Skip to main content

Heart Failure and Changes at the Periphery: Vascular, Inflammation, Neurohormonal, and Renal Systems

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1417 Accesses

Abstract

Again, the clinical syndrome of chronic heart failure (HF) has traditionally been linked to malfunction of the heart as a pump, usually caused by insults to the myocardium. In recent years, there is mounting evidence to support the concept that the complex pathophysiology of heart failure begins with an abnormality of the heart, but then involves dysfunction of most body organs, including the cardiac, peripheral vascular, renal, neurohormonal, immune, as well as the inflammatory systems. The magnitude of these abnormalities has been related to disease progression and subsequent mortality. Less clear, however, is the origin of these derangements and the sequence of triggering mechanisms in the course of the natural history of HF. One of the known abnormalities associated with the complex clinical syndrome of HF is the profound disturbance in the regulation of the autonomic nervous system. The link between peripheral systems activated in HF and the central nervous system as a source of neurohumoral drive has therefore received increasing attention. The key abnormality in HF is the kidneys’ perception of an inadequate circulating volume by various sensors located on critical sites within the circulation. As a result, the normal relationship between intravascular volume and holding capacity, as perceived by these sensing mechanisms, is perturbed. This leads to the activation of various effector mechanisms whose aim is to increase intravascular volume and maintain blood pressure. The kidney is therefore the central site of action for these effectors that increase intravascular volume, and therefore plays a major pathogenetic role in the sodium and water retention in HF. Renal insufficiency is common in patients with HF and is an adverse prognostic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braunwald E, Bristow MR (2000) Congestive heart failure: fifty years of progress. Circulation 102:IV14–IV23

    PubMed  CAS  Google Scholar 

  2. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008

    PubMed  CAS  Google Scholar 

  3. Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-Wilson PA (2006) Autonomic imbalance and immune activation in chronic heart failure – pathophysiological links. Cardiovasc Res 70:434–445

    PubMed  CAS  Google Scholar 

  4. Francis GS, Cohn JN (1986) The autonomic nervous system in congestive heart failure. Annu Rev Med 37:235–247

    PubMed  CAS  Google Scholar 

  5. Al-Ahmad A, Rand WM, Manjunath G, Konstam MA, Salem DN, Levey AS, Sarnak MJ (2001) Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol 38:955–962

    PubMed  CAS  Google Scholar 

  6. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW (2004) Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation 109:1004–1009

    PubMed  Google Scholar 

  7. Drexler H (1998) Endothelium as a therapeutic target in heart failure. Circulation 98:2652–2655

    PubMed  CAS  Google Scholar 

  8. Linke A, Recchia F, Zhang X, Hintze TH (2003) Acute and chronic endothelial dysfunction: implications for the development of heart failure. Heart Fail Rev 8:87–97

    PubMed  CAS  Google Scholar 

  9. Packer M (1993) How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol 71:3C–11C

    PubMed  CAS  Google Scholar 

  10. DiBona GF, Sawin LL (1994) Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol 266:R27–R39

    PubMed  CAS  Google Scholar 

  11. Sun SY, Wang W, Zucker IH, Schultz HD (1999) Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: role of nitric oxide. J Appl Physiol 86:1273–1282

    PubMed  CAS  Google Scholar 

  12. Ma R, Zucker IH, Wang W (1997) Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol 273:H2664–H2671

    PubMed  CAS  Google Scholar 

  13. Ishise H, Asanoi H, Ishizaka S, Joho S, Kameyama T, Umeno K, Inoue H (1998) Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J Appl Physiol 84:1234–1241

    PubMed  CAS  Google Scholar 

  14. Motte S, Mathieu M, Brimioulle S, Pensis A, Ray L, Ketelslegers JM, Montano N, Naeije R, van de BP, Entee KM (2005) Respiratory-related heart rate variability in progressive experimental heart ­failure. Am J Physiol Heart Circ Physiol 289:H1729–H1735

    PubMed  CAS  Google Scholar 

  15. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, Kubo SH, Rudin-Toretsky E, Yusuf S (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82:1724–1729

    PubMed  CAS  Google Scholar 

  16. Benedict CR, Shelton B, Johnstone DE, Francis G, Greenberg B, Konstam M, Probstfield JL, Yusuf S (1996) Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD Investigators. Circulation 94:690–697

    PubMed  CAS  Google Scholar 

  17. Grassi G, Seravalle G, Bertinieri G, Turri C, Stella ML, Scopelliti F, Mancia G (2001) Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci (Lond) 101:141–146

    CAS  Google Scholar 

  18. Binkley PF, Nunziata E, Haas GJ, Nelson SD, Cody RJ (1991) Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol 18:464–472

    PubMed  CAS  Google Scholar 

  19. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P (2005) Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 352:1951–1958

    PubMed  CAS  Google Scholar 

  20. Floras JS (2003) Sympathetic activation in human heart failure: diverse mechanisms, therapeutic opportunities. Acta Physiol Scand 177:391–398

    PubMed  CAS  Google Scholar 

  21. Arnold JM, Liu P, Demers C, Dorian P, Giannetti N, Haddad H, Heckman GA, Howlett JG, Ignaszewski A, Johnstone DE, Jong P, McKelvie RS, Moe GW, Parker JD, Rao V, Ross HJ, Sequeira EJ, Svendsen AM, Teo K, Tsuyuki RT, White M (2006) Canadian Cardiovascular Society consensus conference recommendations on heart failure 2006: diagnosis and management. Can J Cardiol 22:23–45

    PubMed  Google Scholar 

  22. Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285:877–883

    PubMed  CAS  Google Scholar 

  23. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, Webb-Peploe K, Harrington D, Banasiak W, Wrabec K, Coats AJ (1997) Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79:1645–1650

    PubMed  CAS  Google Scholar 

  24. De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol 261:H63–H69

    PubMed  Google Scholar 

  25. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481

    PubMed  CAS  Google Scholar 

  26. Brody MJ (1988) Central nervous system and mechanisms of hypertension. Clin Physiol Biochem 6:230–239

    PubMed  CAS  Google Scholar 

  27. Rivest S (2001) How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 26:761–788

    PubMed  CAS  Google Scholar 

  28. McKinley MJ, McAllen RM, Pennington GL, Smardencas A, Weisinger RS, Oldfield BJ (1996) Physiological actions of angiotensin II mediated by AT1 and AT2 receptors in the brain. Clin Exp Pharmacol Physiol Suppl 3:S99–S104

    PubMed  CAS  Google Scholar 

  29. McKellar S, Loewy AD (1981) Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus in the rat. Brain Res 217:351–357

    PubMed  CAS  Google Scholar 

  30. Bealer SL (1995) Preoptic recess ablation selectively increases baroreflex sensitivity to angiotensin II in conscious rats. Peptides 16:1197–1201

    PubMed  CAS  Google Scholar 

  31. Patel KP, Zhang PL, Krukoff TL (1993) Alterations in brain hexokinase activity associated with heart failure in rats. Am J Physiol 265:R923–R928

    PubMed  CAS  Google Scholar 

  32. Vahid-Ansari F, Leenen FH (1998) Pattern of neuronal activation in rats with CHF after myocardial infarction. Am J Physiol 275:H2140–H2146

    PubMed  CAS  Google Scholar 

  33. Sato T, Yoshimura R, Kawada T, Shishido T, Miyano H, Sugimachi M, Sunagawa K (1998) The brain is a possible target for an angiotensin-converting enzyme inhibitor in the treatment of chronic heart failure. J Card Fail 4:139–144

    PubMed  CAS  Google Scholar 

  34. Zhang K, Li YF, Patel KP (2002) Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. Am J Physiol Regul Integr Comp Physiol 282:R1006–R1015

    PubMed  CAS  Google Scholar 

  35. Sawchenko PE (1987) Evidence for differential regulation of corticotropin-releasing factor and vasopressin immunoreactivities in parvocellular neurosecretory and autonomic-related projections of the paraventricular nucleus. Brain Res 437:253–263

    PubMed  CAS  Google Scholar 

  36. Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    PubMed  CAS  Google Scholar 

  37. McKinley MJ, Allen AM, Burns P, Colvill LM, Oldfield BJ (1998) Interaction of circulating hormones with the brain: the roles of the subfornical organ and the organum vasculosum of the lamina terminalis. Clin Exp Pharmacol Physiol Suppl 25:S61–S67

    PubMed  CAS  Google Scholar 

  38. Porter JP, Brody MJ (1986) A comparison of the hemodynamic effects produced by electrical stimulation of subnuclei of the paraventricular nucleus. Brain Res 375:20–29

    PubMed  CAS  Google Scholar 

  39. Wei SG, Felder RB (2002) Forebrain renin-angiotensin system has a tonic excitatory influence on renal sympathetic nerve activity. Am J Physiol Heart Circ Physiol 282:H890–H895

    PubMed  CAS  Google Scholar 

  40. Zhang K, Mayhan WG, Patel KP (1997) Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity. Am J Physiol 273:R864–R872

    PubMed  CAS  Google Scholar 

  41. Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB (2001) Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol 281:R1734–R1745

    PubMed  CAS  Google Scholar 

  42. Francis J, Wei SG, Weiss RM, Beltz T, Johnson AK, Felder RB (2002) Forebrain-mediated adaptations to myocardial infarction in the rat. Am J Physiol Heart Circ Physiol 282:H1898–H1906

    PubMed  CAS  Google Scholar 

  43. Porter JP (1988) Electrical stimulation of paraventricular nucleus increases plasma renin activity. Am J Physiol 254:R325–R330

    PubMed  CAS  Google Scholar 

  44. Porter JP (1988) The renin response to aortic occlusion is enhanced by stimulation of the hypothalamus. Hypertension 12:52–58

    PubMed  CAS  Google Scholar 

  45. Johnson AK, Thunhorst RL (1997) The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol 18:292–353

    PubMed  CAS  Google Scholar 

  46. Lappe RW, Brody MJ (1984) Mechanisms of the central pressor action of angiotensin II in conscious rats. Am J Physiol 246:R56–R62

    PubMed  CAS  Google Scholar 

  47. Bunnemann B, Fuxe K, Ganten D (1992) The brain renin-angiotensin system: localization and general significance. J Cardiovasc Pharmacol 19 Suppl 6:S51–S62

    Google Scholar 

  48. Moe GW (2006) B-type natriuretic peptide in heart failure. Curr Opin Cardiol 21:208–214

    PubMed  Google Scholar 

  49. De Nicola AF, Seltzer A, Tsutsumi K, Saavedra JM (1993) Effects of deoxycorticosterone acetate (DOCA) and aldosterone on Sar1-angiotensin II binding and angiotensin-converting enzyme binding sites in brain. Cell Mol Neurobiol 13:529–539

    PubMed  Google Scholar 

  50. Harada E, Yoshimura M, Yasue H, Nakagawa O, Nakagawa M, Harada M, Mizuno Y, Nakayama M, Shimasaki Y, Ito T, Nakamura S, Kuwahara K, Saito Y, Nakao K, Ogawa H (2001) Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 104:137–139

    PubMed  CAS  Google Scholar 

  51. Sakaguchi K, Chai SY, Jackson B, Johnston CI, Mendelsohn FA (1988) Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography. Hypertension 11:230–238

    PubMed  CAS  Google Scholar 

  52. Yoshimura R, Sato T, Kawada T, Shishido T, Inagaki M, Miyano H, Nakahara T, Miyashita H, Takaki H, Tatewaki T, Yanagiya Y, Sugimachi M, Sunagawa K (2000) Increased brain angiotensin receptor in rats with chronic high-output heart failure. J Card Fail 6:66–72

    PubMed  CAS  Google Scholar 

  53. Zhang ZH, Francis J, Weiss RM, Felder RB (2002) The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure. Am J Physiol Heart Circ Physiol 283:H423–H433

    PubMed  CAS  Google Scholar 

  54. Haywood JR, Fink GD, Buggy J, Phillips MI, Brody MJ (1980) The area postrema plays no role in the pressor action of angiotensin in the rat. Am J Physiol 239:H108–H113

    PubMed  CAS  Google Scholar 

  55. De Nicola AF, Grillo C, Gonzalez S (1992) Physiological, biochemical and molecular mechanisms of salt appetite control by mineralocorticoid action in brain. Braz J Med Biol Res 25:1153–1162

    PubMed  Google Scholar 

  56. Saravia FE, Grillo CA, Ferrini M, Roig P, Lima AE, de Kloet ER, De Nicola AF (1999) Changes of hypothalamic and plasma vasopressin in rats with deoxycorticosterone-acetate induced salt appetite. J Steroid Biochem Mol Biol 70:47–57

    PubMed  CAS  Google Scholar 

  57. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806

    PubMed  CAS  Google Scholar 

  58. Francis J, Weiss RM, Wei SG, Johnson AK, Beltz TG, Zimmerman K, Felder RB (2001) Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol 281:H2241–H2251

    PubMed  CAS  Google Scholar 

  59. Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–R595

    PubMed  CAS  Google Scholar 

  60. Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391

    PubMed  CAS  Google Scholar 

  61. Das UN (2000) Free radicals, cytokines and nitric oxide in cardiac failure and myocardial infarction. Mol Cell Biochem 215:145–152

    PubMed  CAS  Google Scholar 

  62. Antonipillai I, Wang Y, Horton R (1990) Tumor necrosis factor and interleukin-1 may regulate renin secretion. Endocrinology 126:273–278

    PubMed  CAS  Google Scholar 

  63. Turnbull AV, Lee S, Rivier C (1998) Mechanisms of hypothalamic-pituitary-adrenal axis stimulation by immune signals in the adult rat. Ann N Y Acad Sci 840:434–443

    PubMed  CAS  Google Scholar 

  64. Saindon CS, Blecha F, Musch TI, Morgan DA, Fels RJ, Kenney MJ (2001) Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta. Auton Neurosci 87:243–248

    PubMed  CAS  Google Scholar 

  65. Dunn AJ (2000) Cytokine activation of the HPA axis. Ann N Y Acad Sci 917:608–617

    PubMed  CAS  Google Scholar 

  66. Ericsson A, Kovacs KJ, Sawchenko PE (1994) A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci 14:897–913

    PubMed  CAS  Google Scholar 

  67. Ericsson A, Arias C, Sawchenko PE (1997) Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-11. J Neurosci 17:7166–7179

    PubMed  CAS  Google Scholar 

  68. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103:2055–2059

    PubMed  CAS  Google Scholar 

  69. Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK (2003) Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol 284:R259–R276

    PubMed  CAS  Google Scholar 

  70. MacNeil BJ, Jansen AH, Janz LJ, Greenberg AH, Nance DM (1997) Peripheral endotoxin increases splenic sympathetic nerve activity via central prostaglandin synthesis. Am J Physiol 273:R609–R614

    PubMed  CAS  Google Scholar 

  71. Priebe HJ, Heimann JC, Hedley-Whyte J (1980) Effects of renal and hepatic venous congestion on renal function in the presence of low and normal cardiac output in dogs. Circ Res 47:883–890

    PubMed  CAS  Google Scholar 

  72. Witte MH, Dumont AE, Clauss RH, Rader B, Levine N, Breed ES (1969) Lymph circulation in congestive heart failure: effect of external thoracic duct drainage. Circulation 39:723–733

    PubMed  CAS  Google Scholar 

  73. Epstein FH, Post RS, McDowell M (1953) The effects of an arteriovenous fistula on renal hemodynamics and electrolyte excretion. J Clin Invest 32:233–241

    PubMed  CAS  Google Scholar 

  74. Friedberg CK, Lasser RP, Allen DF, Furst SE, Gabor GE (1964) Production of chronic elevation of left ventricular end diastolic pressure in dogs: hemodynamic and renal studies. Circ Res 15:1–10

    PubMed  CAS  Google Scholar 

  75. Hollander W, Judson WE (1956) The relationship of cardiovascular and renal hemodynamic function to sodium excretion in patients with severe heart disease but without edema. J Clin Invest 35:970–979

    PubMed  CAS  Google Scholar 

  76. Greenberg TT, Richmond WH, Stocking RA, Gupta PD, Meehan JP, Henry JP (1973) Impaired atrial receptor responses in dogs with heart failure due to tricuspid insufficiency and pulmonary artery stenosis. Circ Res 32:424–433

    PubMed  CAS  Google Scholar 

  77. Zucker IH, Earle AM, Gilmore JP (1977) The mechanism of adaptation of left atrial stretch receptors in dogs with chronic congestive heart failure. J Clin Invest 60:323–331

    PubMed  CAS  Google Scholar 

  78. Wegria R, Entrup RW, Jue J, Hughes M (1967) A new factor in pathogenesis of edema of cardiac origin 465. Am J Physiol 213:94–101

    PubMed  CAS  Google Scholar 

  79. Mellander S, Oberg B (1967) Transcapillary fluid absorption and other vascular reactions in the human forearm during reduction of the circulating blood volume. Acta Physiol Scand 71:37–46

    PubMed  CAS  Google Scholar 

  80. Merrill AJ (1949) Mechanisms of salt and water retention in heart failure. Am J Med 6:357–367

    PubMed  Google Scholar 

  81. Vander AJ, Wilde WS, Malvin RL, Sullivan LP (1958) Re-examination of salt and water retention in congestive heart failure: significance of renal filtration fraction. Am J Med 25:497–502

    PubMed  CAS  Google Scholar 

  82. Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM (1984) Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res 55:669–675

    PubMed  CAS  Google Scholar 

  83. Cody RJ, Ljungman S, Covit AB, Kubo SH, Sealey JE, Pondolfino K, Clark M, James G, Laragh JH (1988) Regulation of glomerular filtration rate in chronic congestive heart failure patients. Kidney Int 34:361–367

    PubMed  CAS  Google Scholar 

  84. Bell NH, Schedl HP, Bartter FC (1964) An explanation for abnormal water retention and hypoosmolality in congestive heart failure. Am J Med 36:351–360

    PubMed  CAS  Google Scholar 

  85. Bennett WM, Bagby GC Jr, Antonovic JN, Porter GA (1973) Influence of volume expansion on proximal tubular sodium reabsorption in congestive heart failure. Am Heart J 85:55–64

    PubMed  CAS  Google Scholar 

  86. Johnston CI, Davis JO, Robb CA, Mackenzie JW (1968) Plasma renin in chronic experimental heart failure and during renal sodium “escape” from mineralocorticoids. Circ Res 22:113–125

    PubMed  CAS  Google Scholar 

  87. Kirchheim HR, Finke R, Hackenthal E, Lowe W, Persson P (1985) Baroreflex sympathetic activation increases threshold pressure for the pressure-dependent renin release in conscious dogs. Pflugers Arch 405:127–135

    PubMed  CAS  Google Scholar 

  88. Mandin H, Davidman M (1978) Renal function in dogs with acute cardiac tamponade. Am J Physiol 234:F117–F122

    PubMed  CAS  Google Scholar 

  89. Auld RB, Alexander EA, Levinsky NG (1971) Proximal tubular function in dogs with thoracic caval constriction. J Clin Invest 50:2150–2158

    PubMed  CAS  Google Scholar 

  90. Levy M (1972) Effects of acute volume expansion and altered hemodynamics on renal tubular function in chronic caval dogs. J Clin Invest 51:922–938

    PubMed  CAS  Google Scholar 

  91. Friedler RM, Belleau LJ, Martino JA, Earley LE (1967) Hemodynamically induced natriuresis in the presence of sodium retention resulting from constriction of the thoracic inferior vena cava. J Lab Clin Med 69:565–583

    PubMed  CAS  Google Scholar 

  92. Zeidel ML, Brenner BM (1987) Actions of atrial natriuretic peptides on the kidney. Semin Nephrol 7:91–97

    PubMed  CAS  Google Scholar 

  93. Johnson MD, Malvin RL (1977) Stimulation of renal sodium reabsorption by angiotensin II. Am J Physiol 232:F298–F306

    PubMed  CAS  Google Scholar 

  94. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341:577–585

    PubMed  CAS  Google Scholar 

  95. Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39:442–451

    PubMed  CAS  Google Scholar 

  96. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL (1986) Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73:913–919

    PubMed  Google Scholar 

  97. Barajas L, Powers K, Wang P (1984) Innervation of the renal cortical tubules: a quantitative study. Am J Physiol 247:F50–F60

    PubMed  CAS  Google Scholar 

  98. Myers BD, Deen WM, Brenner BM (1975) Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res 37:101–110

    PubMed  CAS  Google Scholar 

  99. Bello-Reuss E (1980) Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am J Physiol 238:F347–F352

    PubMed  CAS  Google Scholar 

  100. Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77:721–730

    PubMed  CAS  Google Scholar 

  101. Gill JR Jr, Carr AA, Fleischmann LE, Casper AG, Bartter FC (1967) Effects of pentolinium on sodium excretion in dogs with constriction of the vena cava. Am J Physiol 212:191–196

    PubMed  CAS  Google Scholar 

  102. Kon V, Yared A, Ichikawa I (1985) Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion. J Clin Invest 76:1913–1920

    PubMed  CAS  Google Scholar 

  103. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, Shaknovich A, Pondolfino K, Clark M, Camargo MJ (1986) Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest 78:1362–1374

    PubMed  CAS  Google Scholar 

  104. Edwards RM (1983) Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am J Physiol 244:F526–F534

    PubMed  CAS  Google Scholar 

  105. Brenner BM, Troy JL, Daugharty TM, MacInnes RM (1973) Quantitative importance of changes in postglomerular colloid osmotic pressure in mediating glomerulotubular balance in the rat. J Clin Invest 52:190–197

    PubMed  CAS  Google Scholar 

  106. Murphy BF, Whitworth JA, Kincaid-Smith P (1984) Renal insufficiency with combinations of angiotensin converting enzyme inhibitors and diuretics. Br Med J (Clin Res Ed) 288:844–845

    CAS  Google Scholar 

  107. Brown JJ, Davies DL, Johnson VW, Lever AF, Robertson JI (1970) Renin relationships in congestive cardiac failure, treated and untreated. Am Heart J 80:329–342

    PubMed  CAS  Google Scholar 

  108. Genest J, Granger P, De CJ, Boucher R (1968) Endocrine factors in congestive heart failure. Am J Cardiol 22:35–42

    PubMed  CAS  Google Scholar 

  109. Chonko AM, Bay WH, Stein JH, Ferris TF (1977) The role of renin and aldosterone in the salt retention of edema. Am J Med 63:881–889

    PubMed  CAS  Google Scholar 

  110. Dzau VJ, Colucci WS, Hollenberg NK, Williams GH (1981) Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation 63:645–651

    PubMed  CAS  Google Scholar 

  111. Harris PJ, Young JA (1977) Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch 367:295–297

    PubMed  CAS  Google Scholar 

  112. Jackson EK, Gerkens JF, Brash AR, Branch RA (1982) Acute renal artery constriction increases renal prostaglandin I2 biosynthesis and renin release in the conscious dog. J Pharmacol Exp Ther 222:410–413

    PubMed  CAS  Google Scholar 

  113. Schor N, Ichikawa I, Brenner BM (1981) Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int 20:442–451

    PubMed  CAS  Google Scholar 

  114. De Forrest JM, Davis JO, Freeman RH, Seymour AA, Rowe BP, Williams GM, Davis TP (1980) Effects of indomethacin and meclofenamate on renin release and renal hemodynamic function during chronic sodium depletion in conscious dogs. Circ Res 47:99–107

    PubMed  Google Scholar 

  115. Edwards RM (1985) Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am J Physiol 248:F779–F784

    PubMed  CAS  Google Scholar 

  116. Stokes JB, Kokko JP (1977) Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule. J Clin Invest 59:1099–1104

    PubMed  CAS  Google Scholar 

  117. Perez Guaita MF, Chiaraviglio E (1980) Effect of prostaglandin E1 and its biosynthesis inhibitor indomethacin on drinking in the rat. Pharmacol Biochem Behav 13:787–792

    PubMed  CAS  Google Scholar 

  118. Iino Y, Imai M (1978) Effects of prostaglandins on Na transport in isolated collecting tubules. Pflugers Arch 373:125–132

    PubMed  CAS  Google Scholar 

  119. Oliver JA, Sciacca RR, Pinto J, Cannon PJ (1981) Participation of the prostaglandins in the control of renal blood flow during acute reduction of cardiac output in the dog. J Clin Invest 67:229–237

    PubMed  CAS  Google Scholar 

  120. Dzau VJ, Packer M, Lilly LS, Swartz SL, Hollenberg NK, Williams GH (1984) Prostaglandins in severe congestive heart failure. Relation to activation of the renin–angiotensin system and hyponatremia. N Engl J Med 310:347–352

    PubMed  CAS  Google Scholar 

  121. Laragh JH (1985) Atrial natriuretic hormone, the renin-aldosterone axis, and blood pressure-electrolyte homeostasis. N Engl J Med 313:1330–1340

    PubMed  CAS  Google Scholar 

  122. Kohzuki M, Hodsman GP, Johnston CI (1989) Attenuated response to atrial natriuretic peptide in rats with myocardial infarction. Am J Physiol 256:H533–H538

    PubMed  CAS  Google Scholar 

  123. Scriven TA, Burnett JC Jr (1985) Effects of synthetic atrial natriuretic peptide on renal function and renin release in acute experimental heart failure. Circulation 72:892–897

    PubMed  CAS  Google Scholar 

  124. Moe GW, Canepa-Anson R, Armstrong PW (1992) Atrial natriuretic factor: pharmacokinetics and cyclic GMP response in relation to biologic effects in severe heart failure. J Cardiovasc Pharmacol 19:691–700

    PubMed  CAS  Google Scholar 

  125. Charloux A, Piquard F, Doutreleau S, Brandenberger G, Geny B (2003) Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Invest 33:769–778

    PubMed  CAS  Google Scholar 

  126. Sosa RE, Volpe M, Marion DN, Atlas SA, Laragh JH, Vaughan ED Jr, Maack T (1986) Relationship between renal hemodynamic and natriuretic effects of atrial natriuretic factor. Am J Physiol 250:F520–F524

    PubMed  CAS  Google Scholar 

  127. McCullough PA (2002) Cardiorenal risk: an important clinical intersection. Rev Cardiovasc Med 3:71–76

    PubMed  Google Scholar 

  128. Schrier RW (2007) Cardiorenal versus renocardiac syndrome: is there a difference? Nat Clin Pract Nephrol 3:637

    PubMed  Google Scholar 

  129. Ronco C, House AA, Haapio M (2008) Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong. Intensive Care Med 34:957–962

    PubMed  Google Scholar 

  130. Haldeman GA, Croft JB, Giles WH, Rashidee A (1999) Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. Am Heart J 137:352–360

    PubMed  CAS  Google Scholar 

  131. Jose P, Skali H, Anavekar N, Tomson C, Krumholz HM, Rouleau JL, Moye L, Pfeffer MA, Solomon SD (2006) Increase in creatinine and cardiovascular risk in patients with systolic dysfunction after myocardial infarction. J Am Soc Nephrol 17:2886–2891

    PubMed  CAS  Google Scholar 

  132. Goldberg A, Hammerman H, Petcherski S, Zdorovyak A, Yalonetsky S, Kapeliovich M, Agmon Y, Markiewicz W, Aronson D (2005) Inhospital and 1-year mortality of patients who develop worsening renal function following acute ST-elevation myocardial infarction. Am Heart J 150:330–337

    PubMed  Google Scholar 

  133. Berl T, Henrich W (2006) Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin J Am Soc Nephrol 1:8–18

    PubMed  CAS  Google Scholar 

  134. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients1. Crit Care Med 34:1913–1917

    PubMed  Google Scholar 

  135. Meyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357:1316–1325

    PubMed  CAS  Google Scholar 

  136. McCullough PA, Sandberg KR (2004) Chronic kidney disease and sudden death: strategies for prevention. Blood Purif 22:136–142

    PubMed  Google Scholar 

  137. Drexler H (1997) Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis 39:287–324

    PubMed  CAS  Google Scholar 

  138. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74:349–353

    PubMed  CAS  Google Scholar 

  139. Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90:2092–2096

    PubMed  CAS  Google Scholar 

  140. Hornig B, Maier V, Drexler H (1996) Physical training improves endothelial function in patients with chronic heart failure. Circulation 93:210–214

    PubMed  CAS  Google Scholar 

  141. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG (1996) Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res 79:32–37

    PubMed  CAS  Google Scholar 

  142. Rieder MJ, Carmona R, Krieger JE, Pritchard KA Jr, Greene AS (1997) Suppression of angiotensin-converting enzyme expression and activity by shear stress. Circ Res 80:312–319

    PubMed  CAS  Google Scholar 

  143. Belch JJ, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248

    PubMed  CAS  Google Scholar 

  144. Hornig B, Arakawa N, Kohler C, Drexler H (1998) Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97:363–368

    PubMed  CAS  Google Scholar 

  145. Groves P, Kurz S, Just H, Drexler H (1995) Role of endogenous bradykinin in human coronary vasomotor control. Circulation 92:3424–3430

    PubMed  CAS  Google Scholar 

  146. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91:988–998

    PubMed  CAS  Google Scholar 

  147. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241

    PubMed  CAS  Google Scholar 

  148. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    PubMed  CAS  Google Scholar 

  149. Aukrust P, Gullestad L, Ueland T, Damas JK, Yndestad A (2005) Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications1. Ann Med 37:74–85

    PubMed  CAS  Google Scholar 

  150. Seta Y, Shan K, Bozkurt B, Oral H, Mann DL (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 2:243–249

    PubMed  CAS  Google Scholar 

  151. Kapadia S, Dibbs Z, Kurrelmeyer K, Kalra D, Seta Y, Wang F, Bozkurt B, Oral H, Sivasubramanian N, Mann DL (1998) The role of cytokines in the failing human heart. Cardiol Clin 16:645–656, viii

    PubMed  CAS  Google Scholar 

  152. Rauchhaus M, Coats AJ, Anker SD (2000) The endotoxin-lipoprotein hypothesis. Lancet 356:930–933

    PubMed  CAS  Google Scholar 

  153. Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS (1992) Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 90:389–398

    PubMed  CAS  Google Scholar 

  154. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    PubMed  CAS  Google Scholar 

  155. Blum A, Miller H (2001) Pathophysiological role of cytokines in congestive heart failure. Annu Rev Med 52:15–27

    PubMed  CAS  Google Scholar 

  156. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 27:1201–1206

    PubMed  CAS  Google Scholar 

  157. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486

    PubMed  CAS  Google Scholar 

  158. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ, Anker SD (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067

    PubMed  CAS  Google Scholar 

  159. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354:1932–1939

    PubMed  CAS  Google Scholar 

  160. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340:253–259

    PubMed  CAS  Google Scholar 

  161. Bradham WS, Moe G, Wendt KA, Scott AA, Konig A, Romanova M, Naik G, Spinale FG (2002) TNF-alpha and myocardial matrix metalloproteinases in heart failure: relationship to LV remodeling. Am J Physiol Heart Circ Physiol 282:H1288–H1295

    PubMed  CAS  Google Scholar 

  162. Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 99:3224–3226

    PubMed  CAS  Google Scholar 

  163. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602

    PubMed  CAS  Google Scholar 

  164. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–3140

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2010). Heart Failure and Changes at the Periphery: Vascular, Inflammation, Neurohormonal, and Renal Systems. In: Heart Failure. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-147-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-147-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-146-2

  • Online ISBN: 978-1-60761-147-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics