Skip to main content

Drug Resistance in Leishmania

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

  • 3890 Accesses

Leishmaniasis is a parasitic disease caused by the obligate intracellular protozoa of the genus Leishmania. At least 21 of the 30 species of Leishmania are known to be infectious to humans. The parasite exists in two forms. The promastigote form of the parasite resides in the intestinal tract of the insect vector and appears as a slender, spindle-shaped structure with an anterior fl agellum. The amastigote forms of the parasite are small, oval-shaped structures that reside in macrophages and other mononuclear phagocytes in the mammalian host. The female phlebotomine sandfl ies are solely responsible for the transmission of Leishmania parasites amongst vertebrate hosts. Transmission of leishmaniasis could be anthroponotic, that is, transmission from human to human through the sandfl y vector, where humans are the sole reservoir host. The disease can also spread from animals to humans (zoonosis); in this case, domestic animals (dogs) and wild animals (foxes, jackals, rodents, hyraxes) serve as the reservoir hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi, C. M. and Lerner, E. A. (2002) Leishmaniasis: recognition and management with a focus on the immunocompromised patient. Am. J. Clin. Dermatol. 3, 91–105

    PubMed  Google Scholar 

  2. Silva, E. S., Pacheco, R. S., Gontijo, C. M., Carvalho, I. R., and Brazil, R. P. (2002) Visceral leishmaniasis caused by Leishmania (Viannia) braziliensis in a patient infected with human immunodeficiency virus. Rev. Inst. Med. Trop. Sao Paulo 44, 145–149

    PubMed  Google Scholar 

  3. Faraut-Gambarelli, F., Piarroux, R., Deniau, M., Giusiano, B., Marty, P., Michel, G., Faugere, B., and Dumon, H. (1997) In vitro and in vivo resistance of Leishmania infantum to meglumine anti-moniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob. Agents Chemother. 41, 827–830

    PubMed  CAS  Google Scholar 

  4. Jackson, J. E., Tally, J. D., Ellis, W. Y., Mebrahtu, Y. B., Lawyer, P. G., Were, J. B., Reed, S. G., Panisko, D. M., and Limmer, B. L. (1990) Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania sp. from patients unresponsive to pen-tavalent antimony therapy. Am. J. Trop. Med. Hyg. 43, 464–480

    PubMed  CAS  Google Scholar 

  5. Sundar, S., More, D. K., Singh, M. K., Singh, V. P., Sharma, S., Makharia, A., Kumar, P. C., and Murray, H. W. (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin. Infect. Dis. 31, 1104–1107

    PubMed  CAS  Google Scholar 

  6. Ouellette, M., Haimeur, A., Grondin, K., Legare, D., and Papadopoulou, B. (1998) Amplification of ABC transporter gene pgpA and of other heavy metal resistance genes in Leishmania tarentolae and their study by gene transfection and gene disruption. Methods Enzymol. 292, 182–193

    PubMed  CAS  Google Scholar 

  7. Urbina, J. A. (1997) Lipid biosynthesis pathways as chemothera-peutic targets in kinetoplastid parasites. Parasitology 114 Suppl, S91–S99

    PubMed  Google Scholar 

  8. Sundar, S., Jha, T. K., Thakur, C. P., Engel, J., Sindermann, H., Fischer, C., Junge, K., Bryceson, A., and Berman, J. (2002) Oral miltefosine for Indian visceral leishmaniasis. N. Engl. J. Med. 347, 1739–1746

    PubMed  CAS  Google Scholar 

  9. Borst, P. and Ouellette, M. (1995) New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol. 49, 427–460

    PubMed  CAS  Google Scholar 

  10. Herwaldt, B. L. (1999) Leishmaniasis. Lancet 354, 1191–1199

    PubMed  CAS  Google Scholar 

  11. Goodwin, L. G. (1995) Pentostam (sodium stibogluconate); a 50-year personal reminiscence. Trans. R. Soc. Trop. Med. Hyg. 89, 339–341

    PubMed  CAS  Google Scholar 

  12. Lugo de Yarbuh, A., Anez, N., Petit de Pena, Y., Burguera, J. L., and Burguera, M. (1994) Antimony determination in tissues and serum of hamsters infected with Leishmania garnhami and treated with meglumine antimoniate. Ann. Trop. Med. Parasitol. 88, 37–41

    PubMed  CAS  Google Scholar 

  13. Mottram, J. C. and Coombs, G. H. (1985) Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp. Parasitol. 59, 151–160

    PubMed  CAS  Google Scholar 

  14. Roberts, W. L., Berman, J. D., and Rainey, P. M. (1995) In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob. Agents Chemother. 39, 1234–1239

    PubMed  CAS  Google Scholar 

  15. Sereno, D. and Lemesre, J. L. (1997) Axenically cultured amastig-ote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob. Agents Chemother. 41, 972–976

    PubMed  CAS  Google Scholar 

  16. Sereno, D., Cavaleyra, M., Zemzoumi, K., Maquaire, S., Ouaissi, A., and Lemesre, J. L. (1998) Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob. Agents Chemother. 42, 3097–3102

    PubMed  CAS  Google Scholar 

  17. Mukhopadhyay, R., Shi, J., and Rosen, B. P. (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arse-nate reductase. J. Biol. Chem. 275, 21149–21157

    PubMed  CAS  Google Scholar 

  18. Zhou, Y., Messier, N., Ouellette, M., Rosen, B. P., and Mukhopadhyay, R. (2004) Leishmania major LmACR2 is a pen-tavalent antimony reductase that confers sensitivity to the drug Pentostam. J. Biol. Chem. 279, 37445–37451

    PubMed  CAS  Google Scholar 

  19. Denton, H., McGregor, J. C., and Coombs, G. H. (2004) Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem. J. 381, 405–412

    PubMed  CAS  Google Scholar 

  20. Langreth, S. G., Berman, J. D., Riordan, G. P., and Lee, L. S. (1983) Fine-structural alterations in Leishmania tropica within human macrophages exposed to antileishmanial drugs in vitro. J. Protozool. 30, 555–561

    PubMed  CAS  Google Scholar 

  21. Berman, J. D., Waddell, D., and Hanson, B. D. (1985) Biochemical mechanisms of the antileishmanial activity of sodium stibogluco-nate. Antimicrob. Agents. Chemother. 27, 916–920

    PubMed  CAS  Google Scholar 

  22. Chakraborty, A. K. and Majumder, H. K. (1988) Mode of action of pentavalent antimonials: specific inhibition of type I DNA topoisomerase of Leishmania donovani. Biochem. Biophys. Res. Commun. 152, 605–611

    PubMed  CAS  Google Scholar 

  23. Demicheli, C., Frezard, F., Lecouvey, M., and Garnier-Suillerot, A. (2002) Antimony(V) complex formation with adenine nucleosides in aqueous solution. Biochim. Biophys. Acta 1570, 192–198

    PubMed  CAS  Google Scholar 

  24. Dey, S., Papadopoulou, B., Haimeur, A., Roy, G., Grondin, K., Dou, D., Rosen, B. P., and Ouellette, M. (1994) High level arsenite resistance in Leishmania tarentolaeis mediated by an active extrusion system. Mol. Biochem. Parasitol. 67, 49–57

    PubMed  CAS  Google Scholar 

  25. Carter, K. C., Sundar, S., Spickett, C., Pereira, O. C., and Mullen, A. B. (2003) The in vivo susceptibility of Leishmania donovanito sodium stibogluconate is drug specific and can be reversed by inhibiting glutathione biosynthesis. Antimicrob. Agents Chemother. 47, 1529–1535

    PubMed  CAS  Google Scholar 

  26. Prasad, V., Kaur, J., and Dey, C. S. (2000) Arsenite-resistant Leishmania donovanipromastigotes express an enhanced membrane P-type adenosine triphosphatase activity that is sensitive to verapamil treatment. Parasitol. Res. 86, 661–664

    PubMed  CAS  Google Scholar 

  27. Ouellette, M., Legare, D., Haimeur, A., Grondin, K., Roy, G., Brochu, C., and Papadopoulou, B. (1998) ABC transporters in Leishmaniaand their role in drug resistance. Drug Resist. Updat. 1, 43–48

    PubMed  CAS  Google Scholar 

  28. Higgins, C. F. (1992) ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113

    PubMed  CAS  Google Scholar 

  29. Detke, S., Katakura, K., and Chang, K. P. (1989) DNA amplification in arsenite-resistant Leishmania. Exp. Cell Res. 180, 161–170

    CAS  Google Scholar 

  30. Ouellette, M., Hettema, E., Wust, D., Fase-Fowler, F., and Borst, P. (1991) Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 10, 1009–1016

    CAS  Google Scholar 

  31. Grondin, K., Papadopoulou, B., and Ouellette, M. (1993) Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res. 21, 1895–1901

    CAS  Google Scholar 

  32. Ferreira-Pinto, K. C., Miranda-Vilela, A. L., Anacleto, C., Fernandes, A. P., Abdo, M. C., Petrillo-Peixoto, M. L., and Moreira, E. S. (1996) Leishmania (V.) guyanensis: isolation and characterization of glucantime-resistant cell lines. Can. J. Microbiol. 42, 944–949

    PubMed  CAS  Google Scholar 

  33. Legare, D., Papadopoulou, B., Roy, G., Mukhopadhyay, R., Haimeur, A., Dey, S., Grondin, K., Brochu, C., Rosen, B. P., and Ouellette, M. (1997) Efflux systems and increased trypan-othione levels in arsenite-resistant Leishmania. Exp. Parasitol. 87, 275–282

    CAS  Google Scholar 

  34. Haimeur, A., Brochu, C., Genest, P., Papadopoulou, B., and Ouellette, M. (2000) Amplification of the ABC transporter gene pgpaand increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol. Biochem. Parasitol. 108, 131–135

    PubMed  CAS  Google Scholar 

  35. Callahan, H. L. and Beverley, S. M. (1991) Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J. Biol. Chem. 266, 18427–18430

    PubMed  CAS  Google Scholar 

  36. Papadopoulou, B., Roy, G., Dey, S., Rosen, B. P., Olivier, M., and Ouellette, M. (1996) Gene disruption of the P-glycoprotein related gene pgpaof Leishmania tarentolae. Biochem. Biophys. Res. Commun. 224, 772–778

    PubMed  CAS  Google Scholar 

  37. Papadopoulou, B., Roy, G., Dey, S., Rosen, B. P., and Ouellette, M. (1994) Contribution of the LeishmaniaP-glycoprotein-related gene ltpgpAto oxyanion resistance. J. Biol. Chem. 269, 11980–11986

    PubMed  CAS  Google Scholar 

  38. Mukhopadhyay, R., Dey, S., Xu, N., Gage, D., Lightbody, J., Ouellette, M., and Rosen, B. P. (1996) Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc. Natl Acad. Sci. U. S. A. 93, 10383–10387

    PubMed  CAS  Google Scholar 

  39. Grondin, K., Haimeur, A., Mukhopadhyay, R., Rosen, B. P., and Ouellette, M. (1997) Co-amplification of the gamma-glutamyl-cysteine synthetase gene gsh1and of the ABC transporter gene pgpAin arsenite-resistant Leishmania tarentolae. EMBO J. 16, 3057–3065

    PubMed  CAS  Google Scholar 

  40. Haimeur, A., Guimond, C., Pilote, S., Mukhopadhyay, R., Rosen, B. P., Poulin, R., and Ouellette, M. (1999) Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol. Microbiol. 34, 726–735

    PubMed  CAS  Google Scholar 

  41. Legare, D., Richard, D., Mukhopadhyay, R., Stierhof, Y. D., Rosen, B. P., Haimeur, A., Papadopoulou, B., and Ouellette, M. (2001) The LeishmaniaATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J. Biol. Chem. 276, 26301–26307

    PubMed  CAS  Google Scholar 

  42. Dey, S., Ouellette, M., Lightbody, J., Papadopoulou, B., and Rosen, B. P. (1996) An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc. Natl Acad. Sci. U. S. A. 93, 2192–2197

    PubMed  CAS  Google Scholar 

  43. Callahan, H. L., Roberts, W. L., Rainey, P. M., and Beverley, S. M. (1994) The PGPA gene of Leishmania majormediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol. Biochem. Parasitol. 68, 145–149

    PubMed  CAS  Google Scholar 

  44. Moreira, E. S., Anacleto, C., and Petrillo-Peixoto, M. L. (1998) Effect of glucantime on field and patient isolates of New World Leishmania: use of growth parameters of promastigotes to assess antimony susceptibility. Parasitol. Res. 84, 720–726

    PubMed  CAS  Google Scholar 

  45. Singh, N., Singh, R. T., and Sundar, S. (2003) Novel mechanism of drug resistance in kala azar field isolates. J. Infect. Dis. 188, 600–607

    PubMed  CAS  Google Scholar 

  46. Brochu, C., Wang, J., Roy, G., Messier, N., Wang, X. Y., Saravia, N. G., and Ouellette, M. (2003) Antimony uptake systems in the protozoan parasite Leishmaniaand accumulation differences in antimony-resistant parasites. Antimicrob. Agents Chemother. 47, 3073–3079

    PubMed  CAS  Google Scholar 

  47. Sanders, O. I., Rensing, C., Kuroda, M., Mitra, B., and Rosen, B. P. (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J. Bacteriol. 179, 3365–3367

    PubMed  CAS  Google Scholar 

  48. Wysocki, R., Chery, C. C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J. M., and Tamas, M. J. (2001) The glyc-erol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40, 1391–1401

    PubMed  CAS  Google Scholar 

  49. Liu, Z., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., and Rosen, B. P. (2002) Arsenite transport by mammalian aquagly-ceroporins AQP7 and AQP9. Proc. Natl Acad. Sci. U. S. A. 99, 6053–6058

    PubMed  CAS  Google Scholar 

  50. Gourbal, B., Sonuc, N., Bhattacharjee, H., Legare, D., Sundar, S., Ouellette, M., Rosen, B. P., and Mukhopadhyay, R. (2004) Drug uptake and modulation of drug resistance in leishmania by an aquaglyceroporin. J. Biol. Chem. 279, 31010–31017

    PubMed  CAS  Google Scholar 

  51. Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A., and Nielsen, S. (2002) Aquaporin water channels — from atomic structure to clinical medicine. J. Physiol. 542, 3–16

    PubMed  CAS  Google Scholar 

  52. Shaked-Mishan, P., Ulrich, N., Ephros, M., and Zilberstein, D. (2001) Novel Intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J. Biol. Chem. 276, 3971–3976

    PubMed  CAS  Google Scholar 

  53. Rosenthal, E. and Marty, P. (2003) Recent understanding in the treatment of visceral leishmaniasis. J. Postgrad. Med. 49, 61–68

    PubMed  CAS  Google Scholar 

  54. Davidson, R. N., Croft, S. L., Scott, A., Maini, M., Moody, A. H., and Bryceson, A. D. (1991) Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet 337, 1061–1062

    PubMed  CAS  Google Scholar 

  55. Saha, A. K., Mukherjee, T., and Bhaduri, A. (1986) Mechanism of action of amphotericin B on Leishmania donovanipromastigotes. Mol. Biochem. Parasitol. 19, 195–200

    PubMed  CAS  Google Scholar 

  56. Mbongo, N., Loiseau, P. M., Billion, M. A., and Robert-Gero, M. (1998) Mechanism of amphotericin B resistance in Leishmania donovanipromastigotes. Antimicrob. Agents Chemother. 42, 352–357

    PubMed  CAS  Google Scholar 

  57. Singh, A. K., Papadopoulou, B., and Ouellette, M. (2001) Gene amplification in amphotericin B-resistant Leishmania tarentolae. Exp. Parasitol. 99, 141–147

    PubMed  CAS  Google Scholar 

  58. Mishra, M., Biswas, U. K., Jha, D. N., and Khan, A. B. (1992) Amphotericin versus pentamidine in antimony-unresponsive kala-azar. Lancet 340, 1256–1257

    PubMed  CAS  Google Scholar 

  59. Das, V. N., Ranjan, A., Sinha, A. N., Verma, N., Lal, C. S., Gupta, A. K., Siddiqui, N. A., and Kar, S. K. (2001) A randomized clinical trial of low dosage combination of pentamidine and allopu-rinol in the treatment of antimony unresponsive cases of visceral leishmaniasis. J. Assoc. Physicians India 49, 609–613

    PubMed  CAS  Google Scholar 

  60. Basselin, M., Lawrence, F., and Robert-Gero, M. (1996) Pentamidine uptake in Leishmania donovaniand Leishmania ama-zonensispromastigotes and axenic amastigotes. Biochem. J. 315 Pt 2, 631–634

    PubMed  Google Scholar 

  61. Kandpal, M., Tekwani, B. L., Chauhan, P. M., and Bhaduri, A. P. (1996) Correlation between inhibition of growth and arginine transport of Leishmania donovanipromastigotes in vitro by diami-dines. Life. Sci. 59, PL75–PL80

    PubMed  CAS  Google Scholar 

  62. Kandpal, M. and Tekwani, B. L. (1997) Polyamine transport systems of Leishmania donovanipromastigotes. Life. Sci. 60, 1793–1801

    PubMed  CAS  Google Scholar 

  63. Reguera, R., Balana Fouce, R., Cubria, J. C., Alvarez Bujidos, M. L., and Ordonez, D. (1994) Putrescine uptake inhibition by aromatic diamidines in Leishmania infantumpromastigotes. Biochem. Pharmacol. 47, 1859–1866

    PubMed  CAS  Google Scholar 

  64. Basselin, M., Coombs, G. H., and Barrett, M. P. (2000) Putrescine and spermidine transport in Leishmania. Mol. Biochem. Parasitol. 109, 37–46

    PubMed  CAS  Google Scholar 

  65. Basselin, M., Badet-Denisot, M. A., Lawrence, F., and Robert-Gero, M. (1997) Effects of pentamidine on polyamine level and biosynthesis in wild-type, pentamidine-treated, and pentamidine-resistant Leishmania. Exp. Parasitol. 85, 274–282

    PubMed  CAS  Google Scholar 

  66. Basselin, M., Denise, H., Coombs, G. H., and Barrett, M. P. (2002) Resistance to pentamidine in Leishmania mexicanainvolves exclusion of the drug from the mitochondrion. Antimicrob. Agents Chemother. 46, 3731–3738

    PubMed  CAS  Google Scholar 

  67. Hentzer, B. and Kobayasi, T. (1977) The ultrastructural changes of Leishmania tropicaafter treatment with pentamidine. Ann. Trop. Med. Parasitol. 71, 157–166

    PubMed  CAS  Google Scholar 

  68. Vercesi, A. E. and Docampo, R. (1992) Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochem. J. 284 Pt 2, 463–467

    PubMed  Google Scholar 

  69. Coelho, A. C., Beverley, S. M., and Cotrim, P. C. (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol. Biochem. Parasitol. 130, 83–90

    PubMed  CAS  Google Scholar 

  70. Croft, S. L., Neal, R. A., Pendergast, W., and Chan, J. H. (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem. Pharmacol. 36, 2633–2636

    PubMed  CAS  Google Scholar 

  71. Kuhlencord, A., Maniera, T., Eibl, H., and Unger, C. (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob. Agents Chemother. 36, 1630–1634

    PubMed  CAS  Google Scholar 

  72. Jha, T. K., Sundar, S., Thakur, C. P., Bachmann, P., Karbwang, J., Fischer, C., Voss, A., and Berman, J. (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N. Engl. J. Med. 341, 1795–1800

    PubMed  CAS  Google Scholar 

  73. Sundar, S., Jha, T. K., Sindermann, H., Junge, K., Bachmann, P., and Berman, J. (2003) Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis. Pediatr. Infect. Dis. J. 22, 434–438

    PubMed  Google Scholar 

  74. Lux, H., Hart, D. T., Parker, P. J., and Klenner, T. (1996) Ether lipid metabolism, GPI anchor biosynthesis, and signal transduction are putative targets for anti-leishmanial alkyl phospholipid analogues. Adv. Exp. Med. Biol. 416, 201–211

    PubMed  CAS  Google Scholar 

  75. Croft, S. L., Seifert, K., and Duchene, M. (2003) Antiprotozoal activities of phospholipid analogues. Mol. Biochem. Parasitol. 126, 165–172

    PubMed  CAS  Google Scholar 

  76. Lux, H., Heise, N., Klenner, T., Hart, D., and Opperdoes, F. R. (2000) Ether—lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether—lipid analogues in Leishmania. Mol. Biochem. Parasitol. 111, 1–14

    PubMed  CAS  Google Scholar 

  77. Zufferey, R. and Mamoun, C. B. (2002) Choline transport in Leishmania majorpromastigotes and its inhibition by choline and phosphocholine analogs. Mol. Biochem. Parasitol. 125, 127–134

    PubMed  CAS  Google Scholar 

  78. Paris, C., Loiseau, P. M., Bories, C., and Breard, J. (2004) Miltefosine induces apoptosis-like death in Leishmania donovanipromastigotes. Antimicrob. Agents Chemother. 48, 852–859

    PubMed  CAS  Google Scholar 

  79. Perez-Victoria, F. J., Castanys, S., and Gamarro, F. (2003) Leishmania donovaniresistance to miltefosine involves a defective inward trans-location of the drug. Antimicrob. Agents Chemother. 47, 2397–2403

    PubMed  CAS  Google Scholar 

  80. Perez-Victoria, F. J., Gamarro, F., Ouellette, M., and Castanys, S. (2003) Functional cloning of the miltefosine transporter: a novel P-type phospholipid translocase from Leishmaniainvolved in drug resistance. J. Biol. Chem. 278, 49965–49971

    PubMed  CAS  Google Scholar 

  81. Perez-Victoria, J. M., Perez-Victoria, F. J., Parodi-Talice, A., Jimenez, I. A., Ravelo, A. G., Castanys, S., and Gamarro, F. (2001) Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropicaand chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob. Agents Chemother. 45, 2468–2474

    PubMed  CAS  Google Scholar 

  82. Kager, P. A., Rees, P. H., Wellde, B. T., Hockmeyer, W. T., and Lyerly, W. H. (1981) Allopurinol in the treatment of visceral leish-maniasis. Trans. R. Soc. Trop. Med. Hyg. 75, 556–559

    PubMed  CAS  Google Scholar 

  83. Chunge, C. N., Gachihi, G., Muigai, R., Wasunna, K., Rashid, J. R., Chulay, J. D., Anabwani, G., Oster, C. N., and Bryceson, A. D. (1985) Visceral leishmaniasis unresponsive to antimonial drugs. III. Successful treatment using a combination of sodium stibogluconate plus allopurinol. Trans. R. Soc. Trop. Med. Hyg. 79, 715–718

    PubMed  CAS  Google Scholar 

  84. Singh, N. K., Jha, T. K., Singh, I. J., and Jha, S. (1995) Combination therapy in Kala-azar. J. Assoc. Physicians India 43, 319–320

    PubMed  CAS  Google Scholar 

  85. Nelson, D. J., LaFon, S. W., Tuttle, J. V., Miller, W. H., Miller, R. L., Krenitsky, T. A., Elion, G. B., Berens, R. L., and Marr, J. J. (1979) Allopurinol ribonucleoside as an antileishmanial agent. Biological effects, metabolism, and enzymatic phosphoryla-tion. J. Biol. Chem. 254, 11544–11549

    PubMed  CAS  Google Scholar 

  86. Rainey, P. and Santi, D. V. (1983) Metabolism and mechanism of action of formycin B in Leishmania. Proc. Natl Acad. Sci. U. S. A. 80, 288–292

    PubMed  CAS  Google Scholar 

  87. Jernigan, J. A., Pearson, R. D., Petri, W. A., Jr., and Rogers, M. D. (1996) In vitro activity of atovaquone against Leishmania chagasipromastigotes. Antimicrob. Agents Chemother. 40, 1064

    PubMed  CAS  Google Scholar 

  88. Murray, H. W. and Hariprashad, J. (1996) Activity of oral atovaquone alone and in combination with antimony in experimental visceral leishmaniasis. Antimicrob. Agents Chemother. 40, 586–587

    PubMed  CAS  Google Scholar 

  89. Fry, M. and Beesley, J. E. (1991) Mitochondria of mammalian Plasmodiumspp. Parasitology 102 Pt 1, 17–26

    PubMed  CAS  Google Scholar 

  90. Fry, M. and Pudney, M. (1992) Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem. Pharmacol. 43, 1545–1553

    PubMed  CAS  Google Scholar 

  91. Cauchetier, E., Loiseau, P. M., Lehman, J., Rivollet, D., Fleury, J., Astier, A., Deniau, M., and Paul, M. (2002) Characterisation of atovaquone resistance in Leishmania infantumpromastigotes. Int. J. Parasitol. 32, 1043–1051

    PubMed  CAS  Google Scholar 

  92. Thakur, C. P., Kanyok, T. P., Pandey, A. K., Sinha, G. P., Messick, C., and Olliaro, P. (2000) Treatment of visceral leishmaniasis with injectable paromomycin (aminosidine). An open-label randomized phase-II clinical study. Trans. R. Soc. Trop. Med. Hyg. 94, 432–433

    PubMed  CAS  Google Scholar 

  93. Maarouf, M., Lawrence, F., Brown, S., and Robert-Gero, M. (1997) Biochemical alterations in paromomycin-treated Leishmania donovanipromastigotes. Parasitol. Res. 83, 198–202

    PubMed  CAS  Google Scholar 

  94. Maarouf, M., Adeline, M. T., Solignac, M., Vautrin, D., and Robert-Gero, M. (1998) Development and characterization of paromomycin-resistant Leishmania donovanipromastigotes. Parasite 5, 167–173

    PubMed  CAS  Google Scholar 

  95. Alrajhi, A. A., Ibrahim, E. A., De Vol, E. B., Khairat, M., Faris, R. M., and Maguire, J. H. (2002) Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. N. Engl. J. Med. 346, 891–895

    PubMed  CAS  Google Scholar 

  96. Goad, L. J., Berens, R. L., Marr, J. J., Beach, D. H., and Holz, G. G., Jr. (1989) The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Mol. Biochem. Parasitol. 32, 179–189

    PubMed  CAS  Google Scholar 

  97. Sherwood, J. A., Gachihi, G. S., Muigai, R. K., Skillman, D. R., Mugo, M., Rashid, J. R., Wasunna, K. M., Were, J. B., Kasili, S. K., Mbugua, J. M., et al. (1994) Phase 2 efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishma-niasis. Clin. Infect. Dis. 19, 1034–1039

    PubMed  CAS  Google Scholar 

  98. Yeates, C. (2002) Sitamaquine (GlaxoSmithKline/Walter Reed Army Institute). Curr. Opin. Investig. Drugs 3, 1446–1452

    PubMed  CAS  Google Scholar 

  99. Steinhaus, R. K., Baskin, S. I., Clark, J. H., and Kirby, S. D. (1990) Formation of methemoglobin and metmyoglobin using 8-aminoquinoline derivatives or sodium nitrite and subsequent reaction with cyanide. J. Appl. Toxicol. 10, 345–351

    PubMed  CAS  Google Scholar 

  100. Kaur, K., Emmett, K., McCann, P. P., Sjoerdsma, A., and Ullman, B. (1986) Effects of DL-α-difluoromethylornithine on Leishmania donovanipromastigotes. J. Protozool. 33, 518–521

    PubMed  CAS  Google Scholar 

  101. Mukhopadhyay, R., Kapoor, P., and Madhubala, R. (1996) Characterization of α-difluoromethylornithine resistant Leishmania donovaniand its susceptibility to other inhibitors of the polyamine biosynthetic pathway. Pharmacol. Res. 34, 43–46

    PubMed  CAS  Google Scholar 

  102. Poulin, R., Lu, L., Ackermann, B., Bey, P., and Pegg, A. E. (1992) Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by α-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J. Biol. Chem. 267, 150–158

    PubMed  CAS  Google Scholar 

  103. Docampo, R. and Moreno, S. N. (2003) Current chemotherapy of human African trypanosomiasis. Parasitol. Res. 90 Supp 1, S10–S13

    PubMed  Google Scholar 

  104. Coons, T., Hanson, S., Bitonti, A. J., McCann, P. P., and Ullman, B. (1990) α-difluoromethylornithine resistance in Leishmania dono-vaniis associated with increased ornithine decarboxylase activity. Mol. Biochem. Parasitol. 39, 77–89

    PubMed  CAS  Google Scholar 

  105. Hanson, S., Beverley, S. M., Wagner, W., and Ullman, B. (1992) Unstable amplification of two extrachromosomal elements in α-difluoromethylornithine-resistant Leishmania donovani. Mol. Cell. Biol. 12, 5499–5507

    PubMed  CAS  Google Scholar 

  106. Mukhopadhyay, R. and Madhubala, R. (1995) Effects of bis(benzyl)polyamine analogs on Leishmania donovanipromas-tigotes. Exp. Parasitol. 81, 39–46

    PubMed  CAS  Google Scholar 

  107. Ivanetich, K. M. and Santi, D. V. (1990) Bifunctional thymidylate syn-thase-dihydrofolate reductase in protozoa. FASEB J. 4, 1591–1597

    PubMed  CAS  Google Scholar 

  108. Nare, B., Luba, J., Hardy, L. W., and Beverley, S. (1997) New approaches to Leishmaniachemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology 114 Suppl, S101–S110

    PubMed  Google Scholar 

  109. Bello, A. R., Nare, B., Freedman, D., Hardy, L., and Beverley, S. M. (1994) PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc. Natl Acad. Sci. U. S. A. 91, 11442–11446

    PubMed  CAS  Google Scholar 

  110. Ouellette, M., Leblanc, E., Kundig, C., and Papadopoulou, B. (1998). In Resolving the Antibiotic Paradox(Rosen, B. P. and Mobashery, S., eds.), pp. 99–113. Plenum Publishing Corporation, New York

    Google Scholar 

  111. Ellenberger, T. E. and Beverley, S. M. (1989) Multiple drug resistance and conservative amplification of the H region in Leishmania major. J. Biol. Chem. 264, 15094–15103

    PubMed  CAS  Google Scholar 

  112. Kaur, K., Coons, T., Emmett, K., and Ullman, B. (1988) Methotrexate-resistant Leishmania donovanigenetically deficient in the folate-methotrexate transporter. J. Biol. Chem. 263, 7020–7028

    PubMed  CAS  Google Scholar 

  113. Coderre, J. A., Beverley, S. M., Schimke, R. T., and Santi, D. V. (1983) Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc. Natl Acad. Sci. U. S. A. 80, 2132–2136

    PubMed  CAS  Google Scholar 

  114. Beverley, S. M., Coderre, J. A., Santi, D. V., and Schimke, R. T. (1984) Unstable DNA amplifications in methotrexate-resistant Leishmaniaconsist of extrachromosomal circles which relocalize during stabilization. Cell 38, 431–439

    PubMed  CAS  Google Scholar 

  115. Gamarro, F., Chiquero, M. J., Amador, M. V., Legare, D., Ouellette, M., and Castanys, S. (1994) P-glycoprotein overex-pression in methotrexate-resistant Leishmania tropica. Biochem. Pharmacol. 47, 1939–1947

    PubMed  CAS  Google Scholar 

  116. Kundig, C., Leblanc, E., Papadopoulou, B., and Ouellette, M. (1999) Role of the locus and of the resistance gene on gene amplification frequency in methotrexate resistant Leishmania tarentolae. Nucleic Acids Res. 27, 3653–3659

    PubMed  CAS  Google Scholar 

  117. Richard, D., Kundig, C., and Ouellette, M. (2002) A new type of high affinity folic acid transporter in the protozoan parasite Leishmaniaand deletion of its gene in methotrexate-resistant cells. J. Biol. Chem. 277, 29460–29467

    PubMed  CAS  Google Scholar 

  118. El-Fadili, A., Richard, D., Kundig, C., and Ouellette, M. (2003) Effect of polyglutamylation of methotrexate on its accumulation and the development of resistance in the protozoan parasite Leishmania. Biochem. Pharmacol. 66, 999–1008

    PubMed  CAS  Google Scholar 

  119. Arrebola, R., Olmo, A., Reche, P., Garvey, E. P., Santi, D. V., Ruiz-Perez, L. M., and Gonzalez-Pacanowska, D. (1994) Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmaniacells. J. Biol. Chem. 269, 10590–10596

    PubMed  CAS  Google Scholar 

  120. Bhattacharyya, A., Mukherjee, M., and Duttagupta, S. (2002) Studies on stibanate unresponsive isolates of Leishmania dono-vani. J. Biosci. 27, 503–508

    PubMed  Google Scholar 

  121. Sereno, D. and Lemesre, J. L. (1997) In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresist-ant phenotypes is dependent on the level of resistance induced. Antimicrob. Agents Chemother. 41, 1898–1903

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhattacharjee, H., Mukhopadhyay, R. (2009). Drug Resistance in Leishmania . In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_41

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics