Skip to main content

Oxidative Stress and Heart Failure

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Heart failure (HF) is a complex clinical syndrome whose pathogenesis includes an interplay of neurohormonal and inflammatory processes at the cellular and molecular levels. Oxidative stress (OS) may represent the common pathway for cell death/apoptosis, cardiac remodeling, and dysfunction. There is increasing evidence to indicate that reactive oxygen species (ROS) plays an important role in the development and progression of HF. However, while levels of ROS are elevated in HF, the relative contribution of the different intracellular sources of ROS and the precise mechanisms of this increase remains unclear. Further delineation of the downstream signaling pathways involved in ROS accumulation is important, in order to improve our understanding of these processes and also for the development of new therapies. Indeed, despite previously disappointing results from using antioxidants in human studies, it is likely that modulation of endogenous antioxidants in human HF will continue to have the potential for both, treatment and prevention. In this chapter, we will look at how changes in the cellular redox state of cardiovascular tissue affect the development and progression of HF. In addition, the potential sources of ROS involved in the HF syndrome will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed  CAS  Google Scholar 

  2. Sohal RS, Svensson I, Sohal BH, Brunk UT (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49:129–135

    Article  PubMed  CAS  Google Scholar 

  3. Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667

    Article  PubMed  CAS  Google Scholar 

  4. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  PubMed  CAS  Google Scholar 

  5. Wallace DC (2002) Animal models for mitochondrial disease. Methods Mol Biol 197:3–54

    PubMed  CAS  Google Scholar 

  6. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    Article  PubMed  CAS  Google Scholar 

  7. Herrero A, Barja G (2000) Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 32:609–615

    Article  PubMed  CAS  Google Scholar 

  8. McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    Article  PubMed  CAS  Google Scholar 

  9. Hellsten-Westing Y (1993) Immunohistochemical localiza­tion of xanthine oxidase in human cardiac and skeletal muscle. Histo­chemistry 100:215–222

    Article  PubMed  CAS  Google Scholar 

  10. Moriwaki Y, Yamamoto T, Suda M, Nasako Y, Takahashi S, Agbedana OE, Hada T, Higashino K (1993) Purification and immunohistochemical tissue localization of human xanthine oxidase. Biochim Biophys Acta 1164:327–330

    Article  PubMed  CAS  Google Scholar 

  11. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marban E, Hare JM (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104:2407–2411

    Article  PubMed  CAS  Google Scholar 

  12. Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225–243

    Article  PubMed  CAS  Google Scholar 

  13. Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J (2004) Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 1688:95–101

    Article  PubMed  CAS  Google Scholar 

  14. Vasquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mito­chon­drial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 275:14064–14069

    Article  PubMed  CAS  Google Scholar 

  15. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation: possible role in the apoptosis. FEBS Lett 509:435–438

    Article  PubMed  CAS  Google Scholar 

  16. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    Article  PubMed  CAS  Google Scholar 

  17. Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry 39:5474–5482

    Article  PubMed  CAS  Google Scholar 

  18. LeDoux SP, Wilson GL (2001) Base excision repair of mitochondrial DNA damage in mammalian cells. Prog Nucleic Acid Res Mol Biol 68:273–284

    Article  PubMed  CAS  Google Scholar 

  19. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  PubMed  CAS  Google Scholar 

  20. Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411:351–369

    Article  PubMed  CAS  Google Scholar 

  21. Riobo NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ (2001) Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem J 359:139–145

    Article  PubMed  CAS  Google Scholar 

  22. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 278:37223–37230

    Article  PubMed  CAS  Google Scholar 

  23. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275:21409–21415

    Article  PubMed  CAS  Google Scholar 

  24. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    PubMed  CAS  Google Scholar 

  25. Packer MA, Scarlett JL, Martin SW, Murphy MP (1997) Induction of the mitochondrial permeability transition by peroxy-nitrite. Biochem Soc Trans 25:909–914

    PubMed  CAS  Google Scholar 

  26. Brookes PS, Darley-Usmar VM (2004) Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. Am J Physiol Heart Circ Physiol 286:H39–H46

    Article  PubMed  CAS  Google Scholar 

  27. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318

    Article  PubMed  CAS  Google Scholar 

  28. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25:17–26

    Article  PubMed  CAS  Google Scholar 

  29. Bogoyevitch MA, Ng DC, Court NW, Draper KA, Dhillon A, Abas L (2000) Intact mitochondrial electron transport function is essential for signalling by hydrogen peroxide in cardiac myocytes. J Mol Cell Cardiol 32:1469–1480

    Article  PubMed  CAS  Google Scholar 

  30. Archer SL, Wu XC, Thebaud B, Moudgil R, Hashimoto K, Michelakis ED (2004) O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem 385:205–216

    Article  PubMed  CAS  Google Scholar 

  31. Yamamura T, Otani H, Nakao Y, Hattori R, Osako M, Imamura H, Das DK (2001) Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. Antioxid Redox Signal 3:103–112

    Article  PubMed  CAS  Google Scholar 

  32. Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33:755–764

    Article  PubMed  CAS  Google Scholar 

  33. Boveris A, D’Amico G, Lores-Arnaiz S, Costa LE (2003) Enalapril increases mitochondrial nitric oxide synthase activity in heart and liver. Antioxid Redox Signal 5:691–697

    Article  PubMed  CAS  Google Scholar 

  34. Hess ML, Manson NH (1984) Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 16:969–985

    Article  PubMed  CAS  Google Scholar 

  35. Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470

    Article  PubMed  CAS  Google Scholar 

  36. Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–H2246

    PubMed  CAS  Google Scholar 

  37. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52:103–110

    Article  PubMed  CAS  Google Scholar 

  38. Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo tumor necrosis factor alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287:H1813–H1820

    Article  PubMed  CAS  Google Scholar 

  39. Ide T, Tsutsui H, Kinugawa S et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 6:152–157

    Article  Google Scholar 

  40. Ide T, Tsutsui H, Kinugawa S, Utsumi H et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363

    Article  PubMed  CAS  Google Scholar 

  41. Marin-Garcia J, Goldenthal MJ, Ananthakrishnan R, Mirvis D (1996) Specific mitochondrial DNA deletions in canine myocardial ischemia. Biochem Mol Biol Int 40:1057–1065

    PubMed  CAS  Google Scholar 

  42. Suematsu N, Tsutsui H, Wen J et al (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423

    Article  PubMed  CAS  Google Scholar 

  43. Ide T, Tsutsui H, Hayashidani S et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    Article  PubMed  CAS  Google Scholar 

  44. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodeling. Cardiovasc Res 81:449–456

    Article  PubMed  CAS  Google Scholar 

  45. Sorescu D, Griendling K (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140

    Article  PubMed  CAS  Google Scholar 

  46. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    Article  PubMed  CAS  Google Scholar 

  47. Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hyper-trophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 5:731–740

    Article  PubMed  CAS  Google Scholar 

  48. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    Article  PubMed  CAS  Google Scholar 

  49. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB (2002) Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282:C926–C934

    PubMed  CAS  Google Scholar 

  50. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    Article  PubMed  CAS  Google Scholar 

  51. Nakagami H, Liao JK (2004) Statins and myocardial hypertrophy. Coron Artery Dis 15:247–250

    Article  PubMed  Google Scholar 

  52. Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Bohm M, Laufs U (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108:1567–1574

    Article  PubMed  CAS  Google Scholar 

  53. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S (2004) Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 10:1699–1711

    Article  PubMed  CAS  Google Scholar 

  54. Ijsselmuiden AJ, Musters RJ, de Ruiter G et al (2008) Circulating white blood cells and platelets amplify oxidative stress in heart failure. Nat Clin Pract Cardiovasc Med 5:811–820

    Article  PubMed  CAS  Google Scholar 

  55. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  PubMed  CAS  Google Scholar 

  56. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    Article  PubMed  CAS  Google Scholar 

  57. Khatri JJ, Johnson C, Magid R et al (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109:520–525

    Article  PubMed  CAS  Google Scholar 

  58. Malinski T (2005) Understanding nitric oxide physiology in the heart: a nanomedical approach. Am J Cardiol 96:13i–24i

    Article  PubMed  CAS  Google Scholar 

  59. Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    Article  PubMed  CAS  Google Scholar 

  60. Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    PubMed  CAS  Google Scholar 

  61. Martinez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52

    Article  PubMed  CAS  Google Scholar 

  62. Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 8:438–443

    Article  PubMed  CAS  Google Scholar 

  63. Kaneto H, Katakami N, Kawamori D et al (2007) Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal 9:355–366

    Article  PubMed  CAS  Google Scholar 

  64. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  PubMed  CAS  Google Scholar 

  65. Lucas DT, Szweda LI (1998) Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 95:510–514

    Article  PubMed  CAS  Google Scholar 

  66. Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567

    Article  PubMed  CAS  Google Scholar 

  67. Sohal RS, Arnold LA, Sohal BH (1990) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic Biol Med 9:495–500

    Article  PubMed  CAS  Google Scholar 

  68. Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95:12896–12901

    Article  PubMed  CAS  Google Scholar 

  69. Nohl H, Kramer R (1980) Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Aging Dev 14:137–144

    Article  PubMed  CAS  Google Scholar 

  70. Kim JH, Shrago E, Elson CE (1988) Age-related changes in respiration coupled to phosphorylation. II. Cardiac mitochondria. Mech Aging Dev 46:279–290

    Article  PubMed  CAS  Google Scholar 

  71. Kim JH, Woldgiorgis G, Elson CE, Shrago E (1988) Age-related changes in respiration coupled to phosphorylation. I. Hepatic mitochondria. Mech Aging Dev 46:263–277

    Article  PubMed  CAS  Google Scholar 

  72. Hashimoto M, Majima E, Goto S, Shinohara Y, Terada H (1999) Fluctuation of the first loop facing the matrix of the mitochondrial ADP/ATP carrier deuced from intermolecular cross linking of Cys56 residues by bifunctional dimaleimides. Biochemistry 38:1050–1056

    Article  PubMed  CAS  Google Scholar 

  73. Yokozawa T, Satoh A, Cho EJ (2004) Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 56:107–113

    Article  PubMed  CAS  Google Scholar 

  74. Zhu Y, Carvey PM, Ling Z (2006) Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res 1090:35–44

    Article  PubMed  CAS  Google Scholar 

  75. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421

    PubMed  CAS  Google Scholar 

  76. Suh JH, Heath SH, Hagen TM (2003) Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radic Biol Med 5:1064–1072

    Article  CAS  Google Scholar 

  77. Mo JQ, Hom DG, Andersen JK (1995) Decreases in protective enzymes correlates with increased oxidative damage in the aging mouse brain. Mech Aging Dev 81:73–78

    Article  PubMed  CAS  Google Scholar 

  78. Chen JJ, Bertrand H, Yu BP (1995) Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med 19:583–590

    Article  PubMed  CAS  Google Scholar 

  79. Pepe S (2005) Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exp Gerontol 40:751–758

    Article  PubMed  Google Scholar 

  80. Kristal BS, Park BK, Yu BP (1996) 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 271:6033–6038

    Article  PubMed  CAS  Google Scholar 

  81. Hansford RG, Castro F (1982) Effect of senescence on Ca-ion transport by heart mitochondria. Mech Aging Dev 19:5–13

    Article  PubMed  CAS  Google Scholar 

  82. Beckman JS, Koppenol WH (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  PubMed  CAS  Google Scholar 

  83. Kanski J, Behring A, Pelling J, Schoneich C (2005) Proteomic identification of 3- nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol 288:H371–H381

    CAS  Google Scholar 

  84. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977

    Article  PubMed  CAS  Google Scholar 

  85. Madesh M, Hajnoczky G (2001) VDAC-dependent permea­bilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  PubMed  CAS  Google Scholar 

  86. Hoffman B, Stockl A, Schame M, Beyer K, Klingenberg M (1994) Reconstituted ADP/ATP carrier has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269:1940–1949

    Google Scholar 

  87. Nehal M, Azam M, Baquer NZ (1990) Changes in the levels of catecholamines, hexokinase and glucose 6-phosphate dehydrogenase in red cell aging. Biochem Int 22:517–522

    PubMed  CAS  Google Scholar 

  88. Kanski J, Schoneich C (2005) Protein nitration in biological aging: proteomic and tandem mass spectrometric characterization of nitrated sites. Methods Enzymol 396:160–171

    Article  PubMed  CAS  Google Scholar 

  89. Pastoris O, Boschi F, Verri M, Baiardi P, Felzani G, Vecchiet J, Dossena M, Catapano M (2000) The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects. Exp Gerontol 35:95–104

    Article  PubMed  CAS  Google Scholar 

  90. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Patho­physiology 7:153–163

    Article  PubMed  CAS  Google Scholar 

  91. Keller JN, Kindy MS, Holtsberg FW et al (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    PubMed  CAS  Google Scholar 

  92. Shiomi T, Tsutsui H, Matsusaka H et al (2004) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109: 544–549

    Article  PubMed  CAS  Google Scholar 

  93. Kang YJ, Zhou ZX, Wu H, Wang GW, Saari JT, Klein JB (2000) Metallothionein inhibits myocardial apoptosis in copper-deficient mice: role of atrial natriuretic peptide. Lab Invest 80:745–757

    Article  PubMed  CAS  Google Scholar 

  94. Lud Cadet J, Harrington B, Ordonez S (2000) Bcl-2 overexpression attenuates dopamine-induced apoptosis in an immortalized neural cell line by suppressing the production of reactive oxygen species. Synapse 35:228–233

    Article  PubMed  CAS  Google Scholar 

  95. Kokoszka JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98:2278–2283

    Article  PubMed  CAS  Google Scholar 

  96. Fu Y, Porres JM, Lei XG (2001) Comparative impacts of glutathione peroxidase-1 gene knockout on oxidative stress induced by reactive oxygen and nitrogen species in mouse hepatocytes. Biochem J 359:687–695

    Article  PubMed  CAS  Google Scholar 

  97. Goossens V, Stange G, Moens K, Pipeleers D, Grooten J (1999) Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by electron flux through electron transport chain complex I. Antioxid Redox Signal 1:285–295

    Article  PubMed  CAS  Google Scholar 

  98. von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Article  Google Scholar 

  99. Akao M, O’Rourke B, Teshima Y, Seharaseyon J, Marban E (2003) Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Circ Res 92:186–194

    Article  PubMed  CAS  Google Scholar 

  100. Long X, Goldenthal MJ, Wu GM, Marin-Garcia J (2004) Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocyte response to H(2)O(2). J Mol Cell Cardiol 37:63–70

    Article  PubMed  CAS  Google Scholar 

  101. Hickson-Bick DL, Sparagna GC, Buja LM, McMillin JB (2002) Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Physiol Heart Circ Physiol 282:H656–H664

    PubMed  CAS  Google Scholar 

  102. Elahi MM, Naseem KM, Matata BM (2007) Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease. FEBS J 274:906–923

    Article  PubMed  CAS  Google Scholar 

  103. Sharma R, Davidoff MN (2002) Oxidative stress and endothelial dysfunction in heart failure. Congest Heart Fail 8:165–172

    Article  PubMed  CAS  Google Scholar 

  104. Ungvári Z, Gupte SA, Recchia FA, Bátkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    Article  PubMed  Google Scholar 

  105. Chen Y, Saari JT, Kang YJ (1994) Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic Biol Med 17:529–536

    Article  PubMed  CAS  Google Scholar 

  106. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034

    PubMed  CAS  Google Scholar 

  107. Antunes F, Han D, Cadenas E (2002) Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med 33:1260–1267

    Article  PubMed  CAS  Google Scholar 

  108. Phung CD, Ezieme JA, Turrens JF (1994) Hydrogen peroxide metabolism in skeletal muscle mitochondria. Arch Biochem Biophys 315:479–482

    Article  PubMed  CAS  Google Scholar 

  109. Judge S, Judge A, Grune T, Leeuwenburgh C (2004) Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content. Am J Physiol Regul Integr Comp Physiol 286:R254–R259

    Article  PubMed  CAS  Google Scholar 

  110. Turko IV, Murad F (2003) Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem 278:35844–35849

    Article  PubMed  CAS  Google Scholar 

  111. Radi R, Bush KM, Freeman BA (1993) The role of cytochrome c and mitochondrial catalase in hydroperoxide-induced heart mitochondrial lipid peroxidation. Arch Biochem Biophys 300:409–415

    Article  PubMed  CAS  Google Scholar 

  112. Zhou Z, Kang YJ (2000) Cellular and subcellular localization of catalase in the heart of transgenic mice. J Histochem Cytochem 48:585–594

    Article  PubMed  CAS  Google Scholar 

  113. Fernandez-Checa JC, Garcia-Ruiz C, Colell A, Morales A, Mari M, Miranda M, Ardite E (1998) Oxidative stress: role of mitochondria and protection by glutathione. Biofactors 8:7–11

    Article  PubMed  CAS  Google Scholar 

  114. Vaage J, Antonelli M, Bufi M et al (1997) Exogenous reactive oxygen species deplete the isolated rat heart of antioxidants. Free Radic Biol Med 22:85–92

    Article  PubMed  CAS  Google Scholar 

  115. Hasinoff BB, Schnabl KL, Marusak RA, Patel D, Huebner E (2003) Dexrazoxane protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc Toxicol 3:89–99

    Article  PubMed  CAS  Google Scholar 

  116. Lipshultz SE, Rifai N, Dalton VM, Levy DE et al (2004) The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351:145–153

    Article  PubMed  CAS  Google Scholar 

  117. Kang YJ (1999) The antioxidant function of metallothionein in the heart. Proc Soc Exp Biol Med 222:263–273

    Article  PubMed  CAS  Google Scholar 

  118. Nath R, Kumar D, Li T, Singal PK (2000) Metallothioneins, oxidative stress and the cardiovascular system. Toxicology 155:17–26

    Article  PubMed  CAS  Google Scholar 

  119. Ali MM, Frei E, Straub J, Breuer A, Wiessler M (2002) Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179:85–93

    Article  PubMed  CAS  Google Scholar 

  120. Okuda M, Lee HC, Kumar C, Chance B (1992) Comparison of the effect of a mitochondrial uncoupler, 2, 4-dinitrophenol and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol Scand 145:159–168

    Article  PubMed  CAS  Google Scholar 

  121. Korshunov SS, Korkina OV, Ruuge EK, Skulachev VP, Starkov AA (1998) Fatty acids as natural uncouplers preventing generation of O2- and H2O2 by mitochondria in the resting state. FEBS Lett 435:215–218

    Article  PubMed  CAS  Google Scholar 

  122. Casteilla L, Rigoulet M, Penicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52:181–188

    Article  PubMed  CAS  Google Scholar 

  123. Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319

    Article  PubMed  CAS  Google Scholar 

  124. Vidal-Puig AJ, Grujic D, Zhang CY et al (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    Article  PubMed  CAS  Google Scholar 

  125. Hoerter J, Gonzalez-Barroso MD, Couplan E et al (2004) Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage. Circulation 110:528–533

    Article  PubMed  CAS  Google Scholar 

  126. Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200

    Article  PubMed  CAS  Google Scholar 

  127. Pacher P, Liaudet L, Mabley JG, Cziráki A, Haskó G, Szabó C (2006) Beneficial effects of a novel ultrapotent poly(ADP-ribose) polymerase inhibitor in murine models of heart failure. Int J Mol Med 17:369–375

    PubMed  CAS  Google Scholar 

  128. Cooper JM, Schapira AH (2003) Friedreich’s ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–171

    Article  PubMed  CAS  Google Scholar 

  129. Santos DL, Moreno AJ, Leino RL, Froberg MK, Wallace KB (2002) Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol 185:218–227

    Article  PubMed  CAS  Google Scholar 

  130. Lerman-Sagie T, Rustin P, Lev D et al (2001) Dramatic improvement in mitochondrial cardiomyopathy following treatment with idebenone. J Inherit Metab Dis 24:28–34

    Article  PubMed  CAS  Google Scholar 

  131. Sayed-Ahmed M, Salman T, Gaballah H, Abou El-Naga SA, Nicolai R, Calvani M (2001) Propionyl-L-carnitine as protector against adriamycin-induced cardiomyopathy. Pharmacol Res 43:513–520

    Article  PubMed  CAS  Google Scholar 

  132. Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang C (2001) Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 38:1734–1740

    Article  PubMed  CAS  Google Scholar 

  133. Geromel V, Darin N, Chretien D, Benit P, DeLonlay P, Rotig A, Munnich A, Rustin P (2002) Coenzyme Q(10) and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab 77:21–30

    Article  PubMed  CAS  Google Scholar 

  134. Hausse AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rotig A, Rustin P (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87:346–349

    Article  PubMed  CAS  Google Scholar 

  135. Rustin P, Munnich A, Rotig A (1999) Quinone analogs prevent enzymes targeted in Friedreich ataxia from iron-induced injury in vitro. Biofactors 9:247–251

    Article  PubMed  CAS  Google Scholar 

  136. Lerman-Sagie T, Rustin P, Lev D, Yanoov M, Leshinsky-Silver E, Sagie A, Ben-Gal T, Munnich A (2001) Dramatic improvement in mitochondrial cardiomyopathy following treatment with idebenone. J Inherit Metab Dis 24:28–34

    Article  PubMed  CAS  Google Scholar 

  137. Shoffner JM, Wallace DC (1994) Oxidative phosphorylation diseases and mitochondrial DNA mutations: diagnosis and treatment. Annu Rev Nutr 14:535–568

    Article  PubMed  CAS  Google Scholar 

  138. Ogasahara S, Yorifuji S, Nishikawa Y et al (1985) Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology 35:372–377

    Article  PubMed  CAS  Google Scholar 

  139. Mortensen SA, Vadhanavikit S, Baandrup U, Folkers K (1985) Long-term coenzyme Q10 therapy: a major advance in the management of resistant myocardial failure. Drugs Exp Clin Res 11:581–593

    PubMed  CAS  Google Scholar 

  140. Hargreaves IP (2003) Ubiquinone: cholesterol’s reclusive cousin. Ann Clin Biochem 40:207–218

    Article  PubMed  CAS  Google Scholar 

  141. Mortensen SA (2003) Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure: rationale, design and end-points of “Q-symbio” a multinational trial. Biofactors 18:79–89

    Article  PubMed  CAS  Google Scholar 

  142. Castro P, Vukasovic JL, Chiong M et al (2005) Effects of carvedilol on oxidative stress and chronotropic response to exercise in patients with chronic heart failure. Eur J Heart Fail 7: 1033–1039

    Article  PubMed  CAS  Google Scholar 

  143. Chin BS, Gibbs CR, Blann AD, Lip GY (2003) Neither carvedilol nor bisoprolol in maximally tolerated doses has any specific advantage in lowering chronic heart failure oxidant stress: implications for beta-blocker selection. Clin Sci (Lond) 105:507–512

    Article  CAS  Google Scholar 

  144. Nakamura K, Kusano K, Nakamura Y et al (2002) Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 105:2867–2871

    Article  PubMed  CAS  Google Scholar 

  145. Kono Y, Nakamura K, Kimura H et al (2006) Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure. Circ J 70:1001–1005

    Article  PubMed  CAS  Google Scholar 

  146. Chin BS, Langford NJ, Nuttall SL, Gibbs CR, Blann AD, Lip GY (2003) Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur J Heart Fail 5:171

    Article  PubMed  CAS  Google Scholar 

  147. Bauersachs J, Widder JD (2008) Endothelial dysfunction in heart failure. Pharmacol Rep 60:119–126

    PubMed  CAS  Google Scholar 

  148. Bauersachs J, Schäfer A (2004) Endothelial dysfunction in heart failure: mechanisms and therapeutic approaches. Curr Vasc Pharmacol 2:115–124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2010). Oxidative Stress and Heart Failure. In: Heart Failure. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-147-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-147-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-146-2

  • Online ISBN: 978-1-60761-147-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics