Skip to main content

Therapeutic Applications of Ribozymes

  • Chapter
Nucleic Acid Therapeutics in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Ribozymes are RNA molecules capable of acting as enzymes even in the complete absence of proteins. They have the catalytic activity of breaking and/ or forming covalent bonds with extraordinary specificity, accelerating the rate of these reactions. The ability of RNA to serve as a catalyst was first shown for the self-splicing Group I intron of Tetrahymena and the RNA moiety of RNase P (1–3). Subsequent to the discovery of these two RNA enzymes, RNA-mediated catalysis has been found associated with the self-splicing group II introns of yeast, fungal and plant mitochondria (as well as chloroplasts) (4), single-stranded plant viroid and virusoid RNAs (5–7), hepatitis delta virus (8), and a satellite RNA from Neurospora mitochondria (9). It is rather clear that the RNA component of the larger ribosomal subunit is functioning as a peptidyltransferase as well (10–12). The potential functioning of spliceosomal snRNAs as a ribozyme in complex with the pre-mRNA to catalyze pre-messenger-RNA splicing has also been proposed (13). It is highly likely that additional RNA catalytic motifs and new roles for RNA-mediated catalysis will also be found as we learn more about the genomes of a variety of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 1982; 31:147.

    Article  PubMed  CAS  Google Scholar 

  2. Bevilacqua PC, Turner DH. Comparison of binding of mixed ribose-deoxyribose analogues of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: evidence for ribozyme specific interactions with 2' OH groups. Biochemistry 1991; 30:10632.

    Article  PubMed  CAS  Google Scholar 

  3. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35:849–857.

    Article  PubMed  CAS  Google Scholar 

  4. Costa M, Michel F. Frequent use of the same tertiary motif by self-folding RNAs. Embo J 1995; 14:1276.

    PubMed  CAS  Google Scholar 

  5. Hutchins CJ, Rathjen PD, Forster AC, Symons RH. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 1986; 14:3627.

    Article  PubMed  CAS  Google Scholar 

  6. Buzayan, JM McNinch JS, Schneider IR, Bruening G. A nucleotide sequence rearrangement distinguishes two isolates of satellite tobacco ringspot virus RNA. Virology 1987; 160:95.

    Article  PubMed  CAS  Google Scholar 

  7. Buzayan JM, Hampel A, Bruening G. Nucleotide sequence and newly formed phosphodiester bond of spontaneously ligated satellite tobacco ringspot virus RNA. Nucleic Acids Res 1986; 14:9729.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar PK, Suh YA, Miyashiro H, et al. Random mutations to evaluate the role of bases at two important single- stranded regions of genomic HDV ribozyme. Nucleic Acids Res 1992; 20:3919.

    Article  PubMed  CAS  Google Scholar 

  9. Saville BJ, Collins RA. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 1990; 61:685.

    Article  PubMed  CAS  Google Scholar 

  10. Cech TR. Structural biology. The ribosome is a ribozyme. Science 2000; 289:878.

    Article  PubMed  CAS  Google Scholar 

  11. Moore PB, Steitz TA. After the ribosome structures: How does peptidyl transferase work? RNA 2003; 9:155.

    Article  PubMed  CAS  Google Scholar 

  12. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 2000; 289:920.

    Article  PubMed  CAS  Google Scholar 

  13. Setlik RF, Shibata M, Sarma RH, et al. Modeling of a possible conformational change associated with the catalytic mechanism in the hammerhead ribozyme. J Biomol Struct Dyn 1995; 13:515.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem 1999; 68:611.

    Article  PubMed  CAS  Google Scholar 

  15. Bartel DP, Doudna JA, Usman N, Szostak JW. Template-directed primer extension catalyzed by the tetrahymena ribozyme. Mol Cell Biol 1991; 11:3390.

    PubMed  CAS  Google Scholar 

  16. Sullenger BA, Cech TR. Ribozyme-mediated repair of defective mRNA by targeted, transsplicing. Nature 1994; 371:619.

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe T, Sullenger BA. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc Natl Acad Sci USA 2000; 97:8490.

    Article  PubMed  CAS  Google Scholar 

  18. Guo H, Karberg M, Long M, Jones JP, III, Sullenger B, Lambowitz AM. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 2000; 289:452.

    Article  PubMed  CAS  Google Scholar 

  19. Kurz JC, Fierke CA. Ribonuclease P: a ribonucleoprotein enzyme. Curr Opin Chem Biol 2000; 4:553.

    Article  PubMed  CAS  Google Scholar 

  20. Forster AC, Altman S. External guide sequences for an RNA enzyme. Science 1990; 249:783.

    Article  PubMed  CAS  Google Scholar 

  21. Ikawa Y, Shiraishi H, Inoue T. Trans-activation of the tetrahymena ribozyme by its P2–2.1 domains. J Biochem (Tokyo) 1998; 123:528.

    Article  CAS  Google Scholar 

  22. Duhamel J, Liu DM, Evilia C, Fleysh N, Dinter-Gottlieb G, Lu P. Secondary structure content of the HDV ribozyme in 95% formamide. Nucleic Acids Res 1996; 24:3911.

    Article  PubMed  CAS  Google Scholar 

  23. Trang P, Kilani A, Lee J, et al. RNase P ribozymes for the studies and treatment of human cytomegalovirus infections. J Clin Virol 2002; 25 Suppl 2:S63.

    Google Scholar 

  24. Trang P, Lee J, Kilani AF, Kim J, Liu F. Effective inhibition of herpes simplex virus 1 gene expression and growth by engineered RNase P ribozyme. Nucleic Acids Res 2001; 29:5071.

    Article  PubMed  CAS  Google Scholar 

  25. Trang P, Hsu A, Zhou T, et al. Engineered RNase P ribozymes inhibit gene expression and growth of cytomegalovirus by increasing rate of cleavage and substrate binding. J Mol Biol 2002; 315:573.

    Article  PubMed  CAS  Google Scholar 

  26. Trang P, Lee M, Nepomuceno E, Kim J, Zhu H, Liu F. Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc Natl Acad Sci USA 2000; 97:5812.

    Article  PubMed  CAS  Google Scholar 

  27. Forster AC, Jeffries AC, Sheldon CC, Symons RH. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb Symp Quant Biol 1987; 52:249.

    Article  PubMed  CAS  Google Scholar 

  28. Haseloff J, Gerlach WL. Simple RNA enzymes with new and highly specific endoribonuclease activities. 1988 [classical article]. Biotechnology 1992; 24:264.

    PubMed  CAS  Google Scholar 

  29. Hampel A, Tritz R, Hicks M, Cruz P. Nucleic Acids Research 1990; 18:299–304.

    Article  PubMed  CAS  Google Scholar 

  30. Perrotta AT, Been MD. Assessment of disparate structural features in three models of the hepatitis delta virus ribozyme. Nucleic Acids Res 1993; 21:3959.

    Article  PubMed  CAS  Google Scholar 

  31. Rossi JJ. Ribozyme therapy for HIV infection. Adv Drug Deliv Rev 2000; 44:71.

    Article  PubMed  CAS  Google Scholar 

  32. Rossi JJ. The application of ribozymes to HIV infection. Curr Opin Mol Ther 1999; 1:316.

    PubMed  CAS  Google Scholar 

  33. Rossi JJ, Cantin EM, Zaia JA, et al. Ribozymes as therapies for AIDS. Ann N Y Acad Sci 1990; 616:184.

    Article  PubMed  CAS  Google Scholar 

  34. Sarver N, Cantin EM, Chang PS, et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 1990; 247:1222.

    Article  PubMed  CAS  Google Scholar 

  35. Rossi JJ, Sarver N. RNA enzymes (ribozymes) as antiviral therapeutic agents. Trends Biotechnol 1990; 8:179.

    Article  PubMed  CAS  Google Scholar 

  36. Lee NS, Bertrand E, Rossi J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA 1999; 5:1200.

    Article  PubMed  CAS  Google Scholar 

  37. Snyder DS, Wu Y, McMahon R, Yu L, Rossi JJ, Forman SJ. Ribozyme-mediated inhibition of a Philadelphia chromosome-positive acute lymphoblastic leukemia cell line expressing the p190 bcr-abl oncogene. Biol Blood Marrow Transplant 1997; 3:179.

    PubMed  CAS  Google Scholar 

  38. Kuwabara T, Warashina M, Orita M, Koseki S, Ohkawa J, Taira K. Formation of a catalytically active dimer by tRNA(Val)-driven short ribozymes. Nat Biotechnol 1998; 16:961.

    Article  PubMed  CAS  Google Scholar 

  39. Lange W. Cleavage of BCR/ABL mRNA by synthetic ribozymes-effects on the proliferation rate of K562 cells. Klin Padiatr 1995; 207:222.

    Article  PubMed  CAS  Google Scholar 

  40. Snyder DS, Wu Y, Wang JL, et al. Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 1993; 82:600.

    PubMed  CAS  Google Scholar 

  41. Hertel KJ, Pardi A, Uhlenbeck OC, et al. Numbering system for the hammerhead. Nucleic Acids Res 1992; 20:3252.

    Article  PubMed  CAS  Google Scholar 

  42. Kijima H, Tsuchida T, Kondo H, et al. Hammerhead ribozymes against gamma-glutamylcysteine synthetase mRNA down-regulate intracellular glutathione concentration of mouse islet cells. Biochem Biophys Res Commun 1998; 247:697.

    Article  PubMed  CAS  Google Scholar 

  43. Czubayko F, Liaudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wellstein A. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer [see comments]. Nat Med 1997; 3:1137.

    Article  PubMed  CAS  Google Scholar 

  44. Kobayashi H, Dorai T, Holland JF, Ohnuma T. Reversal of drug sensitivity in multidrugresistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res 1994; 54:1271.

    PubMed  CAS  Google Scholar 

  45. Scanlon KJ, Ishida H, Kashani-Sabet M. Ribozyme-mediated reversal of the multidrugresistant phenotype. Proc Natl Acad Sci USA 1994; 91:11123.

    Google Scholar 

  46. Wang FS, Kobayashi H, Liang KW, Holland JF, Ohnuma T. Retrovirus-mediated transfer of anti-MDR1 ribozymes fully restores chemosensitivity of P-glycoprotein-expressing human lymphoma cells. Hum Gene Ther 1999; 10:1185.

    Article  PubMed  CAS  Google Scholar 

  47. Funato T, Shitara T, Tone T, Jiao L, Kashani-Sabet M, Scanlon KJ. Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem Pharmacol 1994; 48:1471.

    Google Scholar 

  48. Funato T. [Circumventing multidrug resistance in human cancer by anti-ribozyme]. Nippon Rinsho 1997; 55:1116.

    PubMed  CAS  Google Scholar 

  49. Gibson SA, Pellenz C, Hutchison RE, Davey FR, Shillitoe EJ. Induction of apoptosis in oral cancer cells by an anti-bc1–2 ribozyme delivered by an adenovirus vector. Clin Cancer Res 2000; 6:213.

    PubMed  CAS  Google Scholar 

  50. Maelandsmo GM, Hovig E, Skrede M, et al. Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mtsl) ribozyme. Cancer Res 1996; 56:5490.

    PubMed  CAS  Google Scholar 

  51. Sehgal G, Hua J, Bernhard EJ, Sehgal I, Thompson TC, Muschel RJ. Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am J Pathol 1998; 152:591.

    PubMed  CAS  Google Scholar 

  52. Czubayko F, Riegel AT, Wellstein A. Ribozyme-targeting elucidates a direct role of pleiotrophin in tumor growth. J Biol Chem 1994; 269:21358.

    Google Scholar 

  53. Yamamoto H, Irie A, Fukushima Y, et al. Abrogation of lung metastasis of human fibrosarcoma cells by ribozyme-mediated suppression of integrin alpha6 subunit expression. Int J Cancer 1996; 65:519.

    Article  PubMed  CAS  Google Scholar 

  54. Feng B, Rollo EE, Denhardt DT. Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: evidence from cell lines down- regulated for OPN expression by a targeted ribozyme. Clin Exp Metastasis 1995; 13:453.

    Article  PubMed  CAS  Google Scholar 

  55. Czubayko F, Downing SG, Hsieh SS, et al. Adenovirus-mediated transduction ot ribozymes abrogates HER-2/neu and pleiotrophin expression and inhibits tumor cell proliferation. Gene Ther 1997; 4:943.

    Article  PubMed  CAS  Google Scholar 

  56. Frimerman A, Welch PJ, Jin X, et al. Chimeric DNA-RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. Circulation 1999; 99:697.

    Article  PubMed  CAS  Google Scholar 

  57. Gu JL, Pei H, Thomas L, et al. Ribozyme-mediated inhibition of rat leukocyte-type 12lipoxygenase prevents intimal hyperplasia in balloon-injured rat carotid arteries. Circulation 2001; 103:1446.

    Article  PubMed  CAS  Google Scholar 

  58. Jarvis TC, Alby LJ, Beaudry AA, et al. Inhibition of vascular smooth muscle cell proliferation by ribozymes that cleave c-myb mRNA. RNA 1996; 2:419.

    PubMed  CAS  Google Scholar 

  59. Saretzki G, Ludwig A, von Zglinicki T, Runnebaum IB. Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther 2001; 8:827.

    Article  PubMed  CAS  Google Scholar 

  60. Yokoyama Y, Wan X, Shinohara A, Takahashi Y, Tamaya T. Hammerhead ribozymes to modulate telomerase activity of endometrial carcinoma cells. Hum Cell 2001; 14:223.

    PubMed  CAS  Google Scholar 

  61. Kashani-Sabet M. Ribozyme therapeutics. J Investig Dermatol Symp Proc 2002; 7:76.

    Article  PubMed  CAS  Google Scholar 

  62. Dolzhanskaya N, Conti J, Merz G, Denman RB. In vivo ribozyme targeting ot betaAPF+ mRNAs. Mol Cell Biol Res Commun 2000; 4:239.

    Article  PubMed  CAS  Google Scholar 

  63. Currie JR, Chen-Hwang MC, Denman R, et al. Reduction of histone cytotoxicity by the Alzheimer beta-amyloid peptide precursor. Biochim Biophys Acta 1997; 1355:248.

    Article  PubMed  CAS  Google Scholar 

  64. LaVail MM, Yasumura D, Matthes MT, et al. Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci USA 2000; 97:11488.

    Google Scholar 

  65. Langlois MA, Lee NS, Rossi JJ, Paymirat J. Hammerhead ribozyme mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Mol Ther 2003; 7:670.

    Article  PubMed  CAS  Google Scholar 

  66. Phylactou LA, Darrah C, Wood MJ. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet 1998; 18:378.

    Article  PubMed  CAS  Google Scholar 

  67. Bell MA, Johnson AK, Testa SM. Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry 2002; 41:15327.

    Article  PubMed  CAS  Google Scholar 

  68. Rossi JJ. Ribozymes to the rescue: repairing genetically defective mRNAs. Trends Genet 1998; 14:295.

    Article  PubMed  CAS  Google Scholar 

  69. Castanotto D, Scherr M, Rossi JJ. Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol 2000; 313:401.

    Article  PubMed  CAS  Google Scholar 

  70. Scherr M, Rossi JJ. Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res 1998; 26:5079.

    Article  PubMed  CAS  Google Scholar 

  71. Bertrand E, Castanotto D, Zhou C, et al. The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 1997; 3:75.

    PubMed  CAS  Google Scholar 

  72. Michienzi A, Cagnon L, Bahner, Rossi JJ. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci USA 2000; 97:8955.

    Article  PubMed  CAS  Google Scholar 

  73. Sullenger BA, Cech TR. Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 1993; 262:1566.

    Article  PubMed  CAS  Google Scholar 

  74. Sullenger BA. Colocalizing ribozymes with substrate RNAs to increase their efficacy as gene inhibitors. Appl Biochem Biotechnol 1995; 54:57.

    Article  PubMed  CAS  Google Scholar 

  75. Good PD, Krikos AJ, Li SX, et al. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther 1997; 4:45.

    Article  PubMed  CAS  Google Scholar 

  76. Ohta Y, Kijima H, Kashani-Sabet M, Scanlon KJ. Suppression of the malignant phenotype of melanoma cells by anti-oncogene ribozvmes. J Invest Dermatol 1996; 106:275

    Article  PubMed  CAS  Google Scholar 

  77. Efrat S, Leiser M, Wu YJ, et al. Ribozyme-mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 1994; 91:2051.

    Google Scholar 

  78. Benedict CM, Pan W, Loy SE, Clawson GA. Triple ribozyme-mediated down-regulation of the retinoblastoma gene. Carcinogenesis 1998; 19:1223.

    Article  PubMed  CAS  Google Scholar 

  79. Heidenreich O, Benseler F, Fahrenholz A, Eckstein F. High activity and stability of hammerhead ribozymes containing 2’- modified pyrimidine nucleosides and phosphorothioates. J Biol Chem 1994; 269:2131.

    Google Scholar 

  80. Burgin AB, Jr, Gonzalez C, Matulic-Adamic J, et al. Chemically modified hammerhead ribozymes with improved catalytic rates. Biochemistry 1996; 35:14090.

    Article  PubMed  CAS  Google Scholar 

  81. Flory CM, Pavco PA, Jarvis TC, et al. Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery to the knee joint. Proc Natl Acad Sci USA 1996; 93:754.

    Article  PubMed  CAS  Google Scholar 

  82. Morgan RA, Anderson WF. Human gene therapy. Annu Rev Biochem 1993: 62:191.

    Article  PubMed  CAS  Google Scholar 

  83. Perlman H, Sata M, Krasinski K, Dorai T, Buttyan R, Walsh K. Adenovirus-encoded hammerhead ribozyme to Bc1–2 inhibits neointimal hyperplasia and induces vascular smooth muscle cell apoptosis. Cardiovasc Res 2000; 45:570.

    Article  PubMed  CAS  Google Scholar 

  84. Giordano V, Jin DY, Rekosh D, Jeang KT. Intravirion targeting of a functional anti-human immunodeficiency virus ribozyme directed to pol. Virology 2000; 267:174.

    Article  PubMed  CAS  Google Scholar 

  85. Horster A, Teichmann B, Hormes R, Grimm D, Kleinschmidt J, Sczakiel G. Recombinant AAV-2 harboring gfp-antisense/ribozyme fusion sequences monitor transduction, gene expression, and show anti-HIV-1 efficacy. Gene Ther 1999; 6:1231.

    Article  PubMed  CAS  Google Scholar 

  86. Kunke D, Grimm D, Denger S, et al. Preclinical study on gene therapy of cervical carcinoma using adeno-associated virus vectors. Cancer Gene Ther 2000; 7:766.

    Article  PubMed  CAS  Google Scholar 

  87. L’Huillier PJ, Davis SR, Bellamy AR. Cytoplasmic delivery of ribozymes leads to efficient reduction in alpha-lactalbumin mRNA levels in C1271 mouse cells. Embo J 1992; 11:4411.

    PubMed  Google Scholar 

  88. Lipkowitz MS, Hanss B, Tulchin N, et al. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors. J Am Soc Nephrol 1999; 10:1908.

    PubMed  CAS  Google Scholar 

  89. Sczakiel G, Pawlita M. Inhibition of human immunodeficiency virus type 1 replication in human T-cells stably expressing antisense RNA. J Virol 1991; 65:468.

    PubMed  CAS  Google Scholar 

  90. Welch PJ, Yei S, Barber JR. Ribozyme gene therapy for hepatitis C virus infection. Clin Diagn Virol 1998; 10:163.

    Article  PubMed  CAS  Google Scholar 

  91. Smith SM, Maldarelli F, Jeang KT. Efficient expression by an alphavirus replicon of a functional ribozyme targeted to human immunodeficiency virus type 1. J Virol 1997; 71:9713.

    PubMed  CAS  Google Scholar 

  92. Castanotto D, Chow WA, Li H, Rossi JJ. Unusual interactions between cleavage products of a cis-cleaving hammerhead ribozyme. Antisense Nucleic Acid Drug Dev 1998; 8:499.

    Article  PubMed  CAS  Google Scholar 

  93. Tang CK, Goldstein DJ, Payne J, et al. ErbB-4 ribozymes abolish neuregulin-induced mitogenesis. Cancer Res 1998; 58:3415.

    PubMed  CAS  Google Scholar 

  94. Zhao JJ, Lemke G. Selective disruption of neuregulin-1 function in vertebrate embryos using ribozyme-tRNA transgenes. Development 1998; 125:1899.

    PubMed  CAS  Google Scholar 

  95. Zhao JJ, Pick L. Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 1993; 365:448.

    Article  PubMed  CAS  Google Scholar 

  96. Watanabe T, Sullenger BA. RNA repair: a novel approach to gene therapy. Adv Drug Deliv Rev 2000; 44:109.

    Article  PubMed  CAS  Google Scholar 

  97. Chaulk SG, MacMillan AM. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res 1998; 26:3173.

    Article  PubMed  CAS  Google Scholar 

  98. Hager AJ, Szostak JW. Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem Biol 1997; 4:607.

    Article  PubMed  CAS  Google Scholar 

  99. Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 1998; 37:13330.

    Article  PubMed  CAS  Google Scholar 

  100. Coetzee T, Herschlag D, Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev 1994; 8:1575.

    Article  PubMed  CAS  Google Scholar 

  101. Bertrand E, Pictet R, Grange T. Can hammerhead ribozymes be efficient tools to inactivate gene function? Published erratum appears in Nucleic Acids Res 1994 22(7):1326

    Article  CAS  Google Scholar 

  102. Bertrand E, Pictet R, Grange T. Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res 1994; 22:293.

    Article  PubMed  CAS  Google Scholar 

  103. Sioud M, Jespersen L. Enhancement of hammerhead ribozyme catalysis by glyceraldehyde3-phosphate dehydrogenase. J Mol Biol 1996; 257:775.

    Article  PubMed  CAS  Google Scholar 

  104. Yu M, Ojwang J, Yamada O, et al. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1 Published erratum appears in Proc Natl Acad Sci USA 1993; 90(17):8303

    Article  CAS  Google Scholar 

  105. Yu M, Ojwang J, Yamada O, et al. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1993; 90:6340.

    Article  PubMed  CAS  Google Scholar 

  106. Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R. Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Ther 2000; 1:244.

    Article  PubMed  CAS  Google Scholar 

  107. Bai J, Rossi J, Akkina R. Multivalent anti-CCR ribozymes for stem cell-based HIV type 1 gene therapy. AIDS Res Hum Retroviruses 2001; 17:385.

    Article  PubMed  CAS  Google Scholar 

  108. Kuwabara T, Warashina M, Tanabe T, Tani K, Asano S, Taira K. A novel allosterically transactivated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol Cell 1998; 2:617.

    Article  PubMed  CAS  Google Scholar 

  109. Koizumi M, Ohtsuka E. Design of RNAs that inhibit the activated c-Ha-ras gene in mammalian cells. Ann N Y Acad Sci 1992; 660:276.

    Article  PubMed  CAS  Google Scholar 

  110. Tsuchida T, Kijima H, Hor i S, et al. Adenovirus-mediated anti-K-ras ribozyme induces apoptosis and growth suppression of human pancreatic carcinoma. Cancer Gene Ther 2000; 7:373.

    Article  PubMed  CAS  Google Scholar 

  111. Lui VW, He Y, Huang L. Specific down-regulation of HER-2/neu mediated by a chimeric U6 hammerhead ribozyme results in growth inhibition of human ovarian carcinoma. Mol Ther 2001; 3:169.

    Article  PubMed  CAS  Google Scholar 

  112. Scanlon KJ, Jiao L, Funato T, et al. Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein. Proc Natl Acad Sci USA 1991; 88:10591.

    Article  PubMed  CAS  Google Scholar 

  113. Funato T. [Reversal of drug resistance in human cancer cells by anti-oncogenes]. Gan To Kagaku Ryoho 1997; 24:395.

    PubMed  CAS  Google Scholar 

  114. Czubayko F, Schulte AM, Berchem GJ, Wellstein A. Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc Natl Acad Sci USA 1996; 93:14753.

    Article  PubMed  CAS  Google Scholar 

  115. Gibson I. Antisense approaches to the gene therapy of cancer—“Recnac.” Cancer Metastasis Rev 1996; 15:287.

    Article  PubMed  CAS  Google Scholar 

  116. Wellstein A, Czubayko F. Inhibition of fibroblast growth factors. Breast Cancer Res Treat 1996; 38:109.

    Article  PubMed  CAS  Google Scholar 

  117. Pavco PA, Bouhana KS, Gallegos AM, et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res 2000; 6:2094.

    Google Scholar 

  118. Ho JJ, Kim YS. Biliopancreatic malignancy: future prospects for progress. Ann Oncol 1999; 10(Suppl 4):300.

    Article  PubMed  Google Scholar 

  119. Czubayko F, Liaudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wellstein A. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat Med 1997; 3:1137.

    Article  PubMed  CAS  Google Scholar 

  120. Jarvis TC, Wincott FE, Alby LJ, et al. Optimizing the cell efficacy of synthetic ribozymes. Site selection and chemical modifications of ribozymes targeting the proto-oncogene c-myb. J Biol Chem 1996; 271:29107.

    Article  PubMed  CAS  Google Scholar 

  121. Putnam DA. Antisense strategies and therapeutic applications [published erratum appears in Am J Health Syst Pharm 1996; 53(3):325.

    Google Scholar 

  122. Putnam DA. Antisense strategies and therapeutic applications Am J Health Syst Pharm 1996; 53:151.

    PubMed  CAS  Google Scholar 

  123. Fritz JJ, White DA, Lewin AS, Hauswirth WW. Designing and characterizing hammerhead ribozymes for use in AAV vector-mediated retinal gene therapies. Methods Enzymol 2002; 346:358.

    Article  PubMed  CAS  Google Scholar 

  124. Hauswirth WW, Lewin AS. Ribozyme uses in retinal gene therapy. Prog Retin Eye Res 2000; 19:689.

    Article  PubMed  CAS  Google Scholar 

  125. Hauswirth WW, LaVail MM, Flannery JG, Lewin AS. Ribozyme gene therapy for autosomal dominant retinal disease. Clin Chem Lab Med 2000; 38:147.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossi, J.J. (2004). Therapeutic Applications of Ribozymes. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics