Skip to main content

The Use of Cytokine Knockout Mice in Cancer Research

  • Chapter
Cytokine Knockouts

Part of the book series: Contemporary Immunology ((CONTIM))

  • 384 Accesses

Summary

The immune system is regulated by a complex network of cytokines that have unique, redundant, or complementary effects on various facets of innate and adaptive responses to tumors, infectious agents, and in the bone marrow transplant setting. The use of appropriate cytokine knockout mice provides an invaluable approach to understanding the key elements of response and nonresponse in various settings. This mechanistic insight is vital for developing and fine-tuning the preclinical hypotheses that serve as a key translational component in the ultimate clinical application of exciting new strategies for cancer treatment. This chapter reviews important insights, provided by the role of cytokine knockout mice, into the role of Thl cytokines in regulation of development and progression of neoplasia, and their potential use as cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belardelli, F. and Ferrantini, M. (2002) Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 23, 201–208.

    Article  PubMed  CAS  Google Scholar 

  2. Fearon, D. T. and Locksley, R. M. (1996) The instructive role of innate immunity in the acquired immune response. Science 272, 50–53.

    Article  PubMed  CAS  Google Scholar 

  3. Smyth, M. J., Godfrey, D. I., and Trapani, J. A. (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol. 2, 293–299.

    Article  PubMed  CAS  Google Scholar 

  4. Coughlin, C. M., Salhany, K. E., Wysocka, M., et al. (1998) Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J. Clin. Invest. 101, 1441–1452.

    Article  PubMed  CAS  Google Scholar 

  5. Trinchieri, G. (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70, 83–243.

    Article  PubMed  CAS  Google Scholar 

  6. Wigginton, J. M., Gruys, E., Geiselhart, L., et al. (2001) IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J. Clin. Invest. 108, 51–62.

    PubMed  CAS  Google Scholar 

  7. Fyfe, G., Fisher, R. I., Rosenberg, S. A., Sznol, M., Parkinson, D. R., and Louie, A. C. (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696.

    PubMed  CAS  Google Scholar 

  8. Atkins, M. B., Lotze, M. T., Dutcher, J. P., et al. (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin Oncol. 17, 2105–2116.

    PubMed  CAS  Google Scholar 

  9. Biron, C. A. (2001) Interferons alpha and beta as immune regulators-a new look. Immunity 14, 661–664.

    Article  PubMed  CAS  Google Scholar 

  10. Ikeda, H., Old, L. J., and Schreiber, R. D. (2002) The roles of IFNgamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 13, 95–109.

    Article  PubMed  CAS  Google Scholar 

  11. Dalton, D. K., Pitts-Meek, S., Keshav, S., Figari, I. S., Bradley, A., and Stewart, T. A. (1993) Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, S., Hendriks, W., Althage, A., et al. (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259, 1742–1745.

    Article  PubMed  CAS  Google Scholar 

  13. Lu, B., Ebensperger, C., Dembic, Z., et al. (1998) Targeted disruption of the interferon-gamma receptor 2 gene results in severe immune defects in mice. Proc. Natl. Acad. Sci. USA 95, 8233–8238.

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan, D. H., Shankaran, V., Dighe, A. S., et al. (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 95, 7556–7561.

    Article  PubMed  CAS  Google Scholar 

  15. Street, S. E., Cretney, E., and Smyth, M. J. (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197.

    Article  PubMed  CAS  Google Scholar 

  16. Brunda, M. J., Luistro, L., Warrier, R. R., et al. (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  17. Nastala, C. L., Edington, H. D., McKinney, T. G., et al. (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 153, 1697–1706.

    PubMed  CAS  Google Scholar 

  18. Dinarello, C. A. (1999) IL-18: A THI-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103, 11–24.

    Article  PubMed  CAS  Google Scholar 

  19. Coughlin, C. M., Salhany, K. E., Gee, M. S., et al. (1998) Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9, 25–34.

    Article  PubMed  CAS  Google Scholar 

  20. Osaki, T., Peron, J. M., Cai, Q., et al. (1998) IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma-and IL-12-independent antitumor effects. J. Immunol. 160, 1742–1749.

    PubMed  CAS  Google Scholar 

  21. Wigginton, J. M., Lee, J.-K., Wiltrout, T. A., et al. (2002) Synergistic engagement of an ineffective endogenous antitumor immune response and induction of IFN-gamma and FAS-L-dependent tumor irradication by combined administration of interleukin-18 and interleukin-2. J. Immunol. 8, 4467–4474.

    Google Scholar 

  22. Wigginton, J. M., Park, J. W., Young, H. A., et al. (2001) Complete regression of established spontaneous mammary carcinoma, and therapeutic prevention of genetically-programmed neoplastic transition by IL-l2/pulse IL-2: induction of local T cell infiltration, Fas/FasL gene expression and mammary epithelial apoptosis. J. Immunol. 166, 1156–1168.

    PubMed  CAS  Google Scholar 

  23. Tannenbaum, C. S., Tubbs, R., Armstrong, D., Finke, J. H., Bukowski, R. M., and Hamilton, T. A. (1998) The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J. Immunol. 161, 927–932.

    PubMed  CAS  Google Scholar 

  24. Kanegane, C., Sgadari, C., Kanegane, H., et al. (1998) Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J. Leukoc. Biol. 64, 384–392.

    PubMed  CAS  Google Scholar 

  25. Dufour, J. H., Dziejman, M., Liu, M. T., Leung, J. H., Lane, T. E., and Luster, A. D. (2002) IFNgamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168, 3195–3204.

    PubMed  CAS  Google Scholar 

  26. Hancock, W. W., Lu, B., Gao, W., et al. (2000) Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192, 1515–1520.

    Article  PubMed  CAS  Google Scholar 

  27. Smyth, M. J., Crowe, N. Y., Pellicci, D. G., et al. (2002) Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alphagalactosylceramide. Blood 99, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  28. Pilaro, A. M., Taub, D. D., McCormick, K. L., et al. (1994) TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J. Immunol. 153, 333–342.

    PubMed  CAS  Google Scholar 

  29. Marino, M. W., Dunn, A., Grail, D., et al. (1997) Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 8093–8098.

    Article  PubMed  CAS  Google Scholar 

  30. Smyth, M. J., Kelly, J. M., Baxter, A. G., Korner, H., and Sedgwick, J. D. (1998) An essential role for tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J. Exp. Med. 188, 1611–1619.

    Article  PubMed  CAS  Google Scholar 

  31. Arnott, C. H., Scott, K. A., Moore, R. J., et al. (2002) Tumour necrosis factor-alpha mediates tumour promotion via a PKCalpha-and AP-1-dependent pathway. Oncogene 21, 4728–4738.

    Article  PubMed  CAS  Google Scholar 

  32. Smyth, M. J., Johnstone, R. W., Cretney, E., et al. (1999) Multiple deficiencies underlie NK cell inactivity in lymphotoxin-alpha gene-targeted mice. J. Immunol. 163, 1350–1353.

    PubMed  CAS  Google Scholar 

  33. Ito, D., Back, T. C., Shakhov, A. N., Wiltrout, R. H., and Nedospasov, S. A. (1999) Mice with a targeted mutation in lymphotoxin-alpha exhibit enhanced tumor growth and metastasis: impaired NK cell development and recruitment. J. Immunol. 163, 2809–2815.

    PubMed  CAS  Google Scholar 

  34. Alimzhanov, M. B., Kuprash, D. V., Kosco-Vilbois, M. H., et al. (1997) Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci USA 94, 9302–9307.

    Article  PubMed  CAS  Google Scholar 

  35. Hill, G. R., Teshima, T., Rebel, V. I., et al. (2000) The p55 TNF-alpha receptor plays a critical role in T cell alloreactivity. J. Immunol 164, 656–663.

    PubMed  CAS  Google Scholar 

  36. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  37. Nagata, S. and Suda, T. (1995) Fas and Fas ligand: 1pr and gld mutations. Immunol. Today 16, 39–43.

    Article  PubMed  CAS  Google Scholar 

  38. Sayers, T. J., Brooks, A. D., Lee, J. K., et al. (1998) Molecular mechanisms of immune-mediated lysis of murine renal cancer: differential contributions of perforin-dependent versus Fas-mediated pathways in lysis by NK and T cells. J. Immunol. 161, 3957–3965.

    PubMed  CAS  Google Scholar 

  39. Lee, J. K., Sayers, T. J., Brooks, A. D., et al. (2000) IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. J. Immunol. 164, 231–239.

    PubMed  CAS  Google Scholar 

  40. Wiley, S. R., Schooley, K., Smolak, P. J., et al. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682.

    Google Scholar 

  41. Cretney, E., Takeda, K., Yagita, H., Glaccum, M., Peschon, J. J., and Smyth, M. J. (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol. 168, 1356–1361.

    PubMed  CAS  Google Scholar 

  42. Takeda, K., Smyth, M. J., Cretney, E., et al. (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169.

    Article  PubMed  CAS  Google Scholar 

  43. Colombo, M. P. and Trinchieri, G. (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13, 155–168.

    Article  PubMed  CAS  Google Scholar 

  44. D’ Andrea, A., Rengaraju, M., Valiante, N. M., et al. (1992) Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398.

    Article  PubMed  Google Scholar 

  45. Gillessen, S., Carvajal, D., Ling, P., et al. (1995) Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur. J. Immunol. 25, 200–206.

    Article  PubMed  CAS  Google Scholar 

  46. Gately, M. K., Renzetti, L. M., Magram, J., et al. (1998) The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 16, 495–521.

    Article  PubMed  CAS  Google Scholar 

  47. Mattner, F., Magram, J., Ferrante, J., et al. (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur. J. Immunol. 26, 1553–1559.

    Article  PubMed  CAS  Google Scholar 

  48. Magram, J., Connaughton, S. E., Warner, R. R., et al. (1996) IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 4, 471–481.

    Article  PubMed  CAS  Google Scholar 

  49. Wu, C., Ferrante, J., Gately, M. K., and Magram, J. (1997) Characterization of IL-12 receptor betal chain (IL- l2Rbeta 1)-deficient mice: IL-12Rbetal is an essential component of the functional mouse IL-12 receptor. J. Immunol. 159, 1658–1665.

    PubMed  CAS  Google Scholar 

  50. Wu, C., Wang, X., Gadina, M., O’Shea, J. J., Presky, D. H., and Magram, J. (2000) IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J. Immunol. 165, 6221–6228.

    PubMed  CAS  Google Scholar 

  51. Dorman, S. E. and Holland, S. M. (2000) Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 11, 321–333.

    Article  PubMed  CAS  Google Scholar 

  52. Smyth, M. J., Thia, K. Y., Street, S. E., et al. (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668.

    Article  PubMed  CAS  Google Scholar 

  53. Riemensberger, J., Bohle, A., and Brandau, S. (2002) IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin. Exp. Immunol. 127, 20–26.

    Article  PubMed  CAS  Google Scholar 

  54. Grufman, P. and Kane, K. (2000) Innate and adaptive immunity to tumors: IL-12 is required for optimal responses. Eur. J. Immunol. 30, 1088–1093.

    Article  PubMed  CAS  Google Scholar 

  55. Schamhart, D. H., de Boer, E. C., de Reijke, T. M., and Kurth, K. (2000) Urinary cytokines reflecting the immunological response in the urinary bladder to biological response modifiers: their practical use. Eur. Urol. 37 (Suppl. 3), 16–23.

    Article  PubMed  CAS  Google Scholar 

  56. Hashimoto, W., Osaki, T., Okamura, H., et al. (1999) Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand. J. Immunol. 163, 583–589.

    PubMed  CAS  Google Scholar 

  57. Fantuzzi, G., Reed, D. A., and Dinarello, C. A. (1999) IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor. J. Clin. Invest. 104, 761–767.

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura, K., Okamura, H., Wada, M., Nagata, K., and Tamura, T. (1989) Endotoxin-induced serum factor that stimulates gamma interferon production. Infect. Immun. 57, 590–595.

    PubMed  CAS  Google Scholar 

  59. Okamura, H., Tsutsi, H., Komatsu, T., et al. (1995) Cloning of a new cytokine that induces IFNgamma production by T cells. Nature 378, 88–91.

    Article  PubMed  CAS  Google Scholar 

  60. Okamura, H., Tsutsui, H., Kashiwamura, S., Yoshimoto, T., and Nakanishi, K. (1998) Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv. Immunol. 70, 281–312.

    Article  PubMed  CAS  Google Scholar 

  61. Tsutsui, H., Nakanishi, K., Matsui, K., et al. (1996) IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J. Immunol. 157, 3967–3973.

    PubMed  CAS  Google Scholar 

  62. Dao, T., Ohashi, K., Kayano, T., Kurimoto, M., and Okamura, H. (1996) Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell. Immunol. 173, 230–235.

    Article  PubMed  CAS  Google Scholar 

  63. Dao, T., Mehal, W. Z., and Crispe, I. N. (1998) IL-18 augments perform-dependent cytotoxicity of liver NK-T cells. J. Immunol. 161, 2217–2222.

    PubMed  CAS  Google Scholar 

  64. Adachi, O., Kawai, T., Takeda, K., et al. (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150.

    Article  PubMed  CAS  Google Scholar 

  65. Takeda, K., Tsutsui, H., Yoshimoto, T., et al. (1998) Defective NK cell activity and Thl response in IL-18-deficient mice. Immunity 8, 383–390.

    Article  PubMed  CAS  Google Scholar 

  66. Kuida, K., Lippke, J. A., Ku, G., et al. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003.

    Article  PubMed  CAS  Google Scholar 

  67. Hoshino, K., Tsutsui, H., Kawai, T., et al. (1999) Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J. Immunol. 162, 5041–5044.

    PubMed  CAS  Google Scholar 

  68. Thomas, J. A., Allen, J. L., Tsen, M., et al. (1999) Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978–984.

    PubMed  CAS  Google Scholar 

  69. Blazar, B. R., Taylor, P. A., and Vallera, D. A. (1997) CD4+ and CD8+ T cells each can utilize a perform-dependent pathway to mediate lethal graft-versus-host disease in major histocompatibility complex-disparate recipients. Transplantation 64, 571–576.

    Article  PubMed  CAS  Google Scholar 

  70. Braun, M. Y., Lowin, B., French, L., Acha-Orbea, H., and Tschopp, J. (1996) Cytotoxic T cells deficient in both functional fas ligand and perform show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J. Exp. Med. 183, 657–661.

    Article  PubMed  CAS  Google Scholar 

  71. Graubert, T. A., DiPersio, J. F., Russell, J. H., and Ley, T. J. (1997) Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J. Clin. Invest. 100, 904–911.

    Article  PubMed  CAS  Google Scholar 

  72. Tsukada, N., Kobata, T., Aizawa, Y., Yagita, H., and Okumura, K. (1999) Graft-versus-leukemia effect and graft-versus-host disease can be differentiated by cytotoxic mechanisms in a murine model of allogeneic bone marrow transplantation. Blood 93, 2738–2747.

    PubMed  CAS  Google Scholar 

  73. Jiang, Z., Podack, E., and Levy, R. B. (2001) Major histocompatibility complex-mismatched allogeneic bone marrow transplantation using perform and/or Fas ligand double-defective CD4(+) donor T cells: involvement of cytotoxic function by donor lymphocytes prior to graft-versus-host disease pathogenesis. Blood 98, 390–397.

    Article  PubMed  CAS  Google Scholar 

  74. Schmaltz, C., Alpdogan, O., Horndasch, K. J., et al. (2001) Differential use of Fas ligand and perform cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 97, 2886–2895.

    Article  PubMed  CAS  Google Scholar 

  75. Pan, L., Teshima, T., Hill, G. R., et al. (1999) Granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation maintains graft-versus-leukemia effects through a perforindependent pathway while preventing graft-versus-host disease. Blood 93, 4071–4078.

    PubMed  CAS  Google Scholar 

  76. Hsieh, M. H. and Korngold, R. (2000) Differential use of FasL- and perform-mediated cytolytic mechanisms by T-cell subsets involved in graft-versus-myeloid leukemia responses. Blood 96, 1047–1055.

    PubMed  CAS  Google Scholar 

  77. Hsieh, M. H., Patterson, A. E., and Korngold, R. (2000) T-cell subsets mediate graft-versus-myeloid leukemia responses via different cytotoxic mechanisms. Biol. Blood Marrow Transplant. 6, 231–240.

    Article  PubMed  CAS  Google Scholar 

  78. Lan, F., Zeng, D., Huie, P., Higgins, J. P., and Strober, S. (2001) Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor-alphabeta. Blood 97, 3458–3465.

    Article  PubMed  CAS  Google Scholar 

  79. Ferrara, J. L., Cooke, K. R., Pan, L., and Krenger, W. (1996) The immunopathophysiology of acute graft-versus-host-disease. Stem Cells 14, 473–489.

    Article  PubMed  CAS  Google Scholar 

  80. Dey, B. R., Yang, Y. G., Szot, G. L., Pearson, D. A., and Sykes, M. (1998) Interleukin-12 inhibits graft-versus-host disease through a Fas-mediated mechanism associated with alterations in donor T-cell activation and expansion. Blood 91, 3315–3322.

    PubMed  CAS  Google Scholar 

  81. Reddy, P., Teshima, T., Kukuruga, M., et al. (2001) Interleukin-18 regulates acute graft-versushost disease by enhancing Fas-mediated donor T cell apoptosis. J. Exp. Med. 194, 1433–1440.

    Article  PubMed  CAS  Google Scholar 

  82. Murphy, W. J., Welniak, L. A., Taub, D. D., et al. (1998) Differential effects of the absence of interferon-gamma and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J. Clin. Invest. 102, 1742–1748.

    Article  PubMed  CAS  Google Scholar 

  83. Welniak, L. A., Blazar, B. R., Anver, M. R., Wiltrout, R. H., and Murphy, W. J. (2000) Opposing roles of interferon-gamma on CD4+ T cell-mediated graft-versus-host disease: effects of conditioning. Biol. Blood Marrow Transplant. 6, 604–612.

    Article  PubMed  CAS  Google Scholar 

  84. Ellison, C. A., Fischer, J. M., HayGlass, K. T., and Gartner, J. G. (1998) Murine graft-versus-host disease in an Fl-hybrid model using IFN-gamma gene knockout donors. J. Immunol. 161, 631–640.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wiltrout, R.H., Wigginton, J.M., Murphy, W.J. (2003). The Use of Cytokine Knockout Mice in Cancer Research. In: Fantuzzi, G. (eds) Cytokine Knockouts. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-405-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-405-4_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-415-9

  • Online ISBN: 978-1-59259-405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics