Skip to main content

Use of Catalytic DNA in Target Validation and Therapeutics

  • Chapter
Nucleic Acid Therapeutics in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 122 Accesses

Abstract

RNA is a relatively amenable target for nucleic-acid-based gene suppression, because it is transcribed in a single-stranded form from its parent double-helical DNA. The unpaired bases of this polynucleotide are therefore in theory available for hybridization by other complementary single-stranded nucleic acids such as antisense reagents. Where these hybridization events impair the ability of the RNA to function, for example, in translation, they can bring about suppression of the genes’ expression. Probably the most common mechanism for oligonucleotide-based suppression is heteroduplex-mediated induction of RNase H, which digests the RNA component of the hybrid, leaving the DNA to bind to other target molecules (1). In an alternative strategy, catalytic RNA such as the hammerhead ribozyme, which has its own built-in RNA cleavage activity, can be used to bind and destroy target RNA (2). These have the advantage of being independent of RNase H; however, they lack the natural chemical and biological stability possessed by the antisense DNA oligonucleotide (ON). Although it is possible to manufacture biologically active RNA, its relative fragility in this environment makes it difficult to administer in a direct delivery mode. For this and other reasons, most ribozyme applications rely on transgenic production of RNA in vivo within the context of a gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crooke, ST. Molecular mechanisms of antisense drugs. Antisense Nucleic Acid Drug Dev 1998; 8:133.

    Article  Google Scholar 

  2. Symons RH. Ribozymes. Curr Opin Struct Biol 1994; 4:322.

    Article  CAS  Google Scholar 

  3. Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol 1994; 1:223–229.

    Article  PubMed  CAS  Google Scholar 

  4. Breaker RR, Joyce GF. A DNA enzyme with Mg (2+)-dependent RNA phosphoesterase activity. Chem Biol 1995; 2:655–660.

    Article  PubMed  CAS  Google Scholar 

  5. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997; 94:4262–4266.

    Article  PubMed  CAS  Google Scholar 

  6. Breaker RR. DNA Enzymes. Nat Biotech 1997; 15:427–431.

    Article  CAS  Google Scholar 

  7. Li Y, Breaker RR. Deoxyribozymes: new players in the ancient game of biocatalysis. Curr Opin Struct Biol 1999; 9:315–323.

    Article  PubMed  CAS  Google Scholar 

  8. Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 1998; 37:13330–13342.

    Article  PubMed  CAS  Google Scholar 

  9. Cairns MJ, King A, Sun LQ. Nucleic acid mutation analysis using catalytic DNA. Nucleic Acids Res 2000; 28:e9.

    Google Scholar 

  10. Sugimoto N, Nakano S, Katoh M, et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 1995; 34:11211–11216.

    Article  PubMed  CAS  Google Scholar 

  11. Ratmeyer L, Vinayak R, Zhong YY, Zon G, Wilson WD. Sequence specific thermodynamic and structural properties for DNA-RNA duplexes. Biochemistry 1994; 33:5298–5304

    Article  PubMed  CAS  Google Scholar 

  12. Gyi JI, Lane AN, Conn GL, Brown T. Solution structures of DNA-RNA hybrids with purine-rich and pyrimidine rich strands: Comparison with homologous DNA and RNA duplexes. Biochemistry 1998; 37:73–80

    Article  PubMed  CAS  Google Scholar 

  13. Gyi JL, Lane AN, Conn GL, Brown T. Solution structures of DNA•RNA hybrids with purinerich and pyrimidine rich strands: Comparison with homologous DNA and RNA duplexes. Biochemistry 1998;37:73–80.

    Article  PubMed  CAS  Google Scholar 

  14. Cairns MJ, Hopkins TM, Witherington C, Wang L, Sun LQ. Target site selection for an RNAcleaving catalytic DNA. Nat Biotech 1999; 17:480–486.

    Article  CAS  Google Scholar 

  15. Cairns MJ, Hopkins TM, Witherington C, Sun LQ. The influence of arm length asymmetry and base substitution on the activity of the 10–23 DNA enzyme. Antisense Nucleic Acid Drug Dev. 2000; 10:323–332.

    Article  PubMed  CAS  Google Scholar 

  16. Hendry P, McCall M J. Unexpected anisotropy in substrate cleavage rates by asymmetric hammerhead ribozymes. Nucleic Acids Res 1996; 24:2679–2684.

    Article  PubMed  CAS  Google Scholar 

  17. Todd AV, Fuery CJ, Impey HL, Applegate TL, Haughton MA. DzyNA-PCR: use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin Chem. 2000; 46: 625–630.

    PubMed  CAS  Google Scholar 

  18. Sun LQ, Cairns MJ, Gerlach WL, Witherington C, Wang L, King A. Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme. J Biol Chem 1999; 274:17236–17241.

    Article  PubMed  CAS  Google Scholar 

  19. Dash BC, Harikrishnan TA, Goila R, et al. Targeted cleavage of HIV-1 envelope gene by a DNA enzyme and inhibition of HIV-1 envelope-CD4 mediated cell fusion. FEBS Lett 1998; 431:395–399.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X, Xu Y, Ling H, Hattori T. Inhibition of infection of incoming HIV-1 virus by RNAcleaving DNA enzyme. FEBS Lett 1999; 458:151–156.

    Article  PubMed  CAS  Google Scholar 

  21. Goila R, Banerjea AC. Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammerhead ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNAenzyme. FEBS Lett 1998; 436:233–238.

    Article  PubMed  CAS  Google Scholar 

  22. Santiago FS, Kavurma MM, Lowe HC, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 1999; 5:1264–1269.

    Article  PubMed  CAS  Google Scholar 

  23. Basu S, Sriram B, Goila R, Banerjea AC. Targeted cleavage of HIV-1 coreceptor-CXCR4 by RNA-cleaving DNA-enzyme: inhibition of coreceptor function. Antiviral Res. 2000; 46:125–134.

    Article  PubMed  CAS  Google Scholar 

  24. Yen L, Strittmatter SM, Kalb RG. Sequence-specific cleavage of Huntington mRNA by catalytic DNA. Ann Neurol 1999; 46:366–373.

    Article  PubMed  CAS  Google Scholar 

  25. Sioud M, Leirdal M. Design of nuclease resistant protein kinase calpha DNA enzymes with potential therapeutic application. J Mol Biol. 2000; 296:937–947.

    Article  PubMed  CAS  Google Scholar 

  26. Oketani M, Asahina Y, Wu CH, Wu GY. Inhibition of hepatitis C virus-directed gene expression by a DNA ribonuclease. J Hepatol. 1999; 31:628–634.

    Article  PubMed  CAS  Google Scholar 

  27. Goila R, Banerjea AC. Inhibition of hepatitis B virus X gene expression by novel DNA enzymes. Biochem J. 2001; 353(Pt 3):701–708.

    Article  PubMed  CAS  Google Scholar 

  28. Toyoda T, Imamura Y, Takaku H, et al. Inhibition of influenza virus replication in cultured cells by RNA-cleaving DNA enzyme. FEBS Lett. 2000; 48:113–116.

    Article  Google Scholar 

  29. Liu C, Cheng R, Sun LQ, Tien P. Suppression of platelet-type 12-lipoxygenase activity in human erythroleukemia cells by an RNA-cleaving DNAzyme. Biochem Biophys Res Commun. 2001; 284:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  30. Warashina M, Kuwabara T, Nakamatsu, Y, Taira K. Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem Biol 1999; 6:237–250.

    Article  PubMed  CAS  Google Scholar 

  31. Wu Y, Yu L, McMahon R, Rossi JJ, Forman SJ, Snyder DS. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther 1999; 10:2847–2857.

    Article  PubMed  CAS  Google Scholar 

  32. Gewirtz AM, Sokol DL, Ratajczak MZ. Nucleic acid therapeutics: state of the art and future prospects. Blood 1998; 92:712–736.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, LQ. (2004). Use of Catalytic DNA in Target Validation and Therapeutics. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics