Skip to main content

Amphotericin B: Polyene Resistance Mechanisms

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

Resistance to amphotericin B is still rare. Resistance has become more evident recently, because of the increase in the rate of non-albicans Candida species and emerging invasive mould infections that have intrinsic or acquired resistance to azoles and polyenes. Non-albicans candidemia now accounts for 30-60% of all candidemias (2, 3). Resistance can be categorized into three main categories: primary or intrinsic, acquired, and clinical resistance. Intrinsic or primary resistance occurs without exposure to anti-fungals. Acquired or secondary resistance develops during treatment, and often occurs as a result of one or several genetic mutations (4). Intrinsic resistance to amphotericin B is rare among pathogenic fungi infecting humans, and acquired resistance during therapy is even less common (5, 6). Although polyene resistance has not been a major clinical problem to date, polyene-resistant yeasts and moulds continue to be reported (9). Identifi cation of a particular yeast or mould to the species level helps to predict possible polyene resistance, and can be extremely important to help guide the choice of antifungal therapy. Clinical resistance, i.e., failure of anti-fungal therapy, is multifactorial, and depends on a variety of factors, such as the immune status of the host, pharmacokinetics of the antifungal agent, and the species of infecting fungus. In many instances, resistance to amphotericin B may not be related to the minimum inhibitory concentration (MIC), but to failure of the antifungal agent to penetrate into infected tissue (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donovick R, Gold W, Pagano JF, Stout HA. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 1955; 3:579–586

    PubMed  Google Scholar 

  2. Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 2002; 50:243–260

    Article  PubMed  CAS  Google Scholar 

  3. Wingard JR. Importance of Candida species other than C. albicans as pathogens in oncology patients. Clin Infect Dis 1995; 20:115–125

    PubMed  CAS  Google Scholar 

  4. Masia Canuto M, Gutierrez Rodero F. Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis 2002; 2:550–563

    Article  PubMed  Google Scholar 

  5. Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2002; 2:73–85

    Article  PubMed  CAS  Google Scholar 

  6. Dannaoui E, Lortholary O, Dromer F, et al. Susceptibility testing of sequential isolates of Aspergillus fumigatus recovered from treated patients. Antimicrob Agents Chemother 2004; 48:970–978

    Article  PubMed  CAS  Google Scholar 

  7. Paterson PJ, Seaton S, Prentice HG, Kibbler CC. Treatment failure in invasive aspergillosis: susceptibility of deep tissue isolates following treatment with amphotericin B. J Antimicrob Chemother 2003; 52(5):873–876

    Article  PubMed  CAS  Google Scholar 

  8. Moore CB, Sayers N, Mosquera J, Slaven J, Denning DW. Antifungal drug resistance in Aspergillus. J Infect 2000; 41:203–220

    Article  PubMed  CAS  Google Scholar 

  9. Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother 2002; 49(Suppl 1):7–10

    Article  PubMed  CAS  Google Scholar 

  10. Law D, Moore CB, Denning DW. Amphotericin B resistance testing of Candida spp.: a comparison of methods. J Antimicrob Chemother 1997; 40:109–112

    Article  PubMed  CAS  Google Scholar 

  11. Rex JH, Pfaller MA, Walsh TJ, et al. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 2001; 14:643–658, table of contents

    Article  PubMed  CAS  Google Scholar 

  12. Warnock DW, Arthington-Skaggs BA, Li RK. Antifungal drug susceptibility testing and resistance in Aspergillus. Drug Resist Updat 1999; 2:326–334

    Article  PubMed  CAS  Google Scholar 

  13. Rex JH, Walsh TJ, Nettleman M, et al. Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 2001; 33:95–106

    Article  PubMed  CAS  Google Scholar 

  14. Ernst EJ, Yodoi K, Roling EE, Klepser ME. Rates and extents of antifungal activities of amphotericin B, flucytosine, flucona-zole, and voriconazole against Candida lusitaniae determined by microdilution, Etest, and time-kill methods. Antimicrob Agents Chemother 2002; 46:578–581

    Article  PubMed  CAS  Google Scholar 

  15. Denning DW, Hanson LH, Perlman AM, Stevens DA. In vitro susceptibility and synergy studies of Aspergillus species to conventional and new agents. Diagn Microbiol Infect Dis 1992; 15:21–34

    Article  PubMed  CAS  Google Scholar 

  16. National Committee for Clinical Laboratory Standards. 2002. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. NCCLS document M27-A2. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  17. Rex JH, Cooper CR, Jr., Merz WG, Galgiani JN, Anaissie EJ. Detection of amphotericin B-resistant Candida isolates in a broth-based system. Antimicrob Agents Chemother 1995; 39:906–909

    PubMed  CAS  Google Scholar 

  18. Wanger A, Mills K, Nelson PW, Rex JH. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother 1995; 39:2520–2522

    PubMed  CAS  Google Scholar 

  19. Park BJ, Arthington-Skaggs BA, Rana A. Hajjeh et al. Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents and Chemother 2006; 50:1287–1292

    Article  CAS  Google Scholar 

  20. Nguyen MH, Clancy CJ, Yu VL, et al. Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis 1998; 177:425–430

    Article  PubMed  CAS  Google Scholar 

  21. Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A. Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 2004; 48:2477–2482

    Article  PubMed  CAS  Google Scholar 

  22. Dick JD, Merz WG, Saral R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother 1980; 18:158–163

    PubMed  CAS  Google Scholar 

  23. Ostrosky-Zeichner L, Rex JH, Pappas PG, et al. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 2003; 47:3149–3154

    Article  PubMed  CAS  Google Scholar 

  24. Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 2003; 47:2717–2724

    Article  PubMed  CAS  Google Scholar 

  25. Dick JD, Rosengard BR, Merz WG, Stuart RK, Hutchins GM, Saral R. Fatal disseminated candidiasis due to amphotericin-B-resistant Candida guilliermondii. Ann Intern Med 1985; 102:67–68

    PubMed  CAS  Google Scholar 

  26. Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin Infect Dis 2000; 30:662–678

    Article  PubMed  CAS  Google Scholar 

  27. Pfaller MA, Messer SA, Boyken L, Tendolkar S, Hollis RJ, Diekema DJ. Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in 2001 and 2002. J Clin Microbiol 2004; 42:3142–3146

    Article  PubMed  CAS  Google Scholar 

  28. Walsh TJ, Melcher GP, Rinaldi MG, et al. Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol 1990; 28:1616–1622

    PubMed  CAS  Google Scholar 

  29. Walsh TJ, Petraitis V, Petraitiene R, et al. Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis 2003; 188:305–319

    Article  PubMed  CAS  Google Scholar 

  30. Iwen PC, Rupp ME, Langnas AN, Reed EC, Hinrichs SH. Invasive pulmonary aspergillosis due to Aspergillus terreus: 12-year experience and review of the literature. Clin Infect Dis 1998; 26:1092–1097

    Article  PubMed  CAS  Google Scholar 

  31. Cuenca-Estrella M, Ruiz-Diez B, Martinez-Suarez JV, Monzon A, Rodriguez-Tudela JL. Comparative in-vitro activity of voricona-zole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiosper-mum. J Antimicrob Chemother 1999; 43:149–151

    Article  PubMed  CAS  Google Scholar 

  32. Arikan S, Lozano-Chiu M, Paetznick V, Nangia S, Rex JH. Microdilution susceptibility testing of amphotericin B, itracona-zole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J Clin Microbiol 1999; 37:3946–3951

    PubMed  CAS  Google Scholar 

  33. Espinel-Ingroff A, Bartlett M, Bowden R, et al. Multicenter evaluation of proposed standardized procedure for antifungal susceptibility testing of filamentous fungi. J Clin Microbiol 1997; 35:139–143

    PubMed  CAS  Google Scholar 

  34. Torres HA, Raad II, Kontoyiannis DP, et al. Infections caused by Fusarium species. J Chemother 2003; 15(Suppl 2):28–35

    PubMed  Google Scholar 

  35. Gil-Lamaignere C, Roilides E, Maloukou A, Georgopoulou I, Petrikkos G, Walsh TJ. Amphotericin B lipid complex exerts additive antifungal activity in combination with polymorphonuclear leucocytes against Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother 2002; 50:1027–1030

    Article  PubMed  CAS  Google Scholar 

  36. Berenguer J, Rodriguez-Tudela JL, Richard C, et al. Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Scedosporium Prolificans Spanish Study Group. Medicine (Baltimore) 1997; 76:256–265

    Article  CAS  Google Scholar 

  37. Li RK, Ciblak MA, Nordoff N, Pasarell L, Warnock DW, McGinnis MR. In vitro activities of voriconazole, itraconazole, and ampho-tericin B against Blastomyces dermatitidis, Coccidioides immitis, and Histoplasma capsulatum. Antimicrob Agents Chemother 2000; 44:1734–1736

    Article  PubMed  CAS  Google Scholar 

  38. Espinel-Ingroff A, Dawson K, Pfaller M, et al. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob Agents Chemother 1995; 39:314–319

    PubMed  CAS  Google Scholar 

  39. Dannaoui E, Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro susceptibilities of zygomycetes to conventional and new antifungals. J Antimicrob Chemother 2003; 51:45–52

    Article  PubMed  Google Scholar 

  40. Walsh TJ, Groll AH. Emerging fungal pathogens: evolving challenges to immunocompromised patients for the twenty-first century. Transpl Infect Dis 1999; 1:247–261

    Article  PubMed  CAS  Google Scholar 

  41. Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: ten years' experience at a cancer center and implications for management. Blood 1997; 90:999–1008

    PubMed  CAS  Google Scholar 

  42. Powderly WG, Kobayashi GS, Herzig GP, Medoff G. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med 1988; 84:826–832

    Article  PubMed  CAS  Google Scholar 

  43. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol delta 8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett 1994; 122:39–42

    Article  PubMed  CAS  Google Scholar 

  44. Dannaoui E, Meletiadis J, Tortorano AM, et al. Susceptibility testing of sequential isolates of Aspergillus fumigatus recovered from treated patients. J Med Microbiol 2004; 53:129–134

    Article  PubMed  CAS  Google Scholar 

  45. Nolte FS, Parkinson T, Falconer DJ, et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother 1997; 41:196–199

    PubMed  CAS  Google Scholar 

  46. Krcmery V, Jr, Oravcova E, Spanik S, et al. Nosocomial breakthrough fungaemia during antifungal prophylaxis or empirical antifungal therapy in 41 cancer patients receiving antineoplastic chemotherapy: analysis of aetiology risk factors and outcome. J Antimicrob Chemother 1998; 41:373–380

    Article  PubMed  CAS  Google Scholar 

  47. Colombo AL, Melo AS, Crespo Rosas RF, et al. Outbreak of Candida rugosa candidemia: an emerging pathogen that may be refractory to amphotericin B therapy. Diagn Microbiol Infect Dis 2003;46(4):253–257

    Article  PubMed  Google Scholar 

  48. Kovacicova G, Hanzen J, Pisarcikova M, et al. Nosocomial fungemia due to amphotericin B-resistant Candida spp. in three pediatric patients after previous neurosurgery for brain tumors. J Infect Chemother 2001; 7:45–48

    Article  PubMed  CAS  Google Scholar 

  49. Joseph-Horne T, Hollomon D, Loeffler RS, Kelly SL. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother 1995; 39:1526–1529

    PubMed  CAS  Google Scholar 

  50. Lass-Florl C, Kofler G, Kropshofer G, et al. In-vitro testing of susceptibility to amphotericin B is a reliable predictor of clinical outcome in invasive aspergillosis. J Antimicrob Chemother 1998; 42:497–502

    Article  PubMed  CAS  Google Scholar 

  51. Seo K, Akiyoshi H, Ohnishi Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol 1999; 43:1017–1025

    PubMed  CAS  Google Scholar 

  52. Kim SJ, Kwon-Chung KJ, Milne GW, Prescott B. Polyene-resistant mutants of Aspergillus fennelliae: identification of sterols. Antimicrob Agents Chemother 1974; 6:405–410

    PubMed  CAS  Google Scholar 

  53. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 1990; 34:183–188

    PubMed  CAS  Google Scholar 

  54. Barwicz J, Gruda I, Tancr inverted question markede P. A kinetic study of the oxidation effects of amphotericin B on human low-density lipoproteins. FEBS Lett 2000; 465:83–86

    Article  PubMed  CAS  Google Scholar 

  55. Sokol-Anderson M, Sligh JE, Jr, Elberg S, et al. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 1988; 32:702–705

    PubMed  CAS  Google Scholar 

  56. Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 1986; 154:76–83

    PubMed  CAS  Google Scholar 

  57. Athar MA, Winner HI. The development of resistance by Candida species to polyene antibiotics in vitro. J Med Microbiol 1971; 4:505–517

    Article  PubMed  CAS  Google Scholar 

  58. de Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. 3. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 1974; 339:57–70

    Article  PubMed  Google Scholar 

  59. Hamilton-Miller JM. Fungal sterols and the mode of action of the polyene antibiotics. Adv Appl Microbiol 1974; 17:109–134

    Article  PubMed  CAS  Google Scholar 

  60. Holz RW, Vanden Bossche H, Dromer F, et al. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 1974; 235:469–479

    Article  PubMed  CAS  Google Scholar 

  61. Hammond SM, Lambert PA, Kliger BN. The mode of action of polyene antibiotics; induced entry of hydrogen ions as a consequence of polyene action on the cell membrane of Candida albicans. J Gen Microbiol 1974; 81:331–336

    PubMed  CAS  Google Scholar 

  62. St Georgiev V. Membrane transporters and antifungal drug resistance. Curr Drug Targets 2000; 1:261–284

    Article  PubMed  CAS  Google Scholar 

  63. HsuChen CC, Feingold DS. Two types of resistance to polyene antibiotics in Candida albicans. Nature 1974; 251:656–659

    Article  PubMed  CAS  Google Scholar 

  64. Brajtburg J, Medoff G, Kobayashi GS, Elberg S, Finegold C. Permeabilizing and hemolytic action of large and small polyene antibiotics on human erythrocytes. Antimicrob Agents Chemother 1980; 18:586–592

    PubMed  CAS  Google Scholar 

  65. Brajtburg J, Medoff G, Kobayashi GS, Elberg S. Influence of extracellular K+ or Mg2+ on the stages of the antifungal effects of amphotericin B and filipin. Antimicrob Agents Chemother 1980; 18:593–597

    PubMed  CAS  Google Scholar 

  66. Kotler-Brajtburg J, Medoff G, Kobayashi GS, et al. Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob Agents Chemother 1979; 15:716–722

    PubMed  CAS  Google Scholar 

  67. Hartsel S, Bolard J. Amphotericin B: new life for an old drug. Trends Pharmacol Sci 1996; 17:445–449

    Article  PubMed  CAS  Google Scholar 

  68. Hartsel SC, Benz SK, Ayenew W, Bolard J. Na+, K+ and Cl- selectivity of the permeability pathways induced through sterol-containing membrane vesicles by amphotericin B and other polyene antibiotics. Eur Biophys J 1994; 23:125–132

    Article  PubMed  CAS  Google Scholar 

  69. Ruckwardt T, Scott A, Scott J, Mikulecky P, Hartsel SC. Lipid and stress dependence of amphotericin B ion selective channels in ster-ol-free membranes. Biochim Biophys Acta 1998; 1372:283–288

    Article  PubMed  CAS  Google Scholar 

  70. Wolf BD, Hartsel SC. Osmotic stress sensitizes sterol-free phospholipid bilayers to the action of Amphotericin B. Biochim Biophys Acta 1995; 1238:156–162

    Article  PubMed  Google Scholar 

  71. Brajtburg J, Elberg S, Schwartz DR, et al. Involvement of oxidative damage in erythrocyte lysis induced by amphotericin B. Antimicrob Agents Chemother 1985; 27:172–176

    PubMed  CAS  Google Scholar 

  72. Sokol-Anderson M, Sligh JE, Jr., Elberg S, Brajtburg J, Kobayashi GS, Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 1988; 32:702–705

    PubMed  CAS  Google Scholar 

  73. Lamy-Freund MT, Ferreira VF, Schreier S. Mechanism of inactivation of the polyene antibiotic amphotericin B. Evidence for radical formation in the process of autooxidation. J Antibiot (Tokyo) 1985; 38:753–757

    CAS  Google Scholar 

  74. Andrews FA, Sarosi GA, Beggs WH. Enhancement of amphotericin B activity by a series of compounds related to phenolic antioxidants. J Antimicrob Chemother 1979; 5:173–177

    Article  PubMed  CAS  Google Scholar 

  75. Osaka K, Ritov VB, Bernardo JF, et al. Amphotericin B protects cis-parinaric acid against peroxyl radical-induced oxidation: amphotericin B as an antioxidant. Antimicrob Agents Chemother 1997; 41:743–747

    PubMed  CAS  Google Scholar 

  76. Vanden Bossche H, Marichal P, Odds FC. Molecular mechanisms of drug resistance in fungi. Trends Microbiol 1994; 2:393–400

    Article  PubMed  CAS  Google Scholar 

  77. Manavathu EK, Alangaden GJ, Chandrasekar PH. In-vitro isolation and antifungal susceptibility of amphotericin B-resistant mutants of Aspergillus fumigatus. J Antimicrob Chemother 1998; 41:615–619

    Article  PubMed  CAS  Google Scholar 

  78. Hitchcock CA, Barrett-Bee KJ, Russell NJ. The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol 1987; 25:29–37

    Article  PubMed  CAS  Google Scholar 

  79. Subden RE, Safe L, Morris DC, Brown RG, Safe S. Eburicol, liches-terol, ergosterol, and obtusifoliol from polyene antibiotic-resistant mutants of Candida albicans. Can J Microbiol 1977; 23:751–754

    PubMed  CAS  Google Scholar 

  80. Slisz M, Cybulska B, Grzybowska J, et al. The mechanism of overcoming multidrug resistance (MDR) of fungi by amphoter-icin B and its derivatives. J Antibiot (Tokyo). 2007; 60:436–446

    CAS  Google Scholar 

  81. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999; 12:501–517

    PubMed  CAS  Google Scholar 

  82. Arthington BA, Hoskins J, Skatrud PL, et al. Nucleotide sequence of the gene encoding yeast C-8 sterol isomerase. Gene 1991; 107:173–174

    Article  PubMed  CAS  Google Scholar 

  83. Barker KS, Crisp S, Wiederhold N, et al. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 2004

    Google Scholar 

  84. Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 1989; 9:3447–3456

    PubMed  CAS  Google Scholar 

  85. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 2003; 47:2404–2412

    Article  PubMed  CAS  Google Scholar 

  86. Fryberg M, Oehlschlager AC, Unrau AM. Sterol biosynthesis in antibiotic-resistant yeast: nystatin. Arch Biochem Biophys 1974; 160:83–89

    Article  PubMed  CAS  Google Scholar 

  87. Barton DH, Corrie JE, Bard M, Woods RA. Biosynthesis of terpenes and steroids. IX. The sterols of some mutant yeasts and their relationship to the biosynthesis of ergosterol. J Chem Soc [Perkin 1] 1974; 11:1326–1333

    Article  CAS  Google Scholar 

  88. Pourshafie M, Morand S, Virion A, Rakotomanga M, Dupuy C, Loiseau PM. Cloning of S-adenosyl-L-methionine: C-24-Delta-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-Resistant promastigotes. Antimicrob Agents Chemother 2004; 48:2409–2414

    Article  PubMed  CAS  Google Scholar 

  89. Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet 1996; 348:1523–1524

    Article  PubMed  CAS  Google Scholar 

  90. Haynes MP, Chong PL, Buckley HR, Pieringer RA. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Biochemistry 1996; 35:7983–7992

    Article  PubMed  CAS  Google Scholar 

  91. Vandeputte P, Tronchin G, Bergès T, et al. Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob Agents Chemother. 2007; 51:982–990

    Article  PubMed  CAS  Google Scholar 

  92. Fryberg M, Oehlschlager AC, Unrau AM, Lomb M, Avruch L. Sterol biosynthesis in antibiotic sensitive and resistant Candida. Arch Biochem Biophys 1976; 173:171–177

    Article  PubMed  CAS  Google Scholar 

  93. Hitchcock CA, Russell NJ, Barrett-Bee KJ. Sterols in Candida albicans mutants resistant to polyene or azole antifungals, and of a double mutant C. albicans 6.4. Crit Rev Microbiol 1987; 15:111–115

    Article  PubMed  CAS  Google Scholar 

  94. Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal drugs. Antimicrob Agents Chemother. 1998; 42:1900–1905

    PubMed  CAS  Google Scholar 

  95. Kuhn DM, George T, Chandra J et al. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002; 46:1773–1780

    Article  PubMed  CAS  Google Scholar 

  96. Pierce AM, Pierce HD, Jr, Unrau AM, Oehlschlager AC. Lipid composition and polyene antibiotic resistance of Candida albi-cans mutants. Can J Biochem 1978; 56:135–142

    PubMed  CAS  Google Scholar 

  97. Broughton MC, Bard M, Lees ND. Polyene resistance in ergos-terol producing strains of Candida albicans. Mycoses 1991; 34:75–83

    Article  PubMed  CAS  Google Scholar 

  98. Bahmed K, Bonaly R, Coulon J. Relation between cell wall chitin content and susceptibility to amphotericin B in Kluyveromyces, Candida and Schizosaccharomyces species. Res Microbiol 2003; 154:215–222

    Article  PubMed  CAS  Google Scholar 

  99. Bahmed K, Bonaly R, Wathier M, Pucci B, Coulon J. Change of cell wall chitin content in amphotericin B resistant Kluyveromyces strains. FEMS Microbiol Lett 2002; 216:99–103

    Article  PubMed  CAS  Google Scholar 

  100. Hammond SM, Kliger BN, Lambert PA. Differential effects of monovalent and divalent ions upon the mode of action of the polyene antibiotic candicidin. J Appl Bacteriol 1976; 41:59–68

    PubMed  CAS  Google Scholar 

  101. Gale EF, Ingram J, Kerridge D, Notario V, Wayman F. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol 1980; 117:383–391

    PubMed  CAS  Google Scholar 

  102. Petraitis V, Petraitiene R, Sarafandi AA, et al. Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis 2003; 187:1834–1843

    Article  PubMed  CAS  Google Scholar 

  103. Caillot D, Thiébaut A, Herbrecht R, et al. Liposomal amphoter-icin B in combination with caspofungin for invasive aspergillosis in patients with hematologic malignancies. Cancer 2007 Oct 16; [Epub]

    Google Scholar 

  104. Groll AH, Walsh TJ. Antifungal chemotherapy: advances and perspectives. Swiss Med Wkly 2002; 132:303–311

    PubMed  CAS  Google Scholar 

  105. Groll AH, Piscitelli SC, Walsh TJ. Antifungal pharmacody-namics: concentration-effect relationships in vitro and in vivo. Pharmacotherapy 2001; 21:133S–148S

    Article  PubMed  CAS  Google Scholar 

  106. Klepser ME. Antifungal resistance among Candida species. Pharmacotherapy 2001; 21:124S–132S

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O'Shaughnessy, E.M., Lyman, C.A., Walsh, T.J. (2009). Amphotericin B: Polyene Resistance Mechanisms. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics