Skip to main content

Targeting the TGF-β Pathway In Vivo

Defining Complex Roles for TGF-β Signaling in Immune Function, Wound Healing, and Carcinogenesis

  • Chapter
Cytokine Knockouts

Part of the book series: Contemporary Immunology ((CONTIM))

  • 382 Accesses

Abstract

Transforming growth factor-ß1 (TGF-(ß1) is a 25-kDa homodimeric peptide and the prototype in a family of structurally related but functionally distinct regulatory proteins. These TGF-ß isoforms (TGF-ß1, -ß2, and -ß3 in mammals) bear some structural relationship to a much larger family of peptide signaling molecules, with over 45 known members in this superfamily. The high degree of similarity that exists at the structural level among the isoforms of these growth factors is also accompanied by a significant overlap in function, as defined by many in vitro model systems. Moreover, the signaling pathway is not strictly linear in that there is extensive crosstalk with components of other signaling cascades (Fig. 1), with the TGF-ßs typically influencing the manner in which cells interpret other signals in their environment. The evolution of more sophisticated functional genomics approaches has been instrumental in generating unique perspectives into the mechanisms governing the activity of the members of the TGF-ß family. The studies outlined in this review serve to demonstrate how these models are more clearly defining the function of this pathway in immune homeostasis, wound healing, and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barral-Netto, M., Barra], A., Brownell, C. E., et al. (1992) Transforming growth factor-beta in leishmanial infection: a parasite escape mechanism. Science 257, 545–548.

    Article  CAS  PubMed  Google Scholar 

  2. Strober, W., Kelsall, B., Fuss, I., et al. (1997) Reciprocal IFN-gamma and TGF-(3 responses regulate the occurrence of mucosal inflammation. Immunol. Today 18, 61–64.

    Article  CAS  PubMed  Google Scholar 

  3. Tang, J., Nuccie, B. L., Ritterman, I., Liesveld, J. L., Abboud, C. N., and Ryan, D. H. (1997) TGF-13 down-regulates stromal IL-7 secretion and inhibits proliferation of human B cell precursors. J. Immunol. 159, 117–125.

    CAS  PubMed  Google Scholar 

  4. Espevik, T., Waage, A., Faxvaag, A., and Shalaby, M. R. (1990) Regulation of interleukin-2 and interleukin-6 production from T cells: involvement of interleukin-1 beta and transforming growth factor-beta. Cell Immunol. 126, 47–56.

    Article  CAS  PubMed  Google Scholar 

  5. Fargeas, C., Wu, C. Y., Nakajima, T., Cox, D., Nutman, T., and Delespesse, G. (1992) Differential effect of transforming growth factor beta on the synthesis of Thl-and Th2-like lymphokines by human T lymphocytes. Eur. J. Immunol. 22, 2173–2176.

    Article  CAS  PubMed  Google Scholar 

  6. Wahl, S. M. (1992) Transforming growth factor beta (TGF-ß) in inflammation: a cause and a cure. J. Clin. Immunol. 12, 61–74.

    Article  CAS  PubMed  Google Scholar 

  7. Bogdan, C. and Nathan, C. (1993) Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann. NYAcad. Sci. 685, 713–739.

    Article  CAS  Google Scholar 

  8. Riedl, E., Stockl, J., Majdic, O., et al. (2000) Functional involvement of E-cadherin in TGF-beta 1-induced cell cluster formation of in vitro developing human Langerhans-type dendritic cells. J. Immunol. 165, 1381–1386.

    CAS  PubMed  Google Scholar 

  9. Kehrl, J. H., Wakefield, L. M., Roberts, A. B., et al. (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163, 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  10. Swain, S. L., Huston, G., Tonkonogy, S., and Weinberg, A. (1991) Transforming growth factor-beta and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J. Immunol. 147, 2991–3000.

    CAS  PubMed  Google Scholar 

  11. Ahuja, S. S., Paliogianni, F., Yamada, H., Balow, J. E., and Boumpas, D. T. (1993) Effect of transforming growth factor-beta on early and late activation events in human T cells. J. Immunol. 150, 3109–3118.

    CAS  PubMed  Google Scholar 

  12. Cerwenka, A., Bevec, D., Majdic, O., Knapp, W., and Holter, W. (1994) TGF-(3 1 is a potent inducer of human effector T cells. J. Immunol. 153, 4367–4377.

    CAS  PubMed  Google Scholar 

  13. Cerwenka, A., Kovar, H., Majdic, O., and Holter, W. (1996) Fas-and activation-induced apoptosis are reduced in human T cells preactivated in the presence of TGF-(31. J. Immunol. 156, 459–464.

    CAS  PubMed  Google Scholar 

  14. Kehrl, J. H., Roberts, A. B., Wakefield, L. M., et al. (1986) Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J. Immunol. 137, 3855–3860.

    CAS  PubMed  Google Scholar 

  15. Coffman, R. L., Lebman, D. A., and Shrader, B. (1989) Transforming growth factor beta specifcally enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170, 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  16. Annunziato, F., Comi, L., Liotta, F., et al. (2002) Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med. 196, 379–387.

    Article  CAS  PubMed  Google Scholar 

  17. Yamagiwa, S., Gray, J. D., Hashimoto, S., and Horwitz, D. A. (2001) A role for TGF-(3 in the generation and expansion of CD4+ CD25+ regulatory T cells from human peripheral blood. J. Immunol. 166, 7282–7289.

    CAS  PubMed  Google Scholar 

  18. Piccirillo, C. A., Letterio, J. J., Thornton, A. M., et al. (2002) CD4(+)CD25(+) Regulatory T cells can mediate suppressor function in the absence of transforming growth factor betal production and responsiveness. J. Exp. Med. 196, 237–246.

    Article  CAS  PubMed  Google Scholar 

  19. Shevach, E. M. (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400.

    CAS  PubMed  Google Scholar 

  20. Letterio, J. J. and Roberts, A. B. (1998) Regulation of immune responses by TGF-(3. Annu. Rev. Immunol. 16, 137–161.

    Article  CAS  PubMed  Google Scholar 

  21. Gorelik, L. and Flavell, R. A. (2002) Transforming growth factor-ß in T-cell biology. Nat. Immunol. Rev. 2, 46–53.

    Article  CAS  Google Scholar 

  22. Kulkarni, A. B, Huh, C. G., Becker, D., et al. (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774.

    Article  CAS  PubMed  Google Scholar 

  23. Shull, M. M., Ormsby, I., Kier, A. B., et al. (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359, 693–699.

    Article  CAS  PubMed  Google Scholar 

  24. Doetschman, T. (1999) Interpretation of phenotype in genetically engineered mice. Lab. Anim. Sci. 49, 137–143.

    CAS  PubMed  Google Scholar 

  25. Blokzijl, A., ten Dijke, P., and Ibanez, C. (2002) Physical and functional interaction between GATA-3 and Smad3 allows TGF-ß regulation of GATA target genes. Curr. Biol. 12, 35–45.

    Article  CAS  PubMed  Google Scholar 

  26. Gorelik, L., Constant, S., and Flavell, R. A. (2002) Mechanism of transforming growth factor-13induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505.

    Article  CAS  PubMed  Google Scholar 

  27. Gorelik, L., Fields, P. E., and Flavell, R. A. (2000) Cutting edge: TGF-(3 inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol. 165, 4773–4777.

    CAS  PubMed  Google Scholar 

  28. Heath, V. L., Murphy, E. E., Crain, C., Tomlinson, M. G., and O’Garra, A. (2000) TGF-131 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur. J. Immunol. 30, 2639–2649.

    Article  CAS  PubMed  Google Scholar 

  29. van Ginkel, F. W., Wahl, S. M., Kearney, J. F., et al. (1999) Partial IgA-deficiency with increased Th2-type cytokines in TGF-beta 1 knockout mice. J. Immunol. 163, 1951–1957.

    PubMed  Google Scholar 

  30. Barone, K. S., Tolarova, D. D., Ormsby, I., Doetschman, T., and Michael, J. G. (1998) Induction of oral tolerance in TGF-beta 1 null mice. J. Immunol. 161, 154–160.

    CAS  PubMed  Google Scholar 

  31. Fukaura, H., Kent, S. C., Pietrusewicz, M. J., Khoury, S. J., Weiner, H. L., and Hafler, D. A. (1996) Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-betal-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J. Clin. Invest. 98, 70–77.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A., and Weiner, H. L. (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240.

    Article  CAS  PubMed  Google Scholar 

  33. Rizzo, L. V., Morawetz, R. A., Miller-Rivero, N. E., et al. (1999) IL-4 and IL-10 are both required for the induction of oral tolerance. J. Immunol. 162, 2613–2622.

    CAS  PubMed  Google Scholar 

  34. Tang, B., Bottinger, E. P., Jakowlew, S. B., et al. (1998) Transforming growth factor-beta] is a new form of tumor suppressor with true haploid insufficiency. Nat. Med. 4, 802–807.

    Article  CAS  PubMed  Google Scholar 

  35. Koglin, J., Glysing-Jensen, T., Raisanen-Sokolowski, A., and Russell, M. E. (1998) Immune sources of transforming growth factor-betal reduce transplant arteriosclerosis: insight derived from a knockout mouse model. Circ. Res. 83, 652–660.

    Google Scholar 

  36. Nakamura, K., Kitani, A., and Strober, W. (2001). Cell contact-dependent immunosuppression by CD4+ CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 194, 629–644.

    Article  CAS  PubMed  Google Scholar 

  37. Fortunel, N., Hatzfeld, J., Kisselev, S., et al. (2000). Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-(3 type II receptor in a short-term in vitro assay. Stem Cells 18, 102–111.

    Article  CAS  PubMed  Google Scholar 

  38. Fortunel, N. O., Hatzfeld, A., and Hatzfeld, J. A. (2000). Transforming growth factor-G3: pleiotropic role in the regulation of hematopoiesis. Blood 96, 2022–2036.

    CAS  PubMed  Google Scholar 

  39. Keller, J. R., McNiece, I. K., Sill, K. T., et al. (1990) Transforming growth factor (3 directly regulates primitive murine hematopoietic cell proliferation. Blood 75, 596–602.

    CAS  PubMed  Google Scholar 

  40. Soma, T., Yu, J. M., and Dunbar, C. E. (1996) Maintenance of murine long-term repopulating stem cells in ex vivo culture is affected by modulation of transforming growth factor-ß but not macrophage inflammatory protein-la activities. Blood 87, 4561–4567.

    CAS  PubMed  Google Scholar 

  41. Letterio, J. J., Geiser, A. G., Kulkarni, A. B., et al. (1996) Autoimmunity associated with TGF-ßl-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 98, 2109–2119.

    Article  CAS  PubMed  Google Scholar 

  42. Shah, A. H., Tabayoyong, W. B., Kimm, S. Y., Kim, S. J., Van Parijs, L., and Lee, C. (2002) Reconstitution of lethally irradiated adult mice with dominant negative TGF-beta type II receptortransduced bone marrow leads to myeloid expansion and inflammatory disease. J. Immunol. 169, 3485–3491.

    CAS  PubMed  Google Scholar 

  43. Leveen, P., Larsson, J., Ehinger, M., et al. (2002) Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 100, 560–568.

    Article  CAS  PubMed  Google Scholar 

  44. Kanamaru, Y., Nakao, A., Mamura, M., et al. (2001) Blockade of TGF-beta signaling in T cells prevents the development of experimental glomerulonephritis. J. Immunol. 166, 2818–2823.

    CAS  PubMed  Google Scholar 

  45. Nakao, A., Miike, S., Hatano, M., et al. (2000) Blockade of transforming growth factor beta/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med. 192, 151–158.

    Article  CAS  PubMed  Google Scholar 

  46. Lucas, P. J., Kim, S. J., Melby, S. J., and Gress, R. E. (2000) Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta H receptor. J. Exp. Med. 191, 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  47. Gorelik, L. and Flavell, R. A. (2000). Abrogation of TGF-(3 signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181.

    Article  CAS  PubMed  Google Scholar 

  48. Gorelik, L. and Flavell, R. A. (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat. Med. 7, 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  49. Bottinger, E. P., Letterio, J. J., and Roberts, A. B. (1997) Biology of TGF-beta in knockout and transgenic mouse models. Kidney Int. 51, 1355–1360.

    Article  CAS  PubMed  Google Scholar 

  50. Strobl, H., Riedl, E., Scheinecker, C., et al. (1996) TGF-13 1 promotes in vitro development of dendritic cells from CD34C hemopoietic progenitors. J. Immunol. 157, 1499–1507.

    CAS  PubMed  Google Scholar 

  51. Riedl, E., Strobl, H., Majdic, O., and Knapp, W. (1997) TGF-13 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J. Immunol. 158, 1591–1597.

    CAS  PubMed  Google Scholar 

  52. Borkowski, T. A., Letterio, J. J., Farr, A. G., and Udey, M. C. (1996) A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417–2422.

    Article  CAS  PubMed  Google Scholar 

  53. Borkowski, T. A., Letterio, J. J., Mackall, C. L., et al. (1997) A role for TGF-ß1 in Langerhans cell biology: further characterization of the epidermal Langerhans cell defect in TGF- 31 null mice. J. Clin. Invest. 100, 575–581.

    Article  CAS  PubMed  Google Scholar 

  54. Thomas, R. M., Belsito, D. V., Huang, C., et al. (2001) Appearance of Langerhans cells in the epidermis of TGF-(31(-/-) SCID mice: paracrine and autocrine effects of transforming growth factor-beta 1 and -beta2. J. Invest. Dermatol. 117, 1574–1580.

    Article  CAS  PubMed  Google Scholar 

  55. Hoying, J. B., Yin, M., Diebold, R., Ormsby, I., Becker, A., and Doetschman, T. (1999) Transforming growth factor betal enhances platelet aggregation through a non-transcriptional effect on the fibrinogen receptor. J. Biol. Chem. 274, 31008–31013.

    Article  CAS  PubMed  Google Scholar 

  56. Yang, Y. A., Dukhanina, O., Tang, B., et al. (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615.

    CAS  PubMed  Google Scholar 

  57. Singer, A. J. and Clark, R. A. (1999) Cutaneous wound healing. N. Engl. J. Med. 341, 738–746.

    Article  CAS  PubMed  Google Scholar 

  58. Roberts, A. B. (1995) Transforming growth factor-beta: activity and efficacy in animal models of wound healing. Wound Rep. Reg. 3, 408–418.

    Article  CAS  Google Scholar 

  59. Sporn, M. B., Roberts, A. B., Shull, J. H., Smith, J. M., Ward, J. M., and Sodek, J. (1983) Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo. Science 219, 1329–1331.

    Article  CAS  PubMed  Google Scholar 

  60. Roberts, A. B., Sporn, M. B., Assoian, R. K., et al. (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83, 4167–4171.

    Article  CAS  PubMed  Google Scholar 

  61. Yang, X., Letterio, J. J., Lechleider, R. J., et al. (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 18, 1280–1291.

    Article  CAS  PubMed  Google Scholar 

  62. Brown, R. L., Ormsby, I., Doetschman, T. C., and Greenhalgh, D.G. (1995) Wound healing in the transforming growth factor-431-deficient mouse. Wound Rep. Reg. 3, 25–36.

    Article  CAS  Google Scholar 

  63. Koch, R. M., Roche, N. S., Parks, W. T., Ashcroft, G. S., Letterio, J. J., and Roberts, A. B. (2000) Incisional wound healing in transforming growth factor-betal null mice. Wound Repair Regen. 8, 179–191.

    Article  CAS  PubMed  Google Scholar 

  64. Crowe, M. J., Doetschman, T., and Greenhalgh, D. G. (2000) Delayed wound healing in immunodeficient TGF-beta 1 knockout mice. J. Invest. Dermatol. 115, 3–11.

    Article  CAS  PubMed  Google Scholar 

  65. Wakefield, L. M. and Roberts, A. B. (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29.

    Article  CAS  PubMed  Google Scholar 

  66. Piek, E., Ju, W. J., Heyer, J., et al. (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J. Biol. Chem. 276, 19945–19953.

    Article  CAS  PubMed  Google Scholar 

  67. Ashcroft, G. S., Yang, X., Glick, A. B., et al. (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1, 260–266.

    Article  CAS  PubMed  Google Scholar 

  68. Arabshahi, A., Major, C. D., Aburime, E. E., et al. (2002) Interference with TGF-(3/activin signaling results in accelerated healing of wounds compromised by irradiation. Submitted.

    Google Scholar 

  69. Verrecchia, F., Chu, M. L., and Mauviel, A. (2001) Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J. Biol. Chem. 276, 17058–17062.

    Article  CAS  PubMed  Google Scholar 

  70. Hocevar, B. A., Brown, T. L., and Howe, P. H. (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18, 1345–1356.

    Article  CAS  PubMed  Google Scholar 

  71. Ashcroft, G. S. and Roberts, A. B. (2000) Loss of Smad3 modulates wound healing. Cytokine Growth Factor Rev. 11, 125–131.

    Article  CAS  PubMed  Google Scholar 

  72. Glick, A. B., Kulkarni, A. B., Tennenbaum, T., et al. (1993) Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. USA 90, 6076–6080.

    Article  CAS  PubMed  Google Scholar 

  73. Glick, A. B., Lee, M. M., Darwiche, N., Kulkarni, A. B., Karlsson, S., and Yuspa, S. H. (1994) Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev. 8, 2429–2440.

    Article  CAS  PubMed  Google Scholar 

  74. Engle, S. J., Haying, J. B., Boivin, G. P., Ormsby, I., Gartside, P. S., and Doetschman, T. (1999) Transforming growth factor betal suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 59, 3379–3386.

    CAS  PubMed  Google Scholar 

  75. Glick, A. B., Weinberg, W. C., Wu, I. H., Quan, W., and Yuspa, S. H. (1996) Transforming growth factor beta 1 suppresses genomic instability independent of a GI arrest, p53, and Rb. Cancer Res. 56, 3645–3650.

    CAS  PubMed  Google Scholar 

  76. Oshima, M., Oshima, H., and Taketo, M. M. (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dey. Biol. 179, 297–302.

    Article  CAS  Google Scholar 

  77. Im, Y. H., Kim, H. T., Kim, I. Y., et al. (2001) Heterozygous mice for the transforming growth factor-beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis. Cancer Res. 61, 6665–6668.

    CAS  PubMed  Google Scholar 

  78. Miyaki, M., Iijima, T., Konishi, M., et al. (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18, 3098–3103.

    Article  CAS  PubMed  Google Scholar 

  79. Howe, J. R., Roth, S., Ringold, J. C., et al. (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088.

    Article  CAS  PubMed  Google Scholar 

  80. Friedl, W., Kruse, R., Uhlhaas, S., et al. (1999) Frequent 4-bp deletion in exon 9 of the SMAD4/ MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes Cancer 25, 403–406.

    Article  CAS  PubMed  Google Scholar 

  81. Taketo, M. M. and Takaku, K. (2000) Gastro-intestinal tumorigenesis in Smad4 mutant mice. Cytokine Growth Factor Rev. 11, 147–157.

    Article  CAS  PubMed  Google Scholar 

  82. Hahn, S. A., Schutte, M., Hogue, A. T. M. S., et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18821.1. Science 271, 350–353.

    Article  CAS  PubMed  Google Scholar 

  83. Hata, A., Shi, Y., and Massague, J. (1998) TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Mol. Med. Today 4, 257–262.

    Article  CAS  PubMed  Google Scholar 

  84. Weinstein, M., Yang, X., Li, C., Xu, X., Gotay, J., and Deng, C. X. (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc. Natl. Acad. Sci. USA 95, 9378–9383.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu, Y., Richardson, J. A., Parada, L. F., and Graff, J. M. (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94, 703–714.

    Article  CAS  PubMed  Google Scholar 

  86. Datto, M. B., Frederick, J. P., Pan, L., Barton, A. J., Zhuang, Y., and Wang, X. F. (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol. Cell Biol. 19, 2495–2504.

    CAS  PubMed  Google Scholar 

  87. Philipp-Staheli, J., Kim, K.-H., Payne, S. R., et al. (2002) Pathway-specific tumor suppression: reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice. Cancer Cell 1, 355–368.

    Article  PubMed  Google Scholar 

  88. Weinstein, M., Yang, X., and Deng, C. (2000) Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev. 11, 49–58.

    Article  CAS  PubMed  Google Scholar 

  89. Hahm, K. B., Lee, K. M., Kim, Y. B., et al. (2002) Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment. Pharmacol. Ther. 16 (Suppl. 2), 115–127.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolfraim, L., Mamura, M., Roberts, A., Letterio, J.J. (2003). Targeting the TGF-β Pathway In Vivo. In: Fantuzzi, G. (eds) Cytokine Knockouts. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-405-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-405-4_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-415-9

  • Online ISBN: 978-1-59259-405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics