Skip to main content

Evolutionary Biology of Drug Resistance

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

It is widely upheld that evolution is the result of two essential forces: variability (chance) and selection (necessity). This assumption is confi rmed by a number of simple phenomena in antibiotic resistance. Variability is created by random mutation, and some of these variants (for instance those with a mutation in the antibiotic target) become resistant. These variants are selected by antibiotic use and consequently they increase the frequency of resistance. If we increase variability (as in a hyper-mutable strain) or the intensity of selection (antibiotic hyper-consumption), the result is more resistance. This is true, but not the whole truth. Most determinants of antibiotic resistance are not based on simple mutations, but rather on sophisticated systems frequently involving several genes and sequences; moreover, resistance mutations are seldom transmitted by lateral gene transfer. The acquisition of any type of resistance produces a change. In biology, any change is not only an opportunity, but is also a risk for evolution. Bacterial organisms are highly integrated functional structures, exquisitely tuned by evolutionary forces to fi t with their environments. Beyond the threshold of the normal compliance of these functions, changes are expected to disturb the equilibrium. Therefore, the acquisition of resistance is not suffi cient to survive; evolution should also shape and refi ne the way of managing the resistance determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, G. (1997). Selection, the Mechanism of Evolution. Chapman & Hall, New York

    Google Scholar 

  2. Linares, J.F., Gustafsson, I., Baquero, F., and Martinez, J.L. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. U.S.A. 103:19484–19489

    PubMed  CAS  Google Scholar 

  3. Hoffman, L.R., D'Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A., and Miller, S.I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    PubMed  CAS  Google Scholar 

  4. Baquero, F. (2005). Evolution and the nature of time. Int. Microbiol. 8:81–91

    PubMed  Google Scholar 

  5. Wiuff, C., Zappala, R.M., Regoes, R.R., Garner, K.N., Baquero, F., and Levin, B.R. (2005). Phenotypic tolerance: antibiotic enrichment of non-inherited resistance in bacterial populations. Antimicrob. Agents Chemother. 49:1483–1494

    PubMed  CAS  Google Scholar 

  6. Kussell, E., Kishony, R., Balaban, N.Q., and Leibler, S. (2005). Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814

    PubMed  Google Scholar 

  7. Levin, B.R., and Rozen, D.E. (2006). Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4:556–562

    PubMed  CAS  Google Scholar 

  8. Gould, S.J., and Vrba, S. (1982). Exaptation — a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  9. Gould, S.J., and Lloyd, E.A. (1999). Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc. Natl. Acad. Sci. U.S.A. 96:11904–11909

    PubMed  CAS  Google Scholar 

  10. Torres, C., Perlin, M.H., Baquero, F., Lerner, D.L., and Lerner, S.A. (2000). High-level amikacin resistance in Pseudomonas aeruginosa associated with a 3′-phosphotransferase with high affinity for amikacin. Int. J. Antimicrob. Agents. 15:257–263

    PubMed  CAS  Google Scholar 

  11. Gould, S.J. (2002). The Structure of Evolutionary Theory (Gould, S.J. ed.). The Belknap Press of Harvard University Press, Cambridge, MA, and London

    Google Scholar 

  12. Charpentier, E., and Courvalin, P. (1999). Antibiotic resistance in Listeria spp. Antimicrob. Agents Chemother. 43:2103–2108

    PubMed  CAS  Google Scholar 

  13. Edwards, R., and Read, P.N. (2000). Expression of the carbapene-mase gene (cfiA) in Bacteroides fragilis. J. Antimicrob. Chemother. 46:1009–1012

    PubMed  CAS  Google Scholar 

  14. Robicsek, A., Strahilevitz, J., Jacoby, G.A., Macielag, M., Abbanat, D., Park, C.H., Bush, K., and Hooper, D.C. (2006). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12:83–88

    PubMed  CAS  Google Scholar 

  15. D'Costa, V.M., McGrann, K.M., Hughes, D.W., and Wright, G.D. (2006). Sampling the antibiotic resistome. Science 311:374–377

    PubMed  Google Scholar 

  16. Stoczko, M., Frere, J.M., Rossolini, G.M., and Docquier, J.D. (2006). Postgenomic scan of metallo-beta-lactamase homologues in rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Antimicrob. Agents Chemother. 50:1973–1981

    PubMed  CAS  Google Scholar 

  17. Wiener, P., and Tuljapurkar, S. (1994). Migration in variable environments: exploring life-history evolution using structured population models. J. Theor. Biol. 166:75–90

    PubMed  CAS  Google Scholar 

  18. Davies, J. (1992). Another look at antibiotic resistance. J. Gen. Microbiol. 138:1553–1559

    PubMed  CAS  Google Scholar 

  19. Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    PubMed  CAS  Google Scholar 

  20. Massova, I., and Mobashery, S. (1999). Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr. Pharm. Des. 5:929–937

    PubMed  CAS  Google Scholar 

  21. Aharonowitz, Y., Cohen, G., and Martín, J.F. (1992). Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu. Rev. Microbiol. 46:461–495

    PubMed  CAS  Google Scholar 

  22. Massova, I., and Mobashery, S. (1998). Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42:1–17

    PubMed  CAS  Google Scholar 

  23. Kelly, J.A., Dideberg, O., Charlier, P., Wery, J.P., Libert, M., Moews, P.C., Knox, J.R., Duez, C., Fraipont, C., Joris, B., et al. (1986). On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 231:1429–1431

    PubMed  CAS  Google Scholar 

  24. Medeiros, A.A. (1997). Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin. Infect. Dis. 24:S19–S45

    Google Scholar 

  25. Wolf, D.M., and Arkin, A.P. (2003). Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6:125–134

    PubMed  CAS  Google Scholar 

  26. Mah, T.F., and O'Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends. Microbiol. 9:34–39

    PubMed  CAS  Google Scholar 

  27. Greenway, D.L., and England, R.R. (1999). The intrinsic resistance of Escherichia coli to various antimicrobial agents requires ppGpp and sigma s. Lett. Appl. Microbiol. 29:323–326

    PubMed  CAS  Google Scholar 

  28. Cao, M., Wang, T., Ye, R., and Helmann, J.D. (2002). Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma (W) and sigma (M) regulons. Mol. Microbiol. 45:1267–1276

    PubMed  CAS  Google Scholar 

  29. Bandow, J.E., Brotz, H., and Hecker, M. (2002). Bacillus subtilis tolerance of moderate concentrations of rifampin involves the sigma(B)-dependent general and multiple stress response. J. Bacteriol. 184:459–467

    PubMed  CAS  Google Scholar 

  30. Macfarlane, E.L., Kwasnicka, A., Ochs, M.M., and Hancock, R.E. (1999). PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and poly-myxin B resistance. Mol. Microbiol. 34:305–316

    PubMed  CAS  Google Scholar 

  31. Powell, J.K., and Young, K.D. (1991). Lysis of Escherichia coli by beta-lactams which bind penicillin-binding proteins 1a and 1b: inhibition by heat shock proteins. J. Bacteriol. 173:4021–4026

    PubMed  CAS  Google Scholar 

  32. Miller, C., Thomsen, L.E., Gaggero, C., Mosseri, R., Ingmer, H., and Cohen, S.N. (2004). SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1578–1579

    Google Scholar 

  33. Blázquez, J., Gómez-Gómez, J.M., Oliver, A., Juan, C., Kapur, V., and Martín, S. (2006). PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Mol. Microbiol. 62:84–99

    PubMed  Google Scholar 

  34. Oliver, A., Cantón, R., Campo, P., Baquero, F., and Blázquez, J. (2000). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    PubMed  CAS  Google Scholar 

  35. Román, F., Cantón, R., Perez-Vazquez, M., Baquero, F., and Campos, J. (2004). Dynamics of long-term colonization of respiratory tract by Haemophilus infl uenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J. Clin. Microbiol. 42:1450–1459

    PubMed  Google Scholar 

  36. Prunier, A.L., Malbruny, B., Laurans, M., Brouard, J., Duhamel, J.F., and Leclercq, R. (2003). High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J. Infect. Dis. 187:1709–1716

    PubMed  CAS  Google Scholar 

  37. del Campo, R., Morosini, M.I., de la Pedrosa, E.G., Fenoll, A., Muñoz-Almagro, C., Maiz, L., Baquero, F., and Cantón, R. (2005). Spanish Pneumococcal Infection Study Network. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J. Clin. Microbiol. 43:2207–2214

    PubMed  CAS  Google Scholar 

  38. Baquero, M.R., Nilsson, A.I., Turrientes, M., Del, C., Sandvang, D., Galán, J.C., Martinez, J.L., Frimodt-Moller, N., Baquero, F., and Andersson, D.I. (2004). Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates. J. Bacteriol. 186:5538–5542

    PubMed  CAS  Google Scholar 

  39. Giraud, A., Matic, I., Tenaillon, O., Clara, A., Radman, M., Fons, M., and Taddei, F. (2001). Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608

    PubMed  CAS  Google Scholar 

  40. Shaver, A.C., Dombrowski, P.G., Sweeney, J.Y., Treis, T., Zappala, R.M., and Sniegowski, P.D. (2002). Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations. Genetics 162:557–566

    PubMed  CAS  Google Scholar 

  41. Chao, L., and Cox, E.C. (1983). Competition between high and low mutating strains of Escherichia coli. Evolution 37:125

    Google Scholar 

  42. Baquero, M.R., Galán, J.C., Turrientes, M., Del, C., Cantón, R., Coque, T.M., Martinez, J.L., and Baquero, F. (2005). Increased mutation frequencies in Escherichia coli isolates harboring extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 49:4754–4756

    PubMed  CAS  Google Scholar 

  43. Miller, K., O'Neill, A.J., and Chopra, I. (2002). Response of Escherichia coli hypermutators to selection pressure with antimicrobial agents from different classes. J. Antimicrob. Chemother. 49:925–934

    PubMed  CAS  Google Scholar 

  44. Martinez, J.L., and Baquero, F. (2002). Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15:647–679

    PubMed  Google Scholar 

  45. Tanaka, M.M., Bergstrom, C.T., and Levin, B.R. (2003). The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164:843–854

    PubMed  Google Scholar 

  46. Miller, K., O'Neill, A.J., and Chopra, I. (2004). Escherichia coli mutators present an enhanced risk for emergence of antibiotic resistance during urinary tract infections. Antimicrob. Agents Chemother. 48:23–29

    PubMed  CAS  Google Scholar 

  47. Pérez-Capilla, T., Baquero, M.R., Gómez-Gómez, J.M., Ionel, A., Martín, S., and Blázquez, J. (2005). SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. J. Bacteriol. 187:1515–1518

    PubMed  Google Scholar 

  48. Baquero, F., and Blázquez, J. (1997). Evolution of antibiotic resistance. Trends. Ecol. Evol. 12:482–487

    Google Scholar 

  49. Balashov, S., Humayun, M.Z. (2002). Mistranslation induced by streptomycin provokes a RecABC/RuvABC-dependent mutator phenotype in Escherichia coli cells. J. Mol. Biol. 315:513–527

    PubMed  CAS  Google Scholar 

  50. Phillips, I., Culebras, E., Moreno, F., and Baquero, F. (1987). Induction of the SOS response by new 4-quinolones. J. Antimicrob. Chemother. 20:631–638

    PubMed  CAS  Google Scholar 

  51. Miller, C., Thomsen, L.E., Gaggero, C., Mosseri, R., Ingmer, H., and Cohen, S.N. (2004). SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631

    PubMed  CAS  Google Scholar 

  52. Santoyo, G., and Romero, D. (2005). Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol. Rev. 29:169–183

    PubMed  CAS  Google Scholar 

  53. Prammananan, T., Sande, R.P., Springe, R.B., and Bottger, E.C. (1999). RecA-Mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA. Antimicrob. Agents Chemother. 43:447–453

    PubMed  CAS  Google Scholar 

  54. Pereira-Leal, J.B., Levy, E.D., and Teichmann, S.A. (2006). The origins and evolution of functional modules: lessons from protein complexes. Philos Trans. R. Soc. Lond., B., Biol. Sci. 361:507–517

    PubMed  CAS  Google Scholar 

  55. Cantón, R., and Coque, T.M. (2006). The CTX-M beta-lactamase pandemic. Curr. Opin. Microbiol. 9:466–475

    PubMed  Google Scholar 

  56. Lartigue, M.F., Poirel, L., Aubert, D., and Nordmann, P. (2006). In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene bla CTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother. 50:1282–1286

    PubMed  CAS  Google Scholar 

  57. Poirel, L., Decousse, J.W., and Nordmann, P. (2003). Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob. Agents Chemother. 47:2938–2945

    PubMed  CAS  Google Scholar 

  58. Toleman, M.A., Bennett, P.M., and Walsh, T.R. (2006). ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70:296–316

    PubMed  CAS  Google Scholar 

  59. Aubert, D., Naas, T., Heritier, C., Poirel, L., and Nordmann, P. (2006). Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. J. Bacteriol. 188:6506–6514

    PubMed  CAS  Google Scholar 

  60. Force, A., Cresko, W.A., Pickett, F.B., Proulx, S.R., Amemiya, C., and Lynch, M. (2005). The origin of subfunctions and modular gene regulation. Genetics 170:433–446

    PubMed  CAS  Google Scholar 

  61. Novais, A., Cantón, R., Valverde, A., Machado, E., Galan, J.C., Peixe, L., Carattoli, A., Baquero, F., and Coque, T.M. (2006). Dissemination and persistence of bla CTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plas-mids of IncHI2, IncP1-alpha, and IncFI groups. Antimicrob. Agents Chemother. 50:2741–2750

    PubMed  CAS  Google Scholar 

  62. Souza, V., Eguiarte, L.E. (1997). Bacteria gone native vs. bacteria gone awry?: plasmidic transfer and bacterial evolution. Proc. Natl. Acad. Sci. U.S.A. 94:5501–5503

    PubMed  CAS  Google Scholar 

  63. Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K.L., and Threlfall, E.J. (2005). Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63:219–228

    PubMed  CAS  Google Scholar 

  64. Bennett, P.M. (2004). Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol. Biol. 266:71–113

    PubMed  CAS  Google Scholar 

  65. Rice, L.B. (2002). Association of different mobile elements to generate novel integrative elements. Cell Mol. Life Sci. 59:2023–2032

    PubMed  CAS  Google Scholar 

  66. Liebert, C.A., Hall, R.M., and Summers, A.O. (1999). Transposon Tn21, flagship of the fl oating genome. Microbiol. Mol. Biol. Rev. 63:507–522

    PubMed  CAS  Google Scholar 

  67. Rowe-Magnus, A.D., Davies, J., and Mazel, D. (2002). Impact of integrons and transposons on the evolution of resistance and virulence. Curr. Top. Microbiol. Immunol. 264:167–188

    PubMed  CAS  Google Scholar 

  68. Fluit, A.C., and Schmitz, F.J. (2004). Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10:272–288

    PubMed  CAS  Google Scholar 

  69. Walsh, T.R., Toleman, M.A., Poirel, L., and Nordmann, P. (2005). Metallo- β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18:306–325

    PubMed  CAS  Google Scholar 

  70. Oliver, A., Coque, T.M., Alonso, D., Valverde, A., Baquero, F., and Cantón, R. (2005). CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital. Antimicrob. Agents Chemother. 49:1567–1571

    PubMed  CAS  Google Scholar 

  71. Pozzi, G., Iannelli, F., Oggioni, M.R., Santagati, M., Stefani, S. (2004). Genetic elements carrying macrolide effl ux genes in streptococci. Curr. Drug Targets Infect. Disord. 4:203–206

    PubMed  CAS  Google Scholar 

  72. Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., and Spratt, B.G. (2004). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186:1518–30

    PubMed  CAS  Google Scholar 

  73. Ruiz-Garbajosa, P., Bonten, M.J., Robinson, D.A., Top, J., Nallapareddy, S.R., Torres, C., Coque, T.M., Cantón, R., Baquero, F., Murray, B.E., del Campo, R., and Willems, R.J. (2006). Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J. Clin. Microbiol. 44:2220–2228

    PubMed  CAS  Google Scholar 

  74. Cohen, M.L. (1994). Antimicrobial resistance: prognosis for public health. Trends Microbiol. 2:422–425

    PubMed  CAS  Google Scholar 

  75. Shurin, J.B., Amarasekare, P., Chase, J.M., Holt, R.D., Hoopes, M.F., Leibold, M.A. (2004). Alternative stable states and regional community structure. J. Theor. Biol. 227:359–368

    PubMed  Google Scholar 

  76. Jutersek, B., Baraniak, A., Zohar-Cretnik, T., Storman, A., Sadowy, E., and Gniadkowski, M. (2003). Complex endemic situation regarding extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a hospital in Slovenia. Microb. Drug Resist. 9(Suppl 1):S25–S33

    PubMed  CAS  Google Scholar 

  77. Baquero, F., Coque, T.M. and Cantón, R. (2002). Allodemics. Lancet Infect. Dis. 2:591–592

    PubMed  Google Scholar 

  78. Cantón, R., Coque, T.M., Baquero, F. (2003). Multi-resistant Gram-negative bacilli: from epidemics to endemics. Curr. Opin. Infect. Dis. 16:315–325

    PubMed  Google Scholar 

  79. Shapiro, J.A. (1992). Natural genetic engineering in evolution. Genetica 86:99–111

    PubMed  CAS  Google Scholar 

  80. Mittler, J.E., and Lenski, R.E. (1990). New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature 344:173–175

    PubMed  CAS  Google Scholar 

  81. Lenski, R.E., and Sniegowski, P.D. (1995). “Adaptive mutation”: the debate goes on. Science 269:285–288

    PubMed  CAS  Google Scholar 

  82. Higashitani, N., Higashitani, A., and Horiuchi, K. (1995). SOS induction in Escherichia coli by single-stranded DNA of mutant filamentous phage: monitoring by cleavage of LexA repressor. J. Bacteriol. 177:3610–3612

    PubMed  CAS  Google Scholar 

  83. Thomas, A., Tocher, J., and Edwards, D.I. (1990). Electrochemical characteristics of five quinolone drugs and their effect on DNA damage and repair in Escherichia coli. J. Antimicrob. Chemother. 25:733–744

    PubMed  CAS  Google Scholar 

  84. DeMarini, D.M., and Lawrence, B.K. (1992). Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks. Mutat. Res. 267:1–17

    PubMed  CAS  Google Scholar 

  85. Ubeda, C., Maiques, E., Knecht, E., Lasa, I., Novick, R.P., and Penades, J.R. (2005). Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56:836–844

    PubMed  CAS  Google Scholar 

  86. Zhang, X., McDaniel, A.D., Wolf, L.E., Keusch, G.T., Waldor, M.K., and Acheson, D.W. (2000). Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181:664–670

    PubMed  CAS  Google Scholar 

  87. Goerke, C., Matias y Papenberg, S., Dasbach, S., Dietz, K., Ziebach, R., Kahl, B.C., and Wolz, C. (2004). Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J. Infect. Dis. 189:724–734

    PubMed  CAS  Google Scholar 

  88. Goerke, C., Koller, J., and Wolz, C. (2006). Ciprofl oxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 50:171–177

    CAS  Google Scholar 

  89. Vakulenko, S.B., Golemi, D., Geryk, B., Suvorov, M., Knox, J.R., Mobashery, S., and Lerner, S.A. (2002). Mutational replacement of Leu-293 in the class C Enterobacter cloacae P99 beta-lactamase confers increased MIC of cefepime. Antimicrob. Agents Chemother. 46:1966–1970

    PubMed  CAS  Google Scholar 

  90. Baldwin, J.M. (1896). A new factor in evolution. Am. Nat. 30:441–451

    Google Scholar 

  91. Aertsen, A., and Michiels, C.W. (2005). Diversify or die: generation of diversity in response to stress. Crit. Rev. Microbiol. 31:69–78

    PubMed  Google Scholar 

  92. Smith, J.M., Hoekstra, R. (1980). Polymorphism in a varied environment: how robust are the models? Genet. Res. 35:45–57

    PubMed  CAS  Google Scholar 

  93. Baquero, F., Negri, M.C. (1997). Selective compartments for resistant microorganisms in antibiotic gradients. Bioessays 19:731–736

    PubMed  CAS  Google Scholar 

  94. Negri, M.C., Lipsitch, M., Blázquez, J., Levin, B.R., Baquero, F. (2000). Concentration-dependent selection of small phenotypic differences in TEM-beta-lactamase-mediated antibiotic resistance. Antimicrob. Agents Chemother. 44:2485–2491

    PubMed  CAS  Google Scholar 

  95. Drlica, K. (2003). The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 52:11–7

    PubMed  CAS  Google Scholar 

  96. Blázquez, J., Negri, M.C., Morosini, M.I., Gómez-Gómez, J.M., and Baquero, F. (1998). A237T as a modulating mutation in naturally occurring extended-spectrum TEM-type beta-lactamases. Anti-microb. Agents Chemother. 42:1042–1044

    Google Scholar 

  97. Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat. Rev. Microbiol. 2:510–518

    PubMed  CAS  Google Scholar 

  98. Alekshun, M.N., and Levy, S.B. (2006). Commensals upon us. Biochem. Pharmacol. 71:893–900

    PubMed  CAS  Google Scholar 

  99. Enne, V.I., Livermore, D.M., Stephens, P., and Hall, L.M. (2001). Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357:1325–1328

    PubMed  CAS  Google Scholar 

  100. Brosius, J., and Gould, S.J. (1992). On genonomenclature: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc. Natl. Acad. Sci. U.S.A. 89:10706–10710

    PubMed  CAS  Google Scholar 

  101. Stebbins, G.L., and Hartl, D.L. (1998). Comparative evolution: latent potentials for anagenetic advance. Proc. Natl. Acad. Sci. U.S.A. 85:5141–5145

    Google Scholar 

  102. Piddock, L.J. (2006). Multidrug-resistance effl ux pumps — not just for resistance. Nat. Rev. Microbiol. 4:629–636

    PubMed  CAS  Google Scholar 

  103. Andersson, D.I. (2006). The biological cost of mutational antibiotic resistance: any practical conclusions? Curr. Opin. Microbiol. 9:461–465

    PubMed  CAS  Google Scholar 

  104. Levin, B.R., Lipsitch, M., Perrot, V., Schrag, S., Antia, R., Simonsen, L., Walker, N.M., Stewart, F.M. (1997). The population genetics of antibiotic resistance. Clin. Infect. Dis. 24(Suppl 1):S9–S16

    PubMed  Google Scholar 

  105. Lenski, R.E., Souza, V., Duong, L.P., Phan, Q.G., Nguyen, T.N., and Bertrand, K.P. (1994). Epistatic effects of promoter and repressor functions of the Tn10 tetracycline-resistance operon of the fitness of Escherichia coli. Mol. Ecol. 3:127–135

    PubMed  CAS  Google Scholar 

  106. Blot, M., Hauer, B., and Monnet, G. (1994). The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. Mol. Gen. Genet. 242:595–601

    PubMed  CAS  Google Scholar 

  107. Coque, T.M., Willems, R.J., Fortún, J., Top, J., Diz, S., Loza, E., Cantón, R., and Baquero, F. (2005). Population structure of Enterococcus faecium causing bacteremia in a Spanish university hospital: setting the scene for a future increase in vancomycin resistance? Antimicrob. Agents Chemother. 49:2693–2700

    PubMed  CAS  Google Scholar 

  108. Willems, R.J., Top, J., van Santen, M., Robinson, D.A., Coque, T.M., Baquero, F., Grundmann, H., and Bonten, M.J. (2005). Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg. Infect. Dis. 11:82182–8

    Google Scholar 

  109. del Campo, R., Cafini, F., Morosini, M.I., Fenoll, A., Linares, J., Alou, L., Sevillano, D., Cantón, R., Prieto, J., and Baquero, F. (2006). Spanish Pneumococcal Network (G3/103). Combinations of PBPs and MurM protein variants in early and contemporary high-level penicillin-resistant Streptococcus pneumoniae isolates in Spain. J. Antimicrob. Chemother. 57:983–986

    PubMed  CAS  Google Scholar 

  110. Ruiz-Garbajosa, P., Cantón, R., Pintado, V., Coque, T.M., Willems, R., Baquero, F., and del Campo, R. (2006). Genetic and pheno-typic differences among Enterococcus faecalis clones from intestinal colonisation and invasive disease. Clin. Microbiol. Infect. 12:1193–1198

    PubMed  CAS  Google Scholar 

  111. Gomes, A.R., Westh, H., and de Lencastre, H. (2006). Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob. Agents Chemother. 50:3237–3244

    PubMed  CAS  Google Scholar 

  112. Martiny, J.B., Bohannan, B.J., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Kane, M., Krumins, J.A., Kuske, C.R., Morin, P.J., Naeem, S., Ovreas, L., Reysenbach, A.L., Smith, V.H., and Staley, J.T. (2006). Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102–112

    PubMed  CAS  Google Scholar 

  113. Jain, R., Rivera, M.C., Moore, J.E., and Lake, J.A. (2003). Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20:1598–1602

    PubMed  CAS  Google Scholar 

  114. Madan Babu, M., Teichmann, S.A., Aravind, L. (2006). Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol. 358:614–633

    PubMed  CAS  Google Scholar 

  115. von Mering, C., Zdobnov, E.M., Tsoka, S., Ciccarelli, F.D., Pereira-Leal, J.B., Ouzounis, C.A., and Bork, P. (2003). Genome evolution reveals biochemical networks and functional modules. Proc. Natl. Acad. Sci. U.S.A. 100:15428–15433

    PubMed  CAS  Google Scholar 

  116. Ettema, T., van der Oost, J., and Huynen, M. (2001). Modularity in the gain and loss of genes: applications for function prediction. Trends Genet. 17:485–487

    PubMed  CAS  Google Scholar 

  117. Lenski, R.E., Ofria, C., Pennock, R.T., and Adami, C. (2003). The evolutionary origin of complex features. Nature 423:139–144

    PubMed  CAS  Google Scholar 

  118. Petri, R., and Schmidt-Dannert, C. (2004). Dealing with complexity: evolutionary engineering and genome shuffl ing. Curr. Opin. Biotechnol. 15:298–304

    PubMed  CAS  Google Scholar 

  119. Shapiro, J.A. (2005). A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering. Gene 345:91–100

    PubMed  CAS  Google Scholar 

  120. Pepper, J.W. (2003). The evolution of evolvability in genetic linkage patterns. Biosystems 69:115–126

    PubMed  CAS  Google Scholar 

  121. Cantón, R., Morosini, I., Loza, E., Morosini, I., and Baquero, F. (2006). Mecanismos de multirresistencia e importancia actual en microorganismos grampositivos y gramnegativos. Enferm. Infecc. Microbiol.Clin. (Monograf. 5) 5:3–16

    Google Scholar 

  122. Walsh, T.R. (2006). Combinatorial genetic evolution of multire-sistance. Curr. Opin. Microbiol. 9:476–482

    PubMed  CAS  Google Scholar 

  123. Rogozin, I.B., Makarova, K.S., Wolf, Y.I., and Koonin, E.V. (2004). Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes. Brief. Bioinformatics 5:131–149

    PubMed  CAS  Google Scholar 

  124. Toussaint, A., and Merlin, C. (2002). Mobile elements as a combination of functional modules. Plasmid 47:26–35

    PubMed  CAS  Google Scholar 

  125. Brent, R., and Bruck, J. (2006). Can computers help to understand biology? Nature 440:416–417

    PubMed  CAS  Google Scholar 

  126. Stadler, B.M., Stadler, P.F., Wagner, G.P., and Fontana, W. (2001). The topology of the possible: formal spaces underlying patterns of evolutionary change. J. Theor. Biol. 213:241–274

    PubMed  CAS  Google Scholar 

  127. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2:2006–2028

    PubMed  Google Scholar 

  128. Danchin, A. (2004). The bag or the spindle: the cell factory at the time of system's biology. Microb. Cell Fact. 3:13–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baquero, F., Cantón, R. (2009). Evolutionary Biology of Drug Resistance. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics