Skip to main content

Peptide-Mediated Delivery of Antisense Oligonucleotides and Related Material

  • Chapter
Nucleic Acid Therapeutics in Cancer

Abstract

Despite their simple conceptual basis, antisense strategies turned out more difficult to implement than initially anticipated. Overwhelming enthusiasm in academic laboratories and in the biotechnology industry in the early 1990s has been followed by a wave of skepticism about the real potential of nucleic acidsbased drugs. An antisense oligonucleotide (ON)-based drug has been approved for the treatment of ocular cytomegalovirus infection, and several clinical trials are now well advanced for the treatment of various cancers and infectious diseases (as reviewed in ref. 1). On the other hand, rapid progresses in genome and transcriptome analysis have given a new impetus to the field when it was realized that the antisense approach might be a strategy of choice for functional genomics and for therapeutic target validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crooke ST (ed). Antisense drug technology. New York: Marcel Dekker, 2001.

    Google Scholar 

  2. Faria M, Giovannangeli C. Triplex-forming molecules: from concepts to applications. J Gene Med 2001; 3:299–310.

    Article  PubMed  CAS  Google Scholar 

  3. Cho-Chung YS, Park YG, Lee YN. Oligonucleotides as transcription factor decoys. Curr Opin Mol Ther 1999; 1:386–392.

    PubMed  CAS  Google Scholar 

  4. Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL. Catalytic nucleic acids: from lab to applications. Pharmacol Rev 2000; 52:325–347.

    PubMed  CAS  Google Scholar 

  5. Bernstein E, Denli AM, Hannon GJ. The rest is silence. RNA 2001; 7:1509–1521.

    PubMed  CAS  Google Scholar 

  6. Krieg AM. The role of CpG motifs in innate immunity. Curr Opin Immunol 2000; 12:35–43.

    Article  PubMed  CAS  Google Scholar 

  7. Degols G, Devaux C, Lebleu B. Oligonucleotide-poly(L-lysine)-heparin complexes: potent sequence-specific inhibitors of HIV-1 infection. Bioconjug Chem 1994; 5:8–13.

    Article  PubMed  CAS  Google Scholar 

  8. Juliano RL, Alahari S, Yoo H, Kole R, Cho M. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm Res 1999; 16:494–502.

    Article  PubMed  CAS  Google Scholar 

  9. Bijsterbosch MK, Manoharan M, Dorland R, Waarlo IH, Biessen EA, van Berkel TJ. Delivery of cholesteryl-conjugated phosphorothioate oligodeoxynucleotides to Kupffer cells by lactosylated low-density lipoprotein. Biochem Pharmacol 2001; 62:627–633.

    Article  PubMed  CAS  Google Scholar 

  10. Akhtar S, Hughes MD, Khan A, et al. The delivery of antisense therapeutics. Adv Drug Deliv Rev 2000; 44:3–21.

    Article  PubMed  CAS  Google Scholar 

  11. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 1994; 269:12918–12924.

    PubMed  CAS  Google Scholar 

  12. Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001; 8:1188–1196.

    Article  PubMed  CAS  Google Scholar 

  13. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269:10444–10450.

    PubMed  CAS  Google Scholar 

  14. Drin G, Mazel M, Clair P, Mathieu D, Kaczorek M, Temsamani J. Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. EurJ Biochem 2001; 268:1304–1314.

    Article  CAS  Google Scholar 

  15. Fischer PM, Zhelev NZ, Wang S, Melville JE, Fahraeus R, Lane DP. Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. J Pept Res 2000; 55:163–172.

    Article  PubMed  CAS  Google Scholar 

  16. Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 1998; 8:84–87.

    PubMed  CAS  Google Scholar 

  17. Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A. Down regulation of amyloid precursor protein inhibits neurte outgrowth in vitro. J Cell Biol 1995; 128:919–927.

    Article  PubMed  CAS  Google Scholar 

  18. Dunican DJ, Doherty P. Designing cell-permeant phosphopeptides to modulate intracellular signaling pathways. Biopolymers 2001; 60:45–60.

    Article  PubMed  CAS  Google Scholar 

  19. Mazel M, Clair P, Rousselle C, et al. Doxorubicin-peptide conjugates overcome multidrug resistance. Anticancer Drugs 2001; 12:107–116.

    Article  PubMed  CAS  Google Scholar 

  20. Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vectormediated strategy. Mol Pharmacol 2000; 57:679–686.

    PubMed  CAS  Google Scholar 

  21. Hallbrink M, Floren A, Elmquist A, Pooga M, Bartfai T, Langel U. Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 2001; 1515:101–109.

    Article  PubMed  CAS  Google Scholar 

  22. Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription, tat. J Biol Chem 1999; 274:28837–28840.

    Article  PubMed  CAS  Google Scholar 

  23. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55:1189–1193.

    Article  PubMed  CAS  Google Scholar 

  24. Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994; 91:664–668.

    Article  PubMed  CAS  Google Scholar 

  25. Loret EP, Vives E, Ho PS, Rochat H, Van Rietschoten J, Johnson WC, Jr. Activating region of HIV-1 tat protein: vacuum UV circular dichroism and energy minimization. Biochemistry 1991; 30:6013–6023.

    Article  PubMed  CAS  Google Scholar 

  26. Vivès E, Brodin P, Lebleu B. A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997; 272:16010–16017.

    Article  PubMed  Google Scholar 

  27. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996; 271:18188–18193.

    Article  PubMed  CAS  Google Scholar 

  28. Vivès E, Granier C, Prevot P, Lebleu B. Structure activity relationship study of the plasma membrane translocating potential of a short peptide from HIV-1 tat protein. Lettres In Peptide Science 1997; 4:429–436.

    Article  Google Scholar 

  29. Vivès E, Lebleu B. Selective coupling of a highly basic peptide to an oligonucleotide. Tetrahedron Letters 1997; 38:1183–1186.

    Article  Google Scholar 

  30. Dunican DJ, Williams EJ, Howell FV, Doherty P. Selective inhibition of fibroblast growth factor (FGF)-stimulated mitogenesis by a FGF receptor-1-derived phosphopeptide. Cell Growth Differ 2001; 12:255–264.

    PubMed  CAS  Google Scholar 

  31. Shibagaki N, Udey MC. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J Immunol 2002; 168:2393–2401.

    PubMed  CAS  Google Scholar 

  32. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285:1569–1572.

    Article  PubMed  CAS  Google Scholar 

  33. Ford KG, Souberbielle BE, Darling D, Farzaneh F. Protein transduction: an alternative to genetic intervention? Gene Ther 2001; 8:1–4.

    Article  PubMed  CAS  Google Scholar 

  34. Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci USA 2002; 99:4489–4494.

    Article  PubMed  CAS  Google Scholar 

  35. Zhao M, Kircher MF, Josephson L, Weissleder R. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 2002; 13:840–4.

    Article  PubMed  CAS  Google Scholar 

  36. Torchilin VP, Rammohan R, Weissig V, Levchenko TS. Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 2001; 98:8786–8791.

    Article  PubMed  CAS  Google Scholar 

  37. Rothbard JB, Kreider E, Pattabiraman K, et al. Arginine-rich molecular transporters for drugs: the role of backbone and side chain variations on cellular uptake. In: Langel U, ed. Cell penetrating peptides. Boca Raton: CRC Press; 2002:141–160.

    Google Scholar 

  38. Troy CM, Derossi D, Prochiantz A, Greene LA, Shelanski ML. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J Neurosci 1996; 16:253–261.

    PubMed  CAS  Google Scholar 

  39. Hughes J, Astriab A, Yoo H, et al. In vitro transport and delivery of antisense oligonucleotides. Methods Enzymol 2000; 313:342–358.

    Article  PubMed  CAS  Google Scholar 

  40. Astriab-Fisher A, Sergueev DS, Fisher M, Shaw BR, Juliano RL. Antisense inhibition of Pglycoprotein expression using peptide- oligonucleotide conjugates. Biochem Pharmacol 2000; 60:83–90.

    Article  PubMed  CAS  Google Scholar 

  41. Alahari SK, Dean NM, Fisher MH, et al. Inhibition of expression of the multidrug resistanceassociated P- glycoprotein of by phosphorothioate and 5’ cholesterol-conjugated phosphorothioate antisense oligonucleotides. Mol Pharmacol 1996; 50:808–819.

    PubMed  CAS  Google Scholar 

  42. Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL. Conjugates of antisense oligonucleotides with the tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res 2002; 19:744–754.

    Article  PubMed  CAS  Google Scholar 

  43. Ray A, Norden B. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. Faseb J 2000; 14:1041–1060.

    PubMed  CAS  Google Scholar 

  44. Aldrian-Herrada G, Desarmenien MG, Orcel H, et al. A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res 1998; 26:4910–4916.

    Article  PubMed  CAS  Google Scholar 

  45. Pooga M, Soomets U, Hallbrink M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 1998; 16:857–861.

    Article  PubMed  CAS  Google Scholar 

  46. Good L, Awasthi SK, Dryselius R, Larsson 0, Nielsen PE. Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 2001; 19:360–364.

    Article  PubMed  CAS  Google Scholar 

  47. Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 tat protein. Embo J 1991; 10:1733–1739.

    PubMed  CAS  Google Scholar 

  48. Tyagi M, Rusnati M, Presta M, Giacca M. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 2001; 276:3254–3261.

    Article  PubMed  CAS  Google Scholar 

  49. Barillari G, Gendelman R, Gallo RC, Ensoli B. The tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 1993; 90:7941–7945.

    Article  PubMed  CAS  Google Scholar 

  50. Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E. Different mechanisms for cellular internalization of the HIV-1 tat- derived cell penetrating peptide and recombinant proteins fused to tat. Eur J Biochem 2002; 269:494–501.

    Article  PubMed  CAS  Google Scholar 

  51. Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL. TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. J Biol Chem 2001; 276:30499–30503.

    Article  PubMed  CAS  Google Scholar 

  52. Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membranepermeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001; 276:5836–5840.

    Article  PubMed  CAS  Google Scholar 

  53. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 2000; 97:13003–13008.

    Article  PubMed  CAS  Google Scholar 

  54. Langel U (ed). Cell penetrating peptides. Boca Raton: CRC Press 2002.

    Google Scholar 

  55. Gräslund A, Göran Eriksson LE. Biophysical studies of cell penetrating peptides. In: Langel U, ed. Cell penetrating peptides. Boca Raton: CRC Press 2002:223–244.

    Google Scholar 

  56. Richard JP, Melikor K, Vives E, Ramos C, Venbeure NB, Gait MJ, et al. Cell-penetrating peptides: a re-evaluation of the mechanism of cell uptake. J Biol Chem 2003; 278:585–590.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vivès, E., Richard, J.P., Lebleu, B. (2004). Peptide-Mediated Delivery of Antisense Oligonucleotides and Related Material. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics