Skip to main content

Immune Reconstitution After Allogeneic Transplantation

  • Chapter
Stem Cell Transplantation for Hematologic Malignancies

Part of the book series: Contemporary Hematology ((CH))

  • 143 Accesses

Abstract

Allogeneic hematopoietic stem cell transplantation (a11oHSCT) is an effective and curative treatment for a number of hematological malignancies, immune system or genetic disorders, and even solid tumors. A11oHSCT allows marrow lethal treatment of the primary disorder as well as providing immunotherapy in the form of a graft-vs-tumor (GVT) effect. Despite more than 30 yr of experience with HSCT, the major barriers to this treatment have remained the same. These include graft-vs-host disease (GVHD) in both the acute and chronic forms and the rather prolonged period of immune incompetence that occurs as the immune system redevelops. Approaches to reduce GVHD often result in exacerbation of immune incompetence or cause problems with engraftment, whereas attempts to speed engraftment and immune reconstitution have often exacerbated GVHD. Thus, a better understanding of the forces affecting each of these barriers is needed such that the right balance can be achieved to improve HSCT outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ochs L, Shu XO, Miller J, et al. Late infections after allogeneic bone marrow transplantations: comparison of incidence in related and unrelated donor transplant recipients. Blood 1995; 86: 3979–3986.

    PubMed  CAS  Google Scholar 

  2. Kernan NA, Bartsch G, Ash RC, et al. Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. N Engl J Med 1993; 328: 593–602.

    Article  PubMed  CAS  Google Scholar 

  3. Bordignon C, Keever CA, Small TN, et al. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: II. In vitro analyses of host effector mechanisms. Blood 1989; 74: 2237–2243.

    PubMed  CAS  Google Scholar 

  4. Wursch AM, Gratama JW, Middeldorp JM, et al. The effect of cytomegalovirus infection on T lymphocytes after allogeneic bone marrow transplantation. Clin Exp Immunol 1985; 62: 278–287.

    PubMed  CAS  Google Scholar 

  5. Dolstra H, Preijers F, Van de Wiel-van Kemenade E, et al. Expansion of CD8+CD57+ T cells after allogeneic BMT is related with a low incidence of relapse and with cytomegalovirus infection. Br J Haematol 1995; 90: 300–307.

    Article  PubMed  CAS  Google Scholar 

  6. Rowbottom A, Garland R, Lepper M, et al. Functional analysis of the CD8+CD57+ cell population in normal healthy individuals and matched unrelated T-cell-depleted bone marrow transplant recipients. Br J Haematol 2000; 110: 315–321.

    Article  PubMed  CAS  Google Scholar 

  7. Keever-Taylor CA, Klein JP, Eastwood D, et al. Factors affecting neutrophil and platelet reconstitution following T cell-depleted bone marrow transplantation: differential effects of growth factor type and role of CD34+ cell dose. Bone Marrow Transplant 2001; 27: 791–800.

    Article  PubMed  CAS  Google Scholar 

  8. Bernstein SH, Nademanee AP, Vose JM, et al. A multicenter study of platelet recovery and utilization in patients after myeloablative therapy and hematopoietic stem cell transplantation. Blood 1998; 91: 3509–3517.

    PubMed  CAS  Google Scholar 

  9. Bensinger WI, Storb R. Allogeneic peripheral blood stem cell transplantation. Rev Clin Exp Hematol 2001; 5: 67–86.

    Article  PubMed  CAS  Google Scholar 

  10. Korbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 2001; 98: 2900–2908.

    Article  PubMed  CAS  Google Scholar 

  11. Elmaagacli AH, Basoglu S, Peceny R, et al. Improved disease-free-survival after transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical unrelated donors in patients with first chronic phase chronic myeloid leukemia. Blood 2002; 99: 1130–1135.

    PubMed  CAS  Google Scholar 

  12. Weaver C, Hazelton B, Birch R, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    PubMed  CAS  Google Scholar 

  13. Lazarus HM. Recombinant cytokines and hematopoietic growth factors in allogeneic and autologous bone marrow transplantation. Cancer Treat Res 1997; 77: 255–301.

    Article  PubMed  CAS  Google Scholar 

  14. Martin-Algarra S, Bishop MR, Tarantolo S, et al. Hematopoietic growth factors after HLA-identical allogeneic bone marrow transplantation in patients treated with methotrexate-containing graft-vs.-host disease prophylaxis. Exp Hematol 1995; 23: 1503–1508.

    PubMed  CAS  Google Scholar 

  15. Atkinson K, Downs K, Ashby M, et al. Recipients of HLA-identical sibling marrow transplants with severe aplastic anemia engraft more quickly, and those with chronic myeloid leukemia more slowly, than those with acute leukemia. Bone Marrow Transplant 1989; 4: 23–27.

    PubMed  CAS  Google Scholar 

  16. Clark RA, Johnson FL, Klebanoff SJ, et al. Defective neutrophil chemotaxis in bone marrow transplant patients. J Clin Invest 1976; 58: 22–31.

    Article  PubMed  CAS  Google Scholar 

  17. Sosa R, Weiden PL, Storb R, et al. Granulocyte function in human allogenic marrow graft recipients. Exp Hematol 1980; 8: 1183–1189.

    PubMed  CAS  Google Scholar 

  18. Zimmerli W, Zarth A, Gratwohl A, et al. Neutrophil function and pyogenic infections in bone marrow transplant recipients. Blood 1991; 77: 393–399.

    PubMed  CAS  Google Scholar 

  19. Territo MC, Gale RP, Cline MJ. Neutrophil function in bone marrow transplant recipients. Br J Haematol 1977; 35: 245 250.

    Google Scholar 

  20. Peters WP, Stuart A, Affronti ML, et al. Neutrophil migration is defective during recombinant human granulocyte-macrophage colony-stimulating factor infusion after autologous bone marrow transplantation in humans. Blood 1988; 72: 1310–1315.

    PubMed  CAS  Google Scholar 

  21. Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    PubMed  CAS  Google Scholar 

  22. Barrett J, Childs R. Non-myeloablative stem cell transplants. Br J Haematol 2000; 111: 6–17.

    Article  PubMed  CAS  Google Scholar 

  23. Brochu S, Perreault C, Belanger R. Evaluation of Fc-dependent monocyte-macrophage function in bone marrow transplant recipients. Exp Hematol 1989; 17: 948–951.

    PubMed  CAS  Google Scholar 

  24. Winston DJ, Ten-ito MC, Ho WG, et al. Alveolar macrophage dysfunction in human bone marrow transplant recipients. Am J Med 1982; 73: 859–866.

    Article  PubMed  CAS  Google Scholar 

  25. Zander AR, Reuben JM, Johnston D, et al. Immune recovery following allogeneic bone marrow transplantation. Transplantation 1985; 40: 177–183.

    Article  PubMed  CAS  Google Scholar 

  26. Shiobara S, Witherspoon RP, Lum LG, et al. Immunoglobulin synthesis after HLA-identical marrow grafting. V. The role of peripheral blood monocytes in the regulation of in vitro immunoglobulin secretion stimulated by pokeweed mitogen. J Immunol 1984; 132: 2850–2856.

    PubMed  CAS  Google Scholar 

  27. Brkic S, Tsoi MS, Mori T, et al. Cellular interactions in marrow-grafted patients. III. Normal interleukin 1 and defective interleukin 2 production in short-term patients and in those with chronic graft-versus-host disease. Transplantation 1985; 39: 30–35.

    Article  PubMed  CAS  Google Scholar 

  28. Castenskiold EC, Kelsey SM, Collins PW, et al. Functional hyperactivity of monocytes after bone marrow transplantation: possible relevance for the development of post-transplant complications or relapse. Bone Marrow Transplant 1995; 15: 879–884.

    PubMed  CAS  Google Scholar 

  29. Storek J, Espino G, Dawson MA, et al. Low B-cell and monocyte counts on day 80 are associated with high infection rates between days 100 and 365 after allogeneic marrow transplantation. Blood 2000; 96: 3290–3293.

    PubMed  CAS  Google Scholar 

  30. Shenoy S, Mohanakumar T, Todd G, et al Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant 1999; 23: 335–346.

    Article  PubMed  CAS  Google Scholar 

  31. Volpi I, Perruccio K, Tosti A, et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood 2001; 97: 2514–2521.

    Article  PubMed  CAS  Google Scholar 

  32. Stroncek DF, Confer DL, Leitman SF. Peripheral blood progenitor cells for HPC transplants involving unrelated donors. Transfusion 2000; 40: 731–741.

    Article  PubMed  CAS  Google Scholar 

  33. Mielcarek M, Graf L, Johnson G, et al. Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 1998; 92: 215–222.

    PubMed  CAS  Google Scholar 

  34. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990; 76: 2421–2438.

    PubMed  CAS  Google Scholar 

  35. Brenner MK, Reittie JE, Grob J-P, et al. The contribution of large granular lymphocytes to B cell activation and differentiation after T-cell depleted allogeneic bone marrow transplantation. Transplantation 1986; 42: 257–261.

    Article  PubMed  CAS  Google Scholar 

  36. Klingemann H. Relevance and potential of natural killer cells in stem cell transplantation. Biol Blood Marrow Transplant 2000; 6: 90–99.

    Article  PubMed  CAS  Google Scholar 

  37. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94: 333–339.

    PubMed  CAS  Google Scholar 

  38. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  PubMed  CAS  Google Scholar 

  39. Livnat S, Seigneuret M, Storb R, et al. Analysis of cytotoxic effector cell function in patients with leukemia or aplastic anemia before and after marrow transplantation. J Immunol 1980; 124: 481–490.

    PubMed  CAS  Google Scholar 

  40. Ault KA, Antin JH, Ginsburg D, et al. Phenotype of recovering lymphoid cell populations after marrow transplantation. J Exp Med 1985; 161: 1483.

    Article  PubMed  CAS  Google Scholar 

  41. Rooney CM, Wimperis JZ, Brenner MK, et al. Natural killer cell activity following T-cell depleted allogeneic bone marrow transplantation. Br J Haematol 1986; 62: 413–420.

    Article  PubMed  CAS  Google Scholar 

  42. Keever CA, Small TN, Flomenberg N, et al. Immune reconstitution following bone marrow transplantation: comparison of recipients of T-cell depleted marrow with recipients of conventional marrow grafts. Blood 1989; 73: 1340–1350.

    PubMed  CAS  Google Scholar 

  43. Roberts MM, To LB, Gillis D, et al. Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 1993; 12: 469–475.

    PubMed  CAS  Google Scholar 

  44. Lowdell MW, Craston R, Ray N, et al. The effect of T cell depletion with Campath-1M on immune reconstitution after chemotherapy and allogeneic bone marrow transplant as treatment for leukaemia. Bone Marrow Transplant 1998; 21: 679–686.

    Article  PubMed  CAS  Google Scholar 

  45. Beelen DW, Peceny R, Elmaagacli A, et al. Transplantation of highly purified HLA-identical sibling donor peripheral blood CD34+ cells without prophylactic post-transplant immunosuppression in adult patients with first chronic phase chronic myeloid leukemia: results of a phase II study. Bone Marrow Transplant 2000; 26: 823–829.

    Article  PubMed  CAS  Google Scholar 

  46. Giraud P, Thuret I, Reviron D, et al. Immune reconstitution and outcome after unrelated cord blood transplantation: a single paediatric institution experience. Bone Marrow Transplant 2000; 25: 53–57.

    Article  PubMed  CAS  Google Scholar 

  47. Morecki S, Nabet C, Ackerstein A, et al. The effect of in vitro T lymphocyte depletion on generation of IL2activated cytotoxic cells. Bone Marrow Transplant 1991; 7: 269–273.

    PubMed  CAS  Google Scholar 

  48. Drobyski WR, Klein J, Flomenberg N, et al. Superior survival associated with transplantation of matched unrelated versus one-antigen-mismatched unrelated or highly human leukocyte antigen-disparate haploidentical family donor marrow grafts for the treatment of hematologic malignancies: establishing a treatment algorithm for recipients of alternative donor grafts. Blood 2002; 99: 806–814.

    Article  PubMed  CAS  Google Scholar 

  49. Reittie JE, Gottlieb D, Heslop HE, et al. Endogenously generated activated killer cells circulate after autologous and allogeneic marrow transplantation but not after chemotherapy. Blood 1989; 73: 1351–1358.

    PubMed  CAS  Google Scholar 

  50. Dokhelar MC, Wiels J, Lipinski M, et al. Natural killer cell activity in human bone marrow recipents. Early reappearance of peripheral natural killer activity in graft-versus-host disease. Transplantation 1981; 31: 61–65.

    Article  PubMed  CAS  Google Scholar 

  51. Gratama JW, Lipovich-Oosterveer MA, Ronteltap C, et al. Natural immunity and graft-versus-host disease. Transplantation 1985; 40: 256–260.

    Article  PubMed  CAS  Google Scholar 

  52. Keever CA, Klein J, Leong N, et al. Effect of GVHD on the recovery of NK cell activity and LAK precursors following BMT. Bone Marrow Transplant 1993; 12: 289–298.

    PubMed  CAS  Google Scholar 

  53. Keever CA, Welte K, Small T, et al. Interleukin 2-activated killer cells in patients following transplants of soybean lectin-separated and E rosette-depleted bone marrow. Blood 1987; 70: 1893–1903.

    CAS  Google Scholar 

  54. Rhoades JL, Cibull ML, Thompson JS, et al. Role of natural killer cells in the pathogenesis of human acute graft-versus-host disease. Transplantation 1993; 56: 113–120.

    Article  PubMed  CAS  Google Scholar 

  55. Xun C, Brown SA, Jennings CD, et al. Acute graft-versus-host-like disease induced by transplantation of human activated natural killer cells into SCID mice. Transplantation 1993; 56: 409–417.

    Article  PubMed  CAS  Google Scholar 

  56. Hauch M, Gazzola MV, Small T, et al. Anti-leukemia potential of interleukin-2 activated natural killer cells after bone marrow transplantation for chronic myelogenous leukemia. Blood 1990; 75: 2250–2262.

    PubMed  CAS  Google Scholar 

  57. MacKinnon S, Howes JM, Goldman JM. Induction of in vitro graft-versus-leukemia activity following bone marrow transplantation for chronic myeloid leukemia. Blood 1990; 76: 2037–2045.

    PubMed  CAS  Google Scholar 

  58. Gottschalk LR, Bray RA, Kaizer H, et al. Two populations of CD56 (Leu-a9)+/CD16+ cells in bone marrow transplant recipients. Bone Marrow Transplant 1990; 5: 259–264.

    PubMed  CAS  Google Scholar 

  59. Jacobs R, Stoll M, Stratmamm G, et al. CD 16-CD56+ natural killer cells after bone marrow transplantation. Blood 1992; 79: 3239–3244.

    PubMed  CAS  Google Scholar 

  60. Ottinger HD, Beelen DW, Scheulen B, et al. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 1996; 88: 2775–2779.

    PubMed  CAS  Google Scholar 

  61. Beelen DW, Ottinger HD, Elmaagacli A, et al. Transplantation of filgrastim-mobilized peripheral blood stem cells from HLA-identical sibling or alternative family donors in patients with hematologic malignancies: a prospective comparison on clinical outcome, immune reconstitution, and hematopoietic chimerism. Blood 1997; 90: 4725–4735.

    PubMed  CAS  Google Scholar 

  62. Miller JS, Prosper F, McCullar V. Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. Blood 1997; 90: 3098–3105.

    PubMed  CAS  Google Scholar 

  63. Keever CA, Abu-Hajir M, Graf W, et al. Characterization of the alloreactivity and anti-leukemia reactivity of cord blood mononuclear cells. Bone Marrow Transplant 1995; 15: 407–419.

    PubMed  CAS  Google Scholar 

  64. Thomson BG, Robertson KA, Gowan D, et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000; 96: 2703–2711.

    PubMed  CAS  Google Scholar 

  65. Moretta A, Maccario R, Fagioli F, et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol 2001; 29: 371–379.

    Article  PubMed  CAS  Google Scholar 

  66. Niehues T, Rocha V, Filipovich AH, et al. Factors affecting lymphocyte subset reconstitution after either related or unrelated cord blood transplantation in children aEurocord analysis. BrJHaematol2001; 114: 42–48.

    Google Scholar 

  67. Richard C, Baro J, Bello-Fernandez C, et al. Recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) administration after autologous bone marrow transplantation for acute myeloblastic leukemia enhances activated killer cell function and may diminish leukemic relapse. Bone Marrow Transplant 1995; 15: 721–726.

    Article  PubMed  CAS  Google Scholar 

  68. Spits H, Lanier LL, Philips JH. Development of human T and natural killer cells. Blood 1995; 85: 2654–2670.

    PubMed  CAS  Google Scholar 

  69. Haynes BF, Markert ML, Sempowski GD, et al. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 2000; 18: 529–560.

    Article  PubMed  CAS  Google Scholar 

  70. Muller-Hermelink HK, Sale GE, Borisch B, et al. Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients. Am J P athol 1987;129:242–256.

    PubMed  CAS  Google Scholar 

  71. Fukushi N, Arase H, Wang B, et al. Thymus: a direct target tissue in graft-versus-host reaction after allogeneic bone marrow transplantation that results in abrogation of induction of self-tolerance. Proc Natl Acad Sci USA 1990; 87: 6301–6305.

    Article  PubMed  CAS  Google Scholar 

  72. Kook H, Goldman F, Padley D, et al. Reconstruction of the immune system after unrelated or partially matched T-cell-depleted bone marrow transplantation in children• immunophenotypic analysis and factors affecting the speed of recovery. Blood 1996; 88: 1089–1097.

    PubMed  CAS  Google Scholar 

  73. Small TN, Avigan D, Dupont B, et al. Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and post-transplant graft rejection prophylaxis. Biol Blood Marrow Transplant 1997; 3: 65–75.

    PubMed  CAS  Google Scholar 

  74. Small TN, Papadopoulos EB, Boulad F, et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 1999; 93: 467–480.

    PubMed  CAS  Google Scholar 

  75. Davison GM, Novitzky N, Kline A, et al Immune reconstitution after allogeneic bone marrow transplantation depleted of T cells. Transplantation 2000; 69: 1341–1347.

    Article  PubMed  CAS  Google Scholar 

  76. Soiffer RJ, Bosserman L, Murray C, et al. Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood 1990; 75: 2076–2084.

    PubMed  CAS  Google Scholar 

  77. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149.

    Article  PubMed  CAS  Google Scholar 

  78. Fujimaki K, Maruta A, Yoshida M, et al. Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant 2001; 27: 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  79. Storek J, Joseph A, Espino G, et al Immunity of patients surviving 20 to 30 years after allogeneic or syngeneic bone marrow transplantation. Blood 2001; 98: 3505–3512.

    Article  PubMed  CAS  Google Scholar 

  80. Atkinson K, Farewell V, Storb R, et al. Analysis of late infections after human bone marrow transplantation: role of genotypic nonidentity between marrow donor and recipient and of nonspecific suppressor cells in patients with chronic graft-versus-host disease. Blood 1982; 60: 714–720.

    PubMed  CAS  Google Scholar 

  81. Storek J, Dawson MA, Storer B, et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380–3389.

    Article  PubMed  CAS  Google Scholar 

  82. Handgretinger R, Schumm M, Lang P, et al. Transplantation of megadoses of purified haploidentical stem cells. Ann NYAcad Sci 1999; 872: 351–352.

    Article  CAS  Google Scholar 

  83. Handgretinger R, Lang P, Schumm M, et al. Immunological aspects of haploidentical stem cell transplantation in children. Ann NYAcad Sci 2001; 938: 340–357.

    Article  CAS  Google Scholar 

  84. Eyrich M, Lang P, Lal S, et al. A prospective analysis of the pattern of immune reconstitution in a paediatric cohort following transplantation of positively selected human leucocyte antigen-disparate haematopoietic stem cells from parental donors. Br J Haematol 2001; 114: 422–432.

    Article  PubMed  CAS  Google Scholar 

  85. Handgretinger R, Klingebiel T, Lang P, et al. Megadose transplantation of purified peripheral blood CD34+ progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant 2001; 27: 777–783.

    Article  PubMed  CAS  Google Scholar 

  86. Chakraverty R, Robinson S, Peggs K, et al. Excessive T cell depletion of peripheral blood stem cells has an adverse effect upon outcome following allogeneic stem cell transplantation. Bone Marrow Transplant 2001; 28: 827–834.

    Article  PubMed  CAS  Google Scholar 

  87. Mavroudis DA, Read EJ, Molldrem J, et al. T cell-depleted granulocyte colony-stimulating factor (G-CSF) modified allogenic bone marrow transplantation for hematological malignancy improves graft CD34+ cell content but is associated with delayed pancytopenia. Bone Marrow Transplant 1998; 21: 431–440.

    Article  PubMed  CAS  Google Scholar 

  88. Martinez C, Urbano-Ispizua A, Rozman C, et al. Immune reconstitution following allogeneic peripheral blood progenitor cell transplantation: comparison of recipients of positive CD34+ selected grafts with recipients of unmanipulated grafts. Exp Hematol 1999; 27: 561–568.

    Article  PubMed  CAS  Google Scholar 

  89. Urbano-Ispizua A, Carreras E, Marin P, et al. Allogeneic transplantation of CD34+ selected cells from peripheral blood from human leukocyte antigen-identical siblings: detrimental effect of a high number of donor CD34+ cells? Blood 2001; 98: 2352–2357.

    Article  PubMed  CAS  Google Scholar 

  90. Gorski J, Yassai M, Zhu X, et al. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 1994; 152: 5109–5119.

    PubMed  CAS  Google Scholar 

  91. Gorski J, Yassai M, Keever C, et al. Analysis of reconstituting T cell receptor repertoires in bone marrow transplant recipients. Arch Immunol Ther Exp 1995; 43: 93–97.

    CAS  Google Scholar 

  92. Roux E, Helg C, Chapuis B, et al. T-cell repertoire complexity after allogeneic bone marrow transplantation. Hum Immunol 1996; 48: 135–138.

    Article  PubMed  CAS  Google Scholar 

  93. Godthelp BC, van Tol MJ, Vossen JM, et al. T-Cell immune reconstitution in pediatric leukemia patients after allogeneic bone marrow transplantation with T-cell-depleted or unmanipulated grafts: evaluation of overall and antigen-specific T-cell repertoires. Blood 1999; 94: 4358–4369.

    PubMed  CAS  Google Scholar 

  94. Hirokawa M, Horiuchi T, Kitabayashi A, et al. Delayed recovery of CDR3 complexity of the T-cell receptor-beta chain in recipients of allogeneic bone marrow transplants who had virus-associated interstitial pneumonia: monitor of T-cell function by CDR3 spectratyping. J Allergy Clin Immunol 2000; 106: S32 - S39.

    Article  PubMed  CAS  Google Scholar 

  95. Dumont-Girard F, Roux E, van Lier RA, et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 1998; 92: 4464–4471.

    PubMed  CAS  Google Scholar 

  96. Verfuerth S, Peggs K, Vyas P, et al. Longitudinal monitoring of immune reconstitution by CDR3 size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. Blood 2000; 95: 3990–3995.

    PubMed  CAS  Google Scholar 

  97. Donnenberg AD, Margolick JB, Beltz LA, et al. Apoptosis parallels lymphopoiesis in bone marrow transplantation and HIV disease. Res Immunol 1995; 146: 11–21.

    Article  PubMed  CAS  Google Scholar 

  98. Hebib NC, Deas O, Rouleau M, et al. Peripheral blood T cells generated after allogeneic bone marrow transplantation: lower levels of bc1–2 protein and enhanced sensitivity to spontaneous and CD95-mediated apoptosis in vitro. Abrogation of the apoptotic phenotype coincides with the recovery of normal naive/primed T-cell profiles. Blood 1999; 94: 1803–1813.

    PubMed  CAS  Google Scholar 

  99. Lin MT, Tseng LH, Frangoul H, et al. Increased apoptosis of peripheral blood T cells following allogeneic hematopoietic cell transplantation. Blood 2000; 95: 3832–3839.

    PubMed  CAS  Google Scholar 

  100. Schroff RW, Gale RP, Fahey JL. Regeneration of T cell subpopulations after bone marrow transplantation: cytomegalovirus infection and lymphoid subset imbalance. J Immunol 1982; 129: 1926–1930.

    PubMed  CAS  Google Scholar 

  101. Autran B, Leblond V, Sadat-Sowti B, et al. A soluble factor released by CD8+CD57+ lymphocytes from bone marrow transplanted patients inhibits cell-mediated cytolysis. Blood 1991; 77: 2237–2241.

    PubMed  CAS  Google Scholar 

  102. Sadat-Sowti B, Debre P, Mollet L, et al. An inhibitor of cytotoxic functions produced by CD8+CD57+ T lymphocytes from patients suffering from AIDS and immunosuppressed bone marrow recipients. Eur J Immunol 1994; 24: 2882–2888.

    Article  PubMed  CAS  Google Scholar 

  103. Gorochov G, Debre P, Leblond V, et al. Oligoclonal expansion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone marrow transplantation. Blood 1994; 83: 587–595.

    PubMed  CAS  Google Scholar 

  104. Morley JK, Batliwalla FM, Hingorani R, et al. Oligoclonal CD8+ T cells are preferentially expanded in the CD57+ subset. J Immunol 1995; 154: 6182–6190.

    PubMed  CAS  Google Scholar 

  105. Weekes MP, Wills MR, Mynard K, et al. Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57+ CD28- CD8+ T-cell population. Immunology 1999; 98: 443–449.

    Article  PubMed  CAS  Google Scholar 

  106. Kern F, Khatamzas E, Surel I, et al. Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol 1999; 29: 2908–2915.

    Article  PubMed  CAS  Google Scholar 

  107. Hoshino T, Yamada A, Honda J, et al. Tissue-specific distribution and age-dependent increase of human CD11B+ T cells. J Immunol 1993; 151: 2237–2246.

    PubMed  CAS  Google Scholar 

  108. Klingemann HG, Lum LG, Storb R. Phenotypical and functional studies on a subtype of suppressor cells (CD8+/CD11+) in patients after bone marrow transplantation. Transplantation 1987; 44: 381–386.

    Article  PubMed  CAS  Google Scholar 

  109. Gebel HM, Kaizer H, Landay AL. Characterization of circulating suppressor T lymphocytes in bone marrow transplant recipients. Transplantation 1987; 43: 258–263.

    Article  PubMed  CAS  Google Scholar 

  110. Gottschalk LR, Kaizer H, Gebel HM. Characterization of peripheral blood CD8/11 cells in bone marrow transplant recipients. II. Two distinct populations of CD8/11 cells. Transplantation 1988; 45: 890–894.

    Article  PubMed  CAS  Google Scholar 

  111. Velardi A, Varese P, Terenzi A, et al. Lymphokine production by T-cell clones after human bone marrow transplantation. Blood 1989; 74: 1665–1672.

    PubMed  CAS  Google Scholar 

  112. Lebeck LK, Kaizer H, Gebel HM. Characterization of peripheral blood CD8/1 lb cells in bone marrow transplant recipients. III. Subsets of CD8/l lb cells differentially regulate immunoglobulin production. Bone Marrow Transplant 1992; 9: 35–39.

    PubMed  CAS  Google Scholar 

  113. Bierer BE, Burakoff SJ, Smith BR. A large proportion of T lymphocytes lack CD5 expression after bone marrow transplantation. Blood 1989; 73: 1359–1366.

    PubMed  CAS  Google Scholar 

  114. Douek DC, Vescio RA, Betts MR, et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 2000; 355: 1875–1881.

    Article  PubMed  CAS  Google Scholar 

  115. Heitger A, Neu N, Kern H, et al. Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 1997; 90: 850–857.

    PubMed  CAS  Google Scholar 

  116. Lamb LS, Abhyankar SA, Hazlett L, et al. Expression of CD134 (OX-40) on T cells during the first 100 days following allogeneic bone marrow transplantation as a marker for lymphocyte activation and therapy-resistant graft-versus-host disease. Cytometry 1999; 38: 238–243.

    Article  PubMed  Google Scholar 

  117. Atkinson K. T Cell subpopulations defined by monoclonal antibodies after HLA-identical sibling marrow transplantation. II. Activated and functional subsets of helper-inducer and cytotoxic-suppressor subpopulations defined by two-colour fluorescence flow cytometry. Bone Marrow Transplant 1986;1:121–132.

    PubMed  CAS  Google Scholar 

  118. Talvensaari K, Clave E, Douay C, et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002; 99: 1458–1464.

    Article  PubMed  CAS  Google Scholar 

  119. Carding SR, Egan PJ. The importance of gamma delta T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol Rev 2000; 173: 98–108.

    Article  PubMed  CAS  Google Scholar 

  120. Ferrarini M, Ferrero E, Dagna L, et al. Human gammadelta T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol 2002; 23: 14–18.

    Article  PubMed  CAS  Google Scholar 

  121. Norton J, al-Saffar N, Sloane JP. An immunohistological study of gamma/delta lymphocytes in human cutaneous graft-versus-host disease. Bone Marrow Transplant 1991; 7: 205–208.

    PubMed  CAS  Google Scholar 

  122. Norton J, al-Saffar N, Sloane JP. Immunohistological study of distribution of g/d lymphocytes after allogeneic bone marrow transplantation. J Clin Pathol 1992; 45: 1027–1028.

    Article  PubMed  CAS  Google Scholar 

  123. Kawanishi Y, Passweg J, Drobyski WR, et al. Effect of T cell subset dose on outcome of T cell-depleted bone marrow transplantation. Bone Marrow Transplant 1997; 19: 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  124. Drobyski WR, Majewski D, Hanson G. Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs-host disease. Biol Blood Marrow Transplant 1999; 5: 222–230.

    Article  PubMed  CAS  Google Scholar 

  125. Gratama JW, Fibbe WE, VisserJW, et al. CD3+, 4-, 8- T cells and CD3+, -4, -8 T cells repopulate at different rates after allogeneic bone marrow transplantation. Bone Marrow Transplant 1989; 4: 291–296.

    PubMed  CAS  Google Scholar 

  126. Dechanet J, Merville P, Lim A, et al. Implication of gamma delta T cells in the human immune response to cytomegalovirus. J Clin Invest 1999; 103: 1437–1449.

    Article  PubMed  CAS  Google Scholar 

  127. Cela ME, Holladay MS, Rooney CM, et al. Gamma delta T lymphocyte regeneration after T lymphocyte-depleted bone marrow transplantation from mismatched family members or matched unrelated donors. Bone Marrow Transplant 1996; 17: 243–247.

    PubMed  CAS  Google Scholar 

  128. Vilmer E, Guglielmi P, David V, et al. Predominant expression of circulating CD3+ lymphocytes bearing gamma T cell receptor in a prolonged immunodeficiency after allogeneic bone marrow transplantation. J Clin Invest 1988; 82: 755–761.

    Article  PubMed  CAS  Google Scholar 

  129. Vilmer E, Triebel F, David V, et al. Prominent expansion of circulating lymphocytes bearing Y T-cell receptors, with preferential expression of variable Y genes after allogeneic bone marrow transplantation. Blood 1988; 72: 841–849.

    PubMed  CAS  Google Scholar 

  130. van der Harst D, Brand A, van Luxemburg-Heijs SA, et al. Selective outgrowth of CD45RO+ V gamma 9+/V delta 2+ T-cell receptor gamma/delta T cells early after bone marrow transplantation. Blood 1991; 78: 1875–1881.

    PubMed  CAS  Google Scholar 

  131. Lamb LS, Henslee-Downey PJ, Parrish RS, et al. Increased frequency of TCR gamma delta + T cells in disease-free survivors following T cell-depleted, partially mismatched, related donor bone marrow transplantation for leukemia. J Hematother 1996; 5: 503–509.

    Article  PubMed  Google Scholar 

  132. Lamb LS, Gee AP, Hazlett LJ, et al. Influence of T cell depletion method on circulating yô T cell reconstitution and potential role in the graft-versus-leukemia effect. Cytotherapy 1999; 1: 7–19.

    Article  PubMed  Google Scholar 

  133. Reusser P, Riddell SR, Meyers JD, et al. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 1991; 78: 1373–1380.

    PubMed  CAS  Google Scholar 

  134. Drobyski WR, Dunne WM, Burd EM, et al. Human herpesvirus-6 (HHV-6) infection in allogeneic bone marrow transplant recipients: evidence of a marrow-suppressive role for HHV-6 in vivo. J Infect Dis 1993; 167: 735–739.

    Article  PubMed  CAS  Google Scholar 

  135. Wang FZ, Linde A, Dahl H, Ljungman P. Human herpesvirus 6 infection inhibits specific lymphocyte proliferation responses and is related to lymphocytopenia after allogeneic stem cell transplantation. Bone Marrow Transplant 1999; 24: 1201–1206.

    Article  PubMed  CAS  Google Scholar 

  136. Wagner H-J, Rooney C, Heslop H. Diagnosis and treatment of posttransplantation lymphoproliferative disease after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2002; 8: 1–8.

    Article  PubMed  CAS  Google Scholar 

  137. Gratama JW, Verdonck LF, van der Linden JA, et al. Cellular immunity to vaccinations and herpesvirus infections after bone marrow transplantation. Transplantation 1986; 41: 719–724.

    Article  PubMed  CAS  Google Scholar 

  138. Atkinson K. Reconstruction of the haemopoietic and immune systems after marrow transplantation. Bone Marrow Transplant 1990; 5: 209–226.

    PubMed  CAS  Google Scholar 

  139. Noel DR, Witherspoon RP, Storb R, et al. Does graft-versus-host disease influence the tempo of immunologic recovery after allogeneic human marrow transplantation? An observation on 56 long-term survivors. Blood 1978; 51: 1087–1105.

    PubMed  CAS  Google Scholar 

  140. Kameoka J, Sato T, Torimoto Y, et al. Differential CD26-mediated activation of the CD3 and CD2 pathways after CD6-depleted allogeneic bone marrow transplantation. Blood 1995; 85: 1132–1137.

    PubMed  CAS  Google Scholar 

  141. Meyers JD, Flournoy N, Thomas ED. Cell-mediated immunity to varicella-zoster virus after allogeneic marrow transplant. J Infect Dis 1980; 141: 479–487.

    Article  PubMed  CAS  Google Scholar 

  142. Meyers JD, Flournoy N, Thomas ED. Infection with herpes simplex virus and cell-mediated immunity after marrow transplant. J Infect Dis 1980; 142: 338–346.

    Article  PubMed  CAS  Google Scholar 

  143. Wade JC, Day LM, Crowley JJ, et al. Recurrent infection with herpes simplex virus after marrow transplantation: role of the specific immune response and acyclovir treatment. J Infect Dis 1984; 149: 750–756.

    Article  PubMed  CAS  Google Scholar 

  144. Walter E, Greenberg P, Gilbert M, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  145. Lopez-Botet M, De Landazuri MO, Izquierdo M, et al. Defective interleukin 2 receptor expression is associated with the T cell disfunction subsequent to bone marrow transplantation. Eur JImmunol 1987; 17: 1167–1174.

    Article  CAS  Google Scholar 

  146. Yamagami M, McFadden PW, Koethe SM, et al. Failure of T cell receptor-anti-CD3 monoclonal antibody interaction in T cells from marrow recipients to induce increases in intracellular ionized calcium. J Clin Invest 1990; 86: 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  147. Mori T, Tsoi MS, Gillis S, et al. Cellular interactions in marrow-grafted patients. I. Impairment of cell-mediated lympholysis associated with graft-vs-host disease and the effect of interleukin 2. J Immunol 1983; 130: 712–716.

    PubMed  CAS  Google Scholar 

  148. Hebart H, Daginik S, Stevanovic S, et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 2002; 99: 3830–3837.

    Article  PubMed  CAS  Google Scholar 

  149. Emanuel D, Cunningham I, Jules-Elysee K, et al. Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann Intern Med 1988; 109: 777–782.

    PubMed  CAS  Google Scholar 

  150. Li CR, Greenberg PD, GilbertMJ, et al. Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 1994; 83: 1971–1979.

    PubMed  CAS  Google Scholar 

  151. Nguyen Q, Champlin R, Giralt S, et al. Late cytomegalovirus pneumonia in adult allogeneic blood and marrow transplant recipients. Clin Infect Dis 1999; 28: 618–623.

    Article  PubMed  CAS  Google Scholar 

  152. Broers AE, van Der Holt R, van Esser JW, et al. Increased transplant-related morbidity and mortality in CMVseropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood 2000; 95: 2240–2245.

    PubMed  CAS  Google Scholar 

  153. Kern F, Faulhaber N, Khatamzas E, et al. Measurement of anti-human cytomegalovirus T cell reactivity in transplant recipients and its potential clinical use: a mini-review. Intervirology 1999; 42: 322–324.

    Article  PubMed  CAS  Google Scholar 

  154. Cwynarski K, Ainsworth J, Cobbold M, et al. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001; 97: 1232–12140.

    Article  PubMed  CAS  Google Scholar 

  155. Gratama JW, van Esser JW, Lamers CH, et al. Tetramer-based quantification of cytomegalovirus (CMV)specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 2001; 98: 1358–1364.

    Article  PubMed  CAS  Google Scholar 

  156. Junghanss C, Boeckh M, Carter RA, et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 2002; 99: 1978–1985.

    Article  PubMed  CAS  Google Scholar 

  157. Duncombe AS, Grundy JE, Oblakowski P, et al. Bone marrow transplant recipients have defective MHCunrestricted cytotoxic responses against cytomegalovirus in comparison with Epstein-Barr virus: the importance of target cell expression of lymphocyte function-associated antigen 1 (LFA1). Blood 1992; 79: 3059–3066.

    PubMed  CAS  Google Scholar 

  158. Gross TG, Steinbuch M, DeFor T, et al. B Cell lymphoproliferative disorders following hematopoietic stem cell transplantation: risk factors, treatment and outcome. Bone Marrow Transplant 1999; 23: 251–258.

    Article  PubMed  CAS  Google Scholar 

  159. Meijer E, Slaper-Cortenbach IC, Thijsen SF, et al. Increased incidence of EB V-associated lymphoproliferative disorders after allogeneic stem cell transplantation from matched unrelated donors due to a change of T cell depletion technique. Bone Marrow Transplant 2002; 29: 335–339.

    Article  PubMed  CAS  Google Scholar 

  160. Lucas KG, Small TN, Heller G, et al. The development of cellular immunity to Epstein-Barr virus after allogeneic bone marrow transplantation. Blood 1996; 87: 2594–2603.

    PubMed  CAS  Google Scholar 

  161. Warren HS, Atkinson K, Pembrey RG, et al. Human bone marrow allograft recipients: production of, and responsiveness to, interleukin 2. J Immunol 1983; 131: 1771–1775.

    PubMed  CAS  Google Scholar 

  162. Azogui O, Gluckman E, Fradelizi D. Inhibition of IL 2 production after human allogeneic bone marrow transplantation. J Immunol 1983; 131: 1205–1208.

    PubMed  CAS  Google Scholar 

  163. Welte K, Ciobanu N, Moore MA, et al. Defective interleukin 2 production in patients after bone marrow transplantation and in vitro restoration of defective T lymphocyte proliferation by highly purified interleukin 2. Blood 1984; 64: 380–385.

    PubMed  CAS  Google Scholar 

  164. Welte K, Keever CA, Levick J, et al. Interleukin-2 production and response to interleukin-2 by peripheral blood mononuclear cells from patients after bone marrow transplantation. II. Patients receiving soybean lectin-separated and T cell-depleted bone marrow. Blood 1987; 70: 1595–1603.

    PubMed  CAS  Google Scholar 

  165. Cooley MA, McLachlan K, Atkinson K. Cytokine activity after human bone marrow transplantation. III. Defect in IL2 production by peripheral blood mononuclear cells is not corrected by stimulation with Ca++ ionophore plus phorbol ester. Br J Haematol 1989; 73: 341–347.

    Article  PubMed  CAS  Google Scholar 

  166. Cooley MA. Cytokine activity after human bone marrow transplantation. Production of interferons by peripheral blood mononuclear cells from recipients of HLA-identical sibling bone marrow transplants. J Immunol 1987; 138: 3742–3745.

    PubMed  CAS  Google Scholar 

  167. Lum LG, Joshi ID, Smith MR, et al. Constitutive and mitogen-stimulated cytokine mRNA expression by peripheral blood mononuclear cells from most autologous and allogeneic bone marrow transplant recipients is intact. Bone Marrow Transplant 1994; 13: 187–195.

    PubMed  CAS  Google Scholar 

  168. Tanaka J, Imamura M, Kasai M, et al. Cytokine gene expression by concanavalin A-stimulated peripheral mononuclear cells after bone marrow transplantation: an indicator of immunological abnormality due to chronic graft-versus-host disease. Bone Marrow Transplant 1994; 14: 695–701.

    PubMed  CAS  Google Scholar 

  169. Mitra DK, Singh HP, Singh M, et al. Reconstitution of naive T cells and type 1 function after autologous peripheral stem cell transplantation: impact on the relapse of original cancer. Transplantation 2002; 73: 1336–1339.

    Article  PubMed  CAS  Google Scholar 

  170. Small TN, Keever CA, Weiner-Fedus S, et al. B-Cell differentiation following autologous, conventional or T-cell depleted bone marrow transplantation: a recapitulation of normal B-cell ontogeny. Blood 1990; 76: 1647–1656.

    PubMed  CAS  Google Scholar 

  171. Storek J, Ferrara S, Ku N, et al. B Cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny? Bone Marrow Transplant 1993; 12: 387–398.

    PubMed  CAS  Google Scholar 

  172. D’ Costa S, Slobod KS, Benaim E, et al. Effect of extended immunosuppressive drug treatment on B cell vs T cell reconstitution in pediatric bone marrow transplant recipients. Bone Marrow Transplant 2001; 28: 573–580.

    Article  Google Scholar 

  173. Lum LG, Seigneuret MC, Storb RF, et al. In vitro regulation of immunoglobulin synthesis after marrow transplantation. I. T-Cell and B-cell deficiencies in patients with and without chronic graft-versus-host disease. Blood 1981; 58: 431–439.

    PubMed  CAS  Google Scholar 

  174. Witherspoon RP, Goehle S, Kretschmer M, et al. Regulation of immunoglobulin production after human marrow grafting. The role of helper and suppressor T cells in acute graft-versus-host disease. Transplantation 1986; 41: 328–335.

    Article  PubMed  CAS  Google Scholar 

  175. Storek J, Saxon A. Reconstitution of B cell immunity following bone marrow transplantation. Bone Marrow Transplant 1992; 9: 395–408.

    PubMed  CAS  Google Scholar 

  176. Lortan JE, Vellodi A, Jurges ES, et al. Class-and subclass-specific pneumococcal antibody levels and response to immunization after bone marrow transplantation. Clin Exp Immunol 1992; 88: 512–519.

    Article  PubMed  CAS  Google Scholar 

  177. Fumoux F, Guigou V, Blaise D, et al. Reconstitution of human immunoglobulin VH repertoire after bone marrow transplantation mimics B-cell ontogeny. Blood 1993; 81: 3153–3157.

    PubMed  CAS  Google Scholar 

  178. Storek J, King L, Ferrara S, et al. Abundance of a restricted fetal B cell repertoire in marrow transplant recipients. Bone Marrow Transplant 1994; 14: 783–790.

    Article  PubMed  CAS  Google Scholar 

  179. Gokmen E, Raaphorst FM, Boldt DH, et al. Ig heavy chain third complementarity determining regions (H CDR3s) after stem cell transplantation do not resemble the developing human fetal H CDR3s in size distribution and Ig gene utilization. Blood 1998; 92: 2802–2814.

    PubMed  CAS  Google Scholar 

  180. Suzuki I, Milner EC, Glas AM, et al. Immunoglobulin heavy chain variable region gene usage in bone marrow transplant recipients: lack of somatic mutation indicates a maturational arrest. Blood 1996; 87: 1873–1880.

    PubMed  CAS  Google Scholar 

  181. Kelsey SM, Lowdell MW, Newland AC. IgG subclass levels and immune reconstitution after T cell-depleted allogeneic bone marrow transplantation. Clin Exp Immunol 1990; 80: 409–412.

    Article  PubMed  CAS  Google Scholar 

  182. Sheridan JF, Tutschka PJ, Sedmak DD, et al. Immunoglobulin G subclass deficiency and pneumococcal infection after allogeneic bone marrow transplantation. Blood 1990; 75: 1583–1586.

    PubMed  CAS  Google Scholar 

  183. Izutsu KT, Sullivan KM, Schubert MM, et al. Disordered salivary immunoglobulin secretion and sodium transport in human chronic graft-versus-host disease. Transplantation 1983; 35: 441–446.

    Article  PubMed  CAS  Google Scholar 

  184. Abedi MR, Hammarstrom L, Ringden O, et al. Development of IgA deficiency after bone marrow transplantation. The influence of acute and chronic graft-versus-host disease. Transplantation 1990; 50: 415–421.

    Article  PubMed  CAS  Google Scholar 

  185. S torek J, Witherspoon RP, Luthy D, et al. Low IgG production by mononuclear cells from marrow transplant survivors and from normal neonates is due to a defect of B cells. Bone Marrow Transplant 1995; 15: 679–684.

    CAS  Google Scholar 

  186. Saryan JA, Rappeport J, Leung DY, et al. Regulation of human immunoglobulin E synthesis in acute graft versus host disease. J Clin Invest 1983; 71: 556–564.

    CAS  Google Scholar 

  187. Walker SA, Rogers TR, Perry D, et al. Increased serum IgE concentrations during infection and graft versus host disease after bone marrow transplantation. J Clin Pathol 1984; 37: 460–462.

    Article  PubMed  CAS  Google Scholar 

  188. Lum LG, Munn NA, Schanfield MS, et al. The detection of specific antibody formation to recall antigens after human bone marrow transplantation. Blood 1986; 67: 582–587.

    PubMed  CAS  Google Scholar 

  189. Lum LG, Noges JE, Beatty P, et al. Transfer of specific immunity in marrow recipients given HLA-mismatched, T cell-depleted, or HLA-identical grafts. Bone Marrow Transplant 1988; 3: 399–406.

    PubMed  CAS  Google Scholar 

  190. Wahren B, Gahrton G, Linde A, et al. Transfer and persistence of viral antibody-producing cells in bone marrow transplantation. J Infect Dis 1984; 150: 358–365.

    Article  PubMed  CAS  Google Scholar 

  191. Saxon A, Mitsuyasu R, Stevens R, et al. Designed transfer of specific immune responses with bone marrow transplantation. J Clin Invest 1986; 78: 959–967.

    Article  PubMed  CAS  Google Scholar 

  192. Wimperis JZ, Brenner MK, Prentice HG, et al. Transfer of a functioning humoral immune system in transplantation of T-lymphocyte-depleted bone marrow. Lancet 1986; 1: 339–343.

    Article  PubMed  CAS  Google Scholar 

  193. Shiobara S, Lum LG, Witherspoon RP, et al. Antigen-specific antibody responses of lymphocytes to tetanus toxoid after human marrow transplantation. Transplantation 1986; 41: 587–592.

    Article  PubMed  CAS  Google Scholar 

  194. Vavassori M, Maccario R, Moretta A, et al. Restricted TCR repertoire and long-term persistence of donor-derived antigen-experienced CD4+ T cells in allogeneic bone marrow transplantation recipients. J Immunol 1996; 157: 5739–5747.

    PubMed  CAS  Google Scholar 

  195. Chaushu S, Chaushu G, Garfunkel AA, et al. Salivary immunoglobulins in recipients of bone marrow grafts. I. A longitudinal follow-up. Bone Marrow Transplant 1994; 14: 871–876.

    Article  PubMed  CAS  Google Scholar 

  196. Chaushu S, Chaushu G, Garfunkel A, et al. Salivary immunoglobulins in recipients of bone marrow grafts. H. Transient secretion of donor-derived salivary IgA following transplantation of T cell-depleted bone marrow. Bone Marrow Transplant 1994; 14: 925–928.

    PubMed  CAS  Google Scholar 

  197. Wimperis JZ, Brenner MK, Prentice HG, et al. B Cell development and regulation after T cell-depleted marrow transplantation. J Immunol 1987; 138: 2445–2450.

    PubMed  CAS  Google Scholar 

  198. Ljungman P, Lewensohn-Fuchs I, Hammarstrom V, et al. Long-term immunity to measles, mumps, and rubella after allogeneic bone marrow transplantation. Blood 1994; 84: 657–663.

    PubMed  CAS  Google Scholar 

  199. Witherspoon RP, Storb R, Ochs HD, et al. Recovery of antibody production in human allogeneic marrow graft recipients: influence of time posttransplantation, the presence or absence of chronic graft-versus-host disease, and antithymocyte globulin treatment. Blood 1981; 58: 360–368.

    PubMed  CAS  Google Scholar 

  200. Guinan EC, Molrine DC, Antin JH, et al. Polysaccharide conjugate vaccine responses in bone marrow transplant patients. Transplantation 1994; 57: 677–684.

    Article  PubMed  CAS  Google Scholar 

  201. King SM, Saunders EF, Petric M, et al. Response to measles, mumps and rubella vaccine in paediatric bone marrow transplant recipients. Bone Marrow Transplant 1996; 17: 633–636.

    PubMed  CAS  Google Scholar 

  202. Gerritsen EJ, Van Tol MJ, Van’t Veer MB, et al. Clonal dysregulation of the antibody response to tetanustoxoid after bone marrow transplantation. Blood 1994; 84: 4374–4382.

    PubMed  CAS  Google Scholar 

  203. Engelhard D, Nagler A, Hardan I, et al. Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients. Bone Marrow Transplant 1993; 11: 1–5.

    PubMed  CAS  Google Scholar 

  204. Engelhard D, Handsher R, Naparstek E, et al. Immune response to polio vaccination in bone marrow transplant recipients. Bone Marrow Transplant 1991; 8: 295–300.

    PubMed  CAS  Google Scholar 

  205. Ljungman P, Duraj V, Magnius L. Response to immunization against polio after allogeneic marrow transplantation. Bone Marrow Transplant 1991; 7: 89–93.

    PubMed  CAS  Google Scholar 

  206. Perreault C, Pelletier M, Landry D, et al. Study of Langerhans cells after allogeneic bone marrow transplantation. Blood 1984; 63: 807–811.

    PubMed  CAS  Google Scholar 

  207. Atkinson K, Munro V, Vasak E, et al. Mononuclear cell subpopulations in the skin defined by monoclonal antibodies after HLA-identical sibling marrow transplantation. Br J Dermatol 1986; 114: 145–160.

    Article  PubMed  CAS  Google Scholar 

  208. Witherspoon RP, Matthews D, Storb R, et al. Recovery of in vivo cellular immunity after human marrow grafting. Influence of time postgrafting and acute graft-versus-host disease. Transplantation 1984; 37: 145–150.

    Article  PubMed  CAS  Google Scholar 

  209. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood 2002; 99: 1442–1448.

    Article  PubMed  CAS  Google Scholar 

  210. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  PubMed  CAS  Google Scholar 

  211. Klangsinsirikul P, Carter GI, Byrne JL, et al. Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood 2002; 99: 2586–2591.

    Article  PubMed  CAS  Google Scholar 

  212. Hale G, Jacobs P, Wood L, et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 2000; 26: 69–76.

    Article  PubMed  CAS  Google Scholar 

  213. Przepiorka D, Anderlini P, Saliba R, et al. Chronic graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 2001; 98: 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  214. Morecki S, Gelfand Y, Nagler A, et al Immune reconstitution following allogeneic stem cell transplantation in recipients conditioned by low intensity vs myeloablative regimen. Bone Marrow Transplant 2001; 28: 243–249.

    Article  PubMed  CAS  Google Scholar 

  215. Powles R, Smith C, Milan S, et al. Human recombinant GM-CSF in allogeneic bone-marrow transplantation for leukaemia: double-blind, placebo-controlled trial. Lancet 1990; 336: 1417–1420.

    Article  PubMed  CAS  Google Scholar 

  216. Nemunaitis J, Rosenfeld CS, Ash R, et al. Phase III randomized, double-blind placebo-controlled trial of rhGM-CSF following allogeneic bone marrow transplantation. Bone Marrow Transplant 1995; 15: 949–954.

    PubMed  CAS  Google Scholar 

  217. Lazarus HM, Rowe JM. Clinical use of hematopoietic growth factors in allogeneic bone marrow transplantation. Blood Rev 1994; 8: 169–178.

    Article  PubMed  CAS  Google Scholar 

  218. Soiffer R, Murray C, Cochran K, et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin-2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood 1992; 79: 517–526.

    PubMed  CAS  Google Scholar 

  219. Soiffer R, Murray C, Gonin R, Ritz J. Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood 1994; 84: 964–971.

    PubMed  CAS  Google Scholar 

  220. Robinson N, Sanders JE, Benyunes MC, et al. Phase I trial of interleukin-2 after unmodified HLA-matched sibling bone marrow transplantation for children with acute leukemia. Blood 1996; 87: 1249–1254.

    PubMed  CAS  Google Scholar 

  221. Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. Blood 2002; 99: 3892–3904.

    Article  PubMed  CAS  Google Scholar 

  222. Bolotin E, Smogorzewska M, Smith S, et al. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 1996; 88: 1887–1894.

    PubMed  CAS  Google Scholar 

  223. Abdul-Hai A, Or R, Slavin S, et al. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp Hematol 1996; 24: 1416–1422.

    PubMed  CAS  Google Scholar 

  224. Geiselhart LA, Humphries CA, Gregorio TA, et al. IL-7 administration alters the CD4: CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J Immunol 2001; 166: 3019–3027.

    PubMed  CAS  Google Scholar 

  225. Mackall CL, Fry TJ, Bare C, et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 2001; 97: 1491–1497.

    Article  PubMed  CAS  Google Scholar 

  226. Alpdogan O, Schmaltz C, Muriglan SJ, et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood 2001; 98: 2256–2265.

    Article  PubMed  CAS  Google Scholar 

  227. Fry TJ, Christensen BL, Komschlies KL, et al. Interleukin-7 restores immunity in athymic T-cell-depleted hosts. Blood 2001; 97: 1525–1533.

    Article  PubMed  CAS  Google Scholar 

  228. Woody MA, Welniak LA, Richards S, et al. Use of neuroendocrine hormones to promote reconstitution after bone marrow transplantation. Neuroimmunomodulation 1999; 6: 69–80.

    Article  PubMed  CAS  Google Scholar 

  229. Savino W, Postel-Vinay MC, Smaniotto S, et al. The thymus gland: a target organ for growth hormone. Scand J Immunol 2002; 55: 442–452.

    Article  PubMed  CAS  Google Scholar 

  230. Murphy WJ, Dumm SK, Longo DL. Role of neuroendocrine hormones in murine T cell development. Growth hormone exerts thymopoietic effects in vivo. J Immunol 1992; 149: 3851–3857.

    PubMed  CAS  Google Scholar 

  231. De Mello-Coelho V, Savino W, Postel-Vinay MC, et al. Role of prolactin and growth hormone on thymus physiology. Dev Immunol 1998; 6: 317–323.

    Article  PubMed  Google Scholar 

  232. Savino W, Smaniotto S, De Mello-Coelho V, et al. Is there a role for growth hormone upon intrathymic T-cell migration? Ann NYAcad Sci 2000; 917: 748–754.

    Article  CAS  Google Scholar 

  233. Tian ZG, Woody MA, Sun R, et al. Recombinant human growth hormone promotes hematopoietic reconstitution after syngeneic bone marrow transplantation in mice. Stem Cells 1998; 16: 193–199.

    Article  PubMed  CAS  Google Scholar 

  234. Savino W, de Mello-Coelho V, Dardenne M. Control of the thymic microenvironment by growth hormone/ insulin-like growth factor-I-mediated circuits. Neuroimmunomodulation 1995; 2: 313–318.

    Article  PubMed  CAS  Google Scholar 

  235. Jardieu P, Clark R, Mortensen D, et al. In vivo administration of insulin-like growth factor-I stimulates primary B lymphopoiesis and enhances lymphocyte recovery after bone marrow transplantation. J Immunol 1994; 152: 4320–4327.

    PubMed  CAS  Google Scholar 

  236. Robbins K, McCabe S, Schemer T, et al Immunological effects of insulin-like growth factor-I-enhancement of immunoglobulin synthesis. Clin Exp Immunol 1994; 95: 337–342.

    Article  PubMed  CAS  Google Scholar 

  237. de Mello-Coelho V, Gagnerault MC, et al. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 1998; 139: 3837–3842.

    Article  PubMed  CAS  Google Scholar 

  238. de Mello Coelho V, Villa-Verde DM, Farias-De-Oliveira DA, et al. Functional insulin-like growth factor-1/ insulin-like growth factor-1 receptor-mediated circuit in human and murine thymic epithelial cells. Neuroendocrinology 2002; 75: 139–150.

    Article  PubMed  CAS  Google Scholar 

  239. Storb R, Doney KC, Thomas ED, et al. Marrow transplantation with or without donor huffy coat cells for 65 transfused aplastic anemia patients. Blood 1982; 59: 236–246.

    PubMed  CAS  Google Scholar 

  240. Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy using donor leukocytes following bone marrow transplantation for chronic myeloid leukemia: is T cell dose important in determining biological response? Bone Marrow Transplant 1995; 15: 591–594.

    PubMed  CAS  Google Scholar 

  241. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994; 330: 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  242. Tiberghien P, Ferrand C, Lioure B, et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 2001; 97: 63–72.

    Article  PubMed  CAS  Google Scholar 

  243. Giralt S, Hester J, Huh Y, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 86(11):4337–4343.

    Google Scholar 

  244. Alyea EP, Soiffer R7, Canning C, et al. Toxicity and efficacy of defined doses of CD4+ donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 1998; 91: 3671–3680.

    PubMed  CAS  Google Scholar 

  245. Alyea E, Weller E, Schlossman R, et al. T-Cell-depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 2001; 98: 934–939.

    Article  PubMed  CAS  Google Scholar 

  246. Thiele DL, Lipsky PE. Mechanism of L-leucyl-L-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells. Proc Natl Acad Sci USA 1990; 87: 83–87.

    Article  PubMed  CAS  Google Scholar 

  247. Thiele DL, Lipsky PE. The action of leucyl-leucine methyl ester on cytotoxic lymphocytes requires uptake by a novel dipeptide-specific facilitated transport system and dipeptidyl peptidase I-mediated conversion to membranolytic products. J Exp Med 1990; 172: 183–194.

    Article  PubMed  CAS  Google Scholar 

  248. Thiele DL, Lipsky PE. Apoptosis is induced in cells with cytolytic potential by L-leucyl-L-leucine methyl ester. J Immunol 1992; 148: 3950–3957.

    PubMed  CAS  Google Scholar 

  249. Charley M, Thiele DL, Bennett M, et al. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester. J Clin Invest 1986; 78: 1415–1420.

    Article  PubMed  CAS  Google Scholar 

  250. Pecora AL, Bordignon C, Fumagalli L, et al. Characterization of the in vitro sensitivity of human lymphoid and hematopoietic progenitors to L-leucyl-L-leucine methyl ester. Transplantation 1991; 51: 524–531.

    Article  PubMed  CAS  Google Scholar 

  251. Rosenfeld CS, Thiele DL, Shadduck RK, et al. Ex vivo purging of allogeneic marrow with L-leucyl-L-leucine methyl ester. A phase I study. Transplantation 1995; 60: 678–683.

    Article  PubMed  CAS  Google Scholar 

  252. Greenberg PD, Reusser P, Goodrich 7M, et al. Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMVspecific T cell clones expanded in vitro. Ann NYAcad Sci 1991; 636: 184–195.

    Article  CAS  Google Scholar 

  253. Riddell S, Walter B, Gilbert M, et al. Selective reconstitution of CD8+ cytotoxic T lymphocyte responses in immunodeficient bone marrow transplant recipients by the adoptive transfer of T cell clones. Bone Marrow Transplant 1994; 14: 78–84.

    Google Scholar 

  254. Sun Q, Pollok KE, Burton RL, et al. Simultaneous ex vivo expansion of cytomegalovirus and Epstein—Barr virus-specific cytotoxic T lymphocytes using B-lymphoblastoid cell lines expressing cytomegalovirus pp65. Blood 1999; 94: 3242–3250.

    PubMed  CAS  Google Scholar 

  255. Peggs K, Verfuerth S, Mackinnon S. Induction of cytomegalovirus (CMV)-specific T-cell responses using dendritic cells pulsed with CMV antigen: a novel culture system free of live CMV virions. Blood 2001; 97: 994–1000.

    Article  PubMed  CAS  Google Scholar 

  256. Peggs KS, Mackinnon S. Clinical trials with CMV-specific T cells. Cytotherapy 2002; 4: 21 28.

    Google Scholar 

  257. Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 2002; 99: 3916–3922.

    Article  PubMed  CAS  Google Scholar 

  258. Heslop HE, Ng CYC, Li C, et al. Long-term restoration of immunity against Epstein—Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med 1996; 2: 551–555.

    Article  PubMed  CAS  Google Scholar 

  259. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein—Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    PubMed  CAS  Google Scholar 

  260. Regn S, Raffegerst S, Chen X, et al. Ex vivo generation of cytotoxic T lymphocytes specific for one or two distinct viruses for the prophylaxis of patients receiving an allogeneic bone marrow transplant. Bone Marrow Transplant 2001; 27: 53–64.

    Article  PubMed  CAS  Google Scholar 

  261. Flomenberg P, Babbitt J, Drobyski WR, et al. Increasing incidence of adenovirus disease in bone marrow transplant recipients. J Infect Dis 1994; 169: 775–781.

    Article  PubMed  CAS  Google Scholar 

  262. Williamson EC, Millar MR, Steward CG, et al. Infections in adults undergoing unrelated donor bone marrow transplantation. Br J Haematol 1999; 104: 560–568.

    Article  PubMed  CAS  Google Scholar 

  263. Mullighan CG, Heatley S, Doherty K, et al. Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood 2002; 99: 3524–3529.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keever-Taylor, C.A. (2004). Immune Reconstitution After Allogeneic Transplantation. In: Soiffer, R.J. (eds) Stem Cell Transplantation for Hematologic Malignancies. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-733-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-733-8_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6588-5

  • Online ISBN: 978-1-59259-733-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics