagnosis in families with fetal mitochondrial trifunctional protein mutations. J Pediatr 138:396–399

    Article  PubMed  CAS  Google Scholar 

  123. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994) The peroxisome proliferator activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91:11012–11016

    Article  PubMed  CAS  Google Scholar 

  124. Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP (2000) Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 105:1723–1730

    Article  PubMed  CAS  Google Scholar 

  125. Huss JM, Levy FH, Kelly DP (2001) Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem 276:27605–27612

    Article  PubMed  CAS  Google Scholar 

  126. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  PubMed  CAS  Google Scholar 

  127. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    Article  PubMed  CAS  Google Scholar 

  128. Schwenk RW, Luiken JJ, Bonen A, Glatz JF (2008) Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovasc Res 79:249–258

    Article  PubMed  CAS  Google Scholar 

  129. Leong HS, Brownsey RW, Kulpa JE, Allard MF (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy: why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135:499–513

    Article  PubMed  CAS  Google Scholar 

  130. van Bilsen M, Smeets PJ, Gilde AJ, van der Vusse GJ (2004) Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res 61:218–226

    Article  PubMed  CAS  Google Scholar 

  131. Lei B, Lionetti V, Young ME, Chandler MP, D’Agostino C, Kang E, Altarejos M, Matsuo K, Hintze TH, Stanley WC, Recchia FA (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36:567–576

    Article  PubMed  CAS  Google Scholar 

  132. Chandler MP, Kerner J, Huang H, Vazquez E, Reszko A, Martini WZ, Hoppel CL, Imai M, Rastogi S, Sabbah HN, Stanley WC (2004) Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol 287:H1538–H1543

    Article  PubMed  CAS  Google Scholar 

  133. Remondino A, Rosenblatt-Velin N, Montessuit C, Tardy I, Papageorgiou I, Dorsaz PA, Jorge-Costa M, Lerch R (2000) Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction. J Mol Cell Cardiol 32:2025–2034

    Article  PubMed  CAS  Google Scholar 

  134. Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52:407–416

    Article  PubMed  CAS  Google Scholar 

  135. Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578

    Article  PubMed  CAS  Google Scholar 

  136. Karbowska J, Kochan Z, Smolenski RT (2003) Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett 8:49–53

    PubMed  CAS  Google Scholar 

  137. Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD, Recchia FA (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612

    Article  PubMed  CAS  Google Scholar 

  138. Hartil K, Charron MJ (2005) Genetic modification of the heart: transgenic modification of cardiac lipid and carbohydrate utilization. J Mol Cell Cardiol 39:581–593

    Article  PubMed  CAS  Google Scholar 

  139. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104:1703–1714

    Article  PubMed  CAS  Google Scholar 

  140. Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA (2003) PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 284:C1669–C1677

    PubMed  CAS  Google Scholar 

  141. Chiu HC, Kovacs A, Ford D, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107:813–822

    Article  PubMed  CAS  Google Scholar 

  142. Stenbit AE, Katz EB, Chatham JC, Geenen DL, Factor SM, Weiss RG, Tsao TS, Malhotra A, Chacko VP, Ocampo C, Jelicks LA, Charron MJ (2000) Preservation of glucose metabolism in hypertrophic GLUT4-null hearts. Am J Physiol Heart Circ Physiol 279: H313–H318

    PubMed  CAS  Google Scholar 

  143. Finck B, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    PubMed  CAS  Google Scholar 

  144. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    Article  PubMed  CAS  Google Scholar 

  145. Christoffersen C, Bollano E, Lindegaard ML, Bartels ED, Goetze JP, Andersen CB, Nielsen LB (2003) Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 144:3483–3490

    Article  PubMed  CAS  Google Scholar 

  146. Exil VJ, Roberts RL, Sims H, McLaughlin JE, Malkin RA, Gardner CD, Ni G, Rottman JN, Strauss AW (2003) Very-long-chain acyl-coenzyme a dehydrogenase deficiency in mice. Circ Res 93:448–455

    Article  PubMed  CAS  Google Scholar 

  147. Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K, Clayton DA, Wibom R, Larsson NG (2004) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci USA 101:3136–3141

    Article  PubMed  CAS  Google Scholar 

  148. Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY, Kim JK, Zechner R, Goldberg IJ (2004) Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 279:25050–25057

    Article  PubMed  CAS  Google Scholar 

  149. Coburn CT, Hajri T, Ibrahimi A, Abumrad NA (2001) Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J Mol Neurosci 16:117–121

    Article  PubMed  CAS  Google Scholar 

  150. Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA (1999) Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 274:26761–26766

    Article  PubMed  CAS  Google Scholar 

  151. Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson D, Kahn CR, Abel ED (2002) Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109:629–639

    PubMed  CAS  Google Scholar 

  152. Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ (1999) Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 13:805–812

    PubMed  CAS  Google Scholar 

  153. Ibdah JA, Paul H, Zhao Y et al (2001) Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest 107:1403–1409

    Article  PubMed  CAS  Google Scholar 

  154. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271

    Article  PubMed  CAS  Google Scholar 

  155. Djouadi F, Brandt JM, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelly DP (1999) The role of the peroxisome proliferator-activated receptor alpha (PPAR a) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 60:339–343

    Article  PubMed  CAS  Google Scholar 

  156. Schoonjans K, Peinado-Onsurbe AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348

    PubMed  CAS  Google Scholar 

  157. van der Lee KAJM, Vork MM, de Vries JE, Willemsen PHM, Glatz JFC, Reneman RS, Van der Vusse GJ, Van Bilsen M (2000) Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 41:41–47

    PubMed  Google Scholar 

  158. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272:28210–28217

    Article  PubMed  CAS  Google Scholar 

  159. Sugden MC, Bulmer K, Gibbons GF, Holness MJ (2001) Role of peroxisome proliferator-activated receptor-alpha in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding. Arch Biochem Biophys 395:246–252

    Article  PubMed  CAS  Google Scholar 

  160. Wu P, Peters JM, Harris RA (2001) Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor alpha. Biochem Biophys Res Commun 287:391–396

    Article  PubMed  CAS  Google Scholar 

  161. Finck B, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    PubMed  CAS  Google Scholar 

  162. Brandt JM, Djouadi F, Kelly DP (1998) Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273:23786–23792

    Article  PubMed  CAS  Google Scholar 

  163. Mascaro C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D (1998) Control of human muscle-type carnitine palmitoyltransferase Iβ gene promoters by fatty acid enzyme substrate. J Biol Chem 273:32901–32909

    Article  Google Scholar 

  164. Zhang BW, Marcus SL, Sajjadi FG, Alvares K, Reddy JK, Subramani S, Rachubinski RA, Capone JP (1992) Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc Natl Acad Sci USA 85:7541–7545

    Article  Google Scholar 

  165. Bardot O, Aldridge TC, Latruffe N, Green S (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 19:237–245

    Google Scholar 

  166. Osumi T, Wen JK, Hashimoto T (1991) Two cis-acting regulatory sequences in the peroxisome proliferator-responsive enhancer region of the rat acyl-CoA oxidase gene. Biochem Biophys Res Commun 175:866–871

    Article  PubMed  CAS  Google Scholar 

  167. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    Article  PubMed  CAS  Google Scholar 

  168. Campbell FM, Kozak R, Wagner A et al (2002) A role for PPARalpha in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277:4098–4103

    Article  PubMed  CAS  Google Scholar 

  169. Young ME, Patil S, Ying J et al (2001) Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor alpha in the adult rodent heart. FASEB J 15:833–845

    Article  PubMed  CAS  Google Scholar 

  170. Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K (2005) Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes 54:3496–3502

    Article  PubMed  CAS  Google Scholar 

  171. Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 101:6472–6477

    Article  PubMed  CAS  Google Scholar 

  172. Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE (2003) The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17:2477–2493

    Article  PubMed  CAS  Google Scholar 

  173. Hopkins TA, Sugden MC, Holness MJ, Kozak R, Dyck JRB, Lopaschuk GD (2003) Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice. Am J Physiol Heart Circ Physiol 285:H270–H276

    PubMed  CAS  Google Scholar 

  174. Gélinas R, Labarthe F, Bouchard B, Mc Duff J, Charron G, Young ME, Des Rosiers C (2008) Alterations in carbohydrate metabolism and its regulation in PPARalpha null mouse hearts. Am J Physiol Heart Circ Physiol 294:H1571–H1580

    Article  PubMed  CAS  Google Scholar 

  175. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP (2004) Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 94:525–533

    Article  PubMed  CAS  Google Scholar 

  176. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97:1784–1789

    Article  PubMed  CAS  Google Scholar 

  177. Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg IJ (2003) Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 111:419–426

    PubMed  Google Scholar 

  178. Augustus AS, Kako Y, Yagyu H, Goldberg IJ (2003) Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab 284:E331–E339

    PubMed  CAS  Google Scholar 

  179. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700

    Article  PubMed  CAS  Google Scholar 

  180. Huang TH, Yang Q, Harada M, Uberai J, Radford J, Li GQ, Yamahara J, Roufogalis BD, Li Y (2006) Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol 210:78–85

    Article  PubMed  CAS  Google Scholar 

  181. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231

    Article  PubMed  CAS  Google Scholar 

  182. Pillutla P, Hwang YC, Augustus A, Yokoyama M, Yagyu H, Johnston TP, Kaneko M, Ramasamy R, Goldberg IJ (2005) Perfusion of hearts with triglyceride-rich particles reproduces the metabolic abnormalities in lipotoxic cardiomyopathy. Am J Physiol Endocrinol Metab 288:E1229–E1235

    Article  PubMed  CAS  Google Scholar 

  183. Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–14895

    Article  PubMed  CAS  Google Scholar 

  184. Ruiz-Lozano P, Smith SM, Perkins G, Kubalak SW, Boss GR, Sucov HM, Evans RM, Chien KR (1998) Energy deprivation and a deficiency in downstream metabolic target genes during the onset of embryonic heart failure in RXR alpha -/- embryos. Development 125:533–544

    PubMed  CAS  Google Scholar 

  185. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234

    Article  PubMed  CAS  Google Scholar 

  186. Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Bruning JC, Kahn CR, Clayton DA, Barsh GS, Thoren P, Larsson NG (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137

    Article  PubMed  CAS  Google Scholar 

  187. Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR (1986) Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced blood flow. Circulation 73:1127–1136

    Article  PubMed  CAS  Google Scholar 

  188. Duboc D, Jehenson P, Tamby JF, Payen JF, Syrota A, Guerin F (1991) Abnormalities of the skeletal muscle in hypertrophic cardio-myopathy: spectroscopy using phosphorus-31 nuclear magnetic reso-nance. Arch Mal Coeur Vaiss 84:185–188

    PubMed  CAS  Google Scholar 

  189. Caforio AL, Rossi B, Risaliti R, Siciliano G, Marchetti A, Angelini C, Crea F, Mariani M, Muratorio A (1989) Type 1 fiber abnormalities in skeletal muscle of patients with hypertrophic and dilated cardiomyopathy. J Am Coll Cardiol 14:1464–1473

    Article  PubMed  CAS  Google Scholar 

  190. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy meta-bolism in heart failure. J Physiol 555:1–13

    Article  PubMed  CAS  Google Scholar 

  191. Cavedon CT, Bourdoux P, Mertens K, Van Thi HV, Herremans N, de Laet C, Goyens P (2005) Age-related variations in acylcarnitine and free carnitine concentrations measured by tandem mass spectrometry. Clin Chem 51:745–752

    Article  PubMed  Google Scholar 

  192. Delolme F, Vianey-Saban C, Guffon N, Favre-Bonvin J, Guibaud P, Becchi M, Mathieu M, Divry P (1997) Study of plasma acylcarnitines using tandem mass spectrometry. Application to the diagnosis of metabolism hereditary diseases. Arch Pediatr 4:819–826

    Article  PubMed  CAS  Google Scholar 

  193. Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, Savoye M, Rothman DL, Shulman GI, Caprio S (2002) Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51:1022–1027

    Article  PubMed  CAS  Google Scholar 

  194. Laurent D, Hundal RS, Dresner A, Price TB, Vogel SM, Petersen KF, Shulman GI (2000) Mechanism of muscle glycogen autoregulation in humans. Am J Physiol Endocrinol Metab 278:E663–E668

    PubMed  CAS  Google Scholar 

  195. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI (2005) Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54:603–608

    Article  PubMed  CAS  Google Scholar 

  196. Olpin SE (2005) Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults. Clin Lab 51:289–306

    PubMed  CAS  Google Scholar 

  197. Yang Q, Li Y (2007) Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med 85:697–706

    Article  PubMed  CAS  Google Scholar 

  198. Saudubray JM, Martin D, de Lonlay P et al (1999) Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis 22:488–502

    Article  PubMed  CAS  Google Scholar 

  199. Brown-Harrison MC, Nada MA, Sprecher H, Vianey-Saban C, Farquhar J Jr, Gilladoga AC, Roe CR (1996) Very long-chain acyl-CoA dehydrogenase deficiency: successful treatment of acute cardiomyopathy. Biochem Mol Med 58:59–65

    Article  PubMed  CAS  Google Scholar 

  200. Kennedy JA, Unger SA, Horowitz JD (1996) Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52:273–280

    Article  PubMed  CAS  Google Scholar 

  201. Myburgh DP, Goldman AP (1978) The anti-arrhythmic efficacy of perhexiline maleate, disopyramide and mexiletine in ventricular ectopic activity. S Afr Med J 54:1053–1055

    PubMed  CAS  Google Scholar 

  202. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K, Frenneaux M (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112:3280–3288

    Article  PubMed  CAS  Google Scholar 

  203. Angdisen J, Moore VD, Cline JM, Payne RM, Ibdah JA (2005) Mitochondrial trifunctional protein defects: molecular basis and novel therapeutic approaches. Curr Drug Targets Immune Endocr Metabol Disord 5:27–40

    Article  PubMed  CAS  Google Scholar 

  204. Kalra SP, Kalra PS (2005) Gene-transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life expectancy. Trends Pharmacol Sci 26:488–495

    Article  PubMed  CAS  Google Scholar 

  205. Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ, Stone CK (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103:2441–2446

    Article  PubMed  CAS  Google Scholar 

  206. Bell DS (2005) Optimizing treatment of diabetes and cardiovascular disease with combined alpha, beta-blockade. Curr Med Res Opin 21:1191–1200

    Article  PubMed  CAS  Google Scholar 

  207. Rupp H, Zarain-Herzberg A, Maisch B (2002) The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 27:621–636

    Article  PubMed  Google Scholar 

  208. Stanley WC (2002) Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs 11:615–629

    Article  PubMed  CAS  Google Scholar 

  209. Zarain-Herzberg A, Rupp H (1999) Transcriptional modulators targeted at fuel metabolism of hypertrophied heart. Am J Cardiol 83:31H–37H

    Article  PubMed  CAS  Google Scholar 

  210. Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S, d’Agostino C, Hintze TH, Stanley WC, Recchia FA (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66:454–461

    Article  PubMed  CAS  Google Scholar 

  211. Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci 99:27–35

    Article  PubMed  CAS  Google Scholar 

  212. Stanley WC (2004) Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies. J Cardiovasc Pharmacol Ther 9:S31–S45

    Article  PubMed  CAS  Google Scholar 

  213. Sabbah HN, Chandler MP, Mishima T, Suzuki G, Chaudhry P, Nass O, Biesiadecki BJ, Blackburn B, Wolff A, Stanley WC (2002) Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J Card Fail 8:416–422

    Article  PubMed  CAS  Google Scholar 

  214. Pepine CJ, Wolff AA (1999) A controlled trial with a novel anti-ischemic agent, ranolazine, in chronic stable angina pectoris that is responsive to conventional antianginal agents. Am J Cardiol 84:46–50

    Article  PubMed  CAS  Google Scholar 

  215. Fragasso G, Piatti Md PM, Monti L, Palloshi A, Setola E, Puccetti P, Calori G, Lopaschuk GD, Margonato A (2003) Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 146:E18

    Article  PubMed  CAS  Google Scholar 

  216. Stanley WC (2005) Rationale for a metabolic approach in diabetic coronary patients. Coron Artery Dis 16:S11–S15

    Article  PubMed  Google Scholar 

  217. Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–588

    Article  PubMed  CAS  Google Scholar 

  218. MacInnes A, Fairman DA, Binding P, Rhodes J, Wyatt MJ, Phelan A, Haddock PS, Karran EH (2003) The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 93:e26–e32

    Article  PubMed  CAS  Google Scholar 

  219. Tabbi-Anneni I, Helies-Toussaint C, Morin D, Bescond-Jacquet A, Lucien A, Grynberg A (2003) Prevention of heart failure in rats by trimetazidine treatment: a consequence of accelerated phospholipid turnover? J Pharmacol Exp Ther 304:1003–1009

    Article  PubMed  CAS  Google Scholar 

  220. Argaud L, Gomez L, Gateau-Roesch O, Couture-Lepetit E, Loufouat J, Robert D, Ovize M (2005) Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol 39:893–899

    Article  PubMed  CAS  Google Scholar 

  221. Chung MK (2004) Vitamins, supplements, herbal medicines, and arrhythmias. Cardiol Rev 12:73–84

    Article  PubMed  Google Scholar 

  222. Tavazzi L, Tognoni G, Franzosi MG, Latini R, Maggioni AP, Marchioli R, Nicolosi GL, Porcu M (2004) Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail 6:635–641

    PubMed  CAS  Google Scholar 

  223. Macchia A, Levantesi G, Franzosi MG, Geraci E, Maggioni AP, Marfisi R, Nicolosi GL, Schweiger C, Tavazzi L, Tognoni G, Valagussa F, Marchioli R; GISSI-Prevenzione Investigators (2005) Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Fail 7:904–909

    Article  PubMed  CAS  Google Scholar 

  224. Singer P, Wirth M (2004) Can n-3 PUFA reduce cardiac arrhythmias? Results of a clinical trial. Prostaglandins Leukot Essent Fatty Acids 71:153–159

    Article  PubMed  CAS  Google Scholar 

  225. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG (1999) PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol 276:H149–H158

    PubMed  CAS  Google Scholar 

  226. Avogaro A, Vigili de Kreutzenberg S, Negut C, Tiengo A, Scognamiglio R (2004) Diabetic cardiomyopathy: a metabolic perspective. Am J Cardiol 93:13A–16A

    Article  PubMed  CAS  Google Scholar 

  227. Chess DJ, Stanley WC (2008) Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res 79:269–278

    Article  PubMed  CAS  Google Scholar 

  228. Chicco AJ, Sparagna GC, McCune SA, Johnson CA, Murphy RC, Bolden DA, Rees ML, Gardner RT, Moore RL (2008) Linoleate-rich high-fat diet decreases mortality in hypertensive heart failure rats compared with lard and low-fat diets. Hypertension 52:549–555

    Article  PubMed  CAS  Google Scholar 

  229. Mokhtar N, Lavoie JP, Rousseau-Migneron S, Nadeau A (1993) Physical training reverses defect in mitochondrial energy production in heart of chronically diabetic rats. Diabetes 42:682–687

    Article  PubMed  CAS  Google Scholar 

  230. Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagiri T (1996) Mitochondrial respiratory impairment in streptozotocin induced diabetic rat heart. Jpn Circ J 60:673–682

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2010). Bioenergetics and Metabolic Changes in the Failing Heart. In: Heart Failure. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-147-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-147-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-146-2

  • Online ISBN: 978-1-60761-147-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics