Skip to main content

IL-15

Insights from Characterizing IL-15-Deficient Mice

  • Chapter
Cytokine Knockouts

Summary

Interleukin-15 (IL-15) is a 4-helix bundle cytokine with similar biologic properties as IL-2, consistent with their shared receptor subunits. Specificity for IL-15 and IL-2 is provided by unique private a-chain subunits. Studies to date examining the biology of IL-15 have identified several roles for this cytokine in both the differentiation as well as function of immune cells. IL-15 is important for NK cell, NK-T-cell, CD8 T-cell, and intestinal epithelial lymphocyte (IEL) growth and function. Recently, overexpression of IL-15 in diseased tissue has provided evidence for a potential role for IL-15 in inflammation. Mice that are genetically deficient in IL-15 or its unique receptor subunit IL-15Ra have recently been generated. These mice provide us with valuable tools to address the importance of IL-15 in immune responses. This chapter focuses on studies with the IL-15 deficient mice to address specific roles for IL-15 in the generation and function of immune cells. Wherever applicable, comparisons are provided to studies in IL-15Ra deficient mice.

Analysis of IL-15 and IL-15Ra deficient mice has shown that IL-15 is a crucial factor for the maturation, survival, and activation of NK cells. Furthermore, IL-15 is important for the survival of NK-T cells, differentiation, and activation of IEL and dendritic epidermal T-cells (DETC). Although the generation of primary and memory CD8 T-cell responses were not compromised significantly in IL-15 deficient mice, IL-15 plays an important role in maintaining memory CD8 T-cell, but not memory CD4 T-cell, homeostasis. IL-15 is crucial for the long-term survival of memory CD8 T-cells and for the bystander proliferation of naïve CD8 T-cells. Furthermore, APC from both IL-15 and IL-I5Ra deficient mice are defective in both IFNy and NO production, suggesting that IL-15 is important for both innate (APC, NK) as well as adaptive immunity (CD8 T-cells). Characterization of the IL-15 deficient mice has also provided another surprising function of IL-15 in the survival of kidney epithelial cells. The chapter also provides a summary of in vivo inflammation experiments performed in IL-15 deficient mice to identify a potential role for IL-15 in inflammatory disease. Although IL-15 deficient mice have normal DTH and contact hypersensitivity responses, they are increasingly susceptible to colitis suggesting that IL-15 may play an anti-inflammatory role in gut responses. Based on these studies, IL-15 or its unique IL-15Ra chain could serve as targets for therapy in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton, J. D., Bamford, R. N., Peters, C., et al. (1994) A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. USA 91, 4935–4939.

    Article  CAS  PubMed  Google Scholar 

  2. Grabstein, K. H., Eisenman, J., Shanebeck, K., et al. (1994) Cloning of a T cell growth factor that interacts with the 13 chain of the interleukin-2 receptor. Science 264, 965–968.

    Article  CAS  PubMed  Google Scholar 

  3. Bazan, J. F. (1990) Haemopoietic receptors and helical cytokines. Immunol. Today 11, 350–354.

    Article  CAS  PubMed  Google Scholar 

  4. Bamford, R. N., Grant, A. J., Burton, J. D., et al. (1994) The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. USA 91, 4940–4944.

    Article  CAS  PubMed  Google Scholar 

  5. Carson, W. E., Giri, J. G., Lindemann, M. J., et al. (1994) Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  6. Giri, J. G., Ahdieh, M., Eisenman, J., et al. (1994) Utilization of the 13 and y chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830.

    Google Scholar 

  7. Giri, J. G., Kumaki, S., Ahdieh, M., et al. (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the a chain of the IL-2 receptor. EMBO J. 14, 3654–3663.

    CAS  PubMed  Google Scholar 

  8. Anderson, D. M., Kumaki, S., Ahdieh, M., et al. (1995) Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J. Biol. Chem. 270, 29862–29869.

    Article  CAS  PubMed  Google Scholar 

  9. Fehniger, T. A. and Caligiuri, M. A. (2001) Interleukin 15: biology and relevance to human disease. Blood 97, 14–32.

    Article  CAS  PubMed  Google Scholar 

  10. Waldmann, T. A., Dubois, S., and Tagaya, Y. (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110.

    CAS  PubMed  Google Scholar 

  11. Kundig, T. M., Schorle, H., Bachmann, M. F., Hengartner, H., Zinkernagel, R. M., and Horak, I. (1993) Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki, H., Kundig, T. M., Furlonger, C., et al. (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268, 1472–1476.

    Article  CAS  PubMed  Google Scholar 

  13. Willerford, D. M., Chen, J., Ferry, J. A., Davidson, L., Ma, A., and Alt, F. W. (1995) Interleukin-2 receptor a chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, H., Duncan, G. S., Takimoto, H., and Mak, T. W. (1997) Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor (3 chain. J. Exp. Med. 185, 499–505.

    Article  CAS  PubMed  Google Scholar 

  15. Ohteki, T., Ho, S., Suzuki, H., Mak, T. W., and Ohashi, P. S. (1997) Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T cell receptor-alpha beta+ cell development. J. Immunol. 159, 5931–5935.

    CAS  PubMed  Google Scholar 

  16. Boesteanu, A., De Silva, A. D., Nakajima, H., Leonard, W. J., Peschon, J. J., and Joyce, S. (1997) Distinct roles for signals relayed through the common cytokine receptor y chain and interleukin 7 receptor a chain in natural T cell development. J. Exp. Med. 186, 331–336.

    Article  CAS  PubMed  Google Scholar 

  17. Di Santo, J. P., Colucci, F., and Guy-Grand, D. (1998) Natural killer and T cells of innate and adaptive immunity: lymphoid compartments with different requirements for common gamma chain-dependent cytokines. Immunol. Rev. 165, 29–38.

    Article  CAS  PubMed  Google Scholar 

  18. Mrozek, E., Anderson, P., and Caligiuri, M. A. (1996) Role of interleukin-l5 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632–2640.

    CAS  PubMed  Google Scholar 

  19. Puzanov, I. J., Bennett, M., and Kumar, V. (1996) IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol. 157, 4282–4285.

    CAS  PubMed  Google Scholar 

  20. Ohteki, T., Yoshida, H., Matsuyama, T., Duncan, G. S., Mak, T. W., and Ohashi, P. S. (1998) The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972.

    Article  CAS  PubMed  Google Scholar 

  21. Inagaki-Ohara, K., Nishimura, H., Mitani, A., and Yoshikai, Y. (1997) Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing gamma delta T cell receptor in mice. Eur. J. Immunol. 27, 2885–2891.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X., Sun, S., Hwang, I., Tough, D. F., and Sprent, J. (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599.

    Article  CAS  PubMed  Google Scholar 

  23. Quinn, L. S., Haugk, K. L., and Grabstein, K. H. (1995) Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology 136, 3669–3672.

    Article  CAS  PubMed  Google Scholar 

  24. Ogata, Y., Kukita, A., Kukita, T., et al. (1999) A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2../. Immunol. 162, 2754–2760.

    CAS  Google Scholar 

  25. Tagaya, Y., Burton, J. D., Miyamoto, Y., and Waldmann, T. A. (1996) Identification of a novel receptor/signal transduction pathway for IL-15/T in mast cells. EMBO J. 15, 4928–4939.

    CAS  PubMed  Google Scholar 

  26. Reinecker, H. C., MacDermott, R. P., Mirau, S., Dignass, A., and Podolsky, D. K. (1996) Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111, 1706–1713.

    Article  CAS  PubMed  Google Scholar 

  27. Bulfone-Pau, S. S., Bulanova, E., Pohl, T., et al. (1999) Death deflected: IL-15 inhibits TNFalpha-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Ralpha chain. FASEB J. 13, 1575–1585.

    Google Scholar 

  28. Kennedy, M. K., Glaccum, M., Brown, S. N., et al. (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice [see comments]. J. Exp. Med. 191, 771–780.

    Article  CAS  PubMed  Google Scholar 

  29. Lodolce, J. P., Boone, D. L., Chai, S., et al. (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, D. M., Johnson, L., Glaccum, M. B., et al. (1995) Chromosomal assignment and genomic structure of Il15. Genomics 25, 701–706.

    Article  CAS  PubMed  Google Scholar 

  31. Krause, H., Jandrig, B., Wernicke, C., Bulfone-Paus, S., Pohl, T., and Diamantstein, T. (1996) Genomic structure and chromosomal localization of the human interleukin 15 gene (IL-15). Cytokine 8, 667–674.

    Article  CAS  PubMed  Google Scholar 

  32. Williams, N. S., Moore, T. A., Schatzle, J. D., et al. (1997) Generation of lytic natural killer 1.1+, Ly-49- cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J. Exp. Med. 186, 1609–1614.

    Article  CAS  PubMed  Google Scholar 

  33. Williams, N. S., Klem, J., Puzanov, I. J., Sivakumar, P. V., Bennett, M., and Kumar, V. (1999) Differentiation of NK1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells. J. Immunol. 163, 2648–2656.

    CAS  PubMed  Google Scholar 

  34. Cooper, M. A., Bush, J. E., Fehniger, T. A., et al. (2002) In vivo evidence for a dependence on interleukin-15 for natural killer cell survival. Blood 10, 3633–3638.

    Article  Google Scholar 

  35. Edelbaum, D., Mohamadzadeh, M., Bergstresser, P. R., Sugamura, K., and Takashima, A. (1995) Interleukin (IL)-15 promotes the growth of murine epidermal gamma delta T cells by a mechanism involving the beta-and gamma c-chains of the IL- 2 receptor. J. Invest. Dermatol. 105, 837–843.

    Article  CAS  PubMed  Google Scholar 

  36. Kawai, K., Suzuki, H., Tomiyama, K., Minagawa, M., Mak, T. W., and Ohashi, P. S. (1998) Requirement of the IL-2 receptor beta chain for the development of Vgamma3 dendritic epidermal T cells. J. Invest. Dermatol. 110, 961–965.

    Article  CAS  PubMed  Google Scholar 

  37. Ye, S. K., Maki, K., Lee, H. C., et al. (2001) Differential roles of cytokine receptors in the development of epidermal gamma delta T cells. J. Immunol. 167, 1929–1934.

    CAS  PubMed  Google Scholar 

  38. De Creus, A., Van Beneden, K., Stevenaert, F., Debacker, V., Plum, J., and Leclercq, G. (2002) Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-l-deficient mice. J. Immunol. 168, 6486–6493.

    PubMed  Google Scholar 

  39. Karupiah, G., Woodhams, C. E., Blanden, R. V., and Ramshaw, I. A. (1991) Immunobiology of infection with recombinant vaccinia virus encoding murine IL-2. Mechanisms of rapid viral clearance in immunocompetent mice. J. Immunol. 147, 4327–4332.

    CAS  PubMed  Google Scholar 

  40. Buller, R. M. and Palumbo, G. J. (1991) Poxvirus pathogenesis. Microbiol. Rev. 55, 80–122.

    CAS  PubMed  Google Scholar 

  41. Ruby, J. and Ramshaw, I. (1991) The antiviral activity of immune CD8+ T cells is dependent on interferon-gamma. Lymphokine Cytokine Res. 10, 353–358.

    CAS  PubMed  Google Scholar 

  42. Schluns, K. S., Williams, K., Ma, A., Zheng, X. X., and Lefrancois, L. (2002) Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831.

    CAS  PubMed  Google Scholar 

  43. Becker, T. C., Wherry, E. J., Boone, D., et al. (2002) Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548.

    Article  CAS  PubMed  Google Scholar 

  44. Murali-Krishna, K., Lau, L. L., Sambhara, S., Lemonnier, F., Altman, J., and Ahmed, R. (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381.

    Article  CAS  PubMed  Google Scholar 

  45. Swain, S. L., Hu, H., and Huston, G. (1999) Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383.

    Article  CAS  PubMed  Google Scholar 

  46. Kassiotis, G., Garcia, S., Simpson, E., and Stockinger, B. (2002) Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat. Immunol. 3, 244–250.

    Article  CAS  PubMed  Google Scholar 

  47. Rocha, B. (2002) Requirements for memory maintenance. Nat. Immunol. 3, 209–210.

    Article  CAS  PubMed  Google Scholar 

  48. Yajima, T., Nishimura, H., Ishimitsu, R., et al. (2002) Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J. Immunol. 168, 1198–1203.

    CAS  PubMed  Google Scholar 

  49. Fehniger, T. A., Suzuki, K., Ponnappan, A., et al. (2001) Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–231.

    Article  CAS  PubMed  Google Scholar 

  50. Goldrath, A. W., Sivakumar, P. V., Glaccum, M., et al. (2002) Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  51. Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J., and Carbone, F. R. (1994) T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27.

    Google Scholar 

  52. Tan, J. T., Ernst, B., Kieper, W. C., LeRoy, E., Sprent, J., and Surh, C. D. (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532.

    Google Scholar 

  53. Lodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M., and Ma, A. (2001) T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J. Exp. Med. 194, 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  54. Miller, R. E., Jones, J., Le, T., et al. (2002) 4–1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40dependent manner. J. Immunol. 169, 1792–1800.

    Google Scholar 

  55. Kim, Y. S., Maslinski, W., Zheng, X. X., et al. (1998) Targeting the IL-15 receptor with an antagonist IL-15 mutant/Fc gamma2a protein blocks delayed-type hypersensitivity. J. Immunol. 160, 5742–5748.

    CAS  PubMed  Google Scholar 

  56. Kehren, J., Desvignes, C., Krasteva, M., et al. (1999) Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity. J. Exp. Med. 189, 779–786.

    Article  CAS  PubMed  Google Scholar 

  57. Kaminski, M. J., Bergstresser, P. R., and Takashima, A. (1993) In vivo activation of mouse dendritic epidermal T cells in sites of contact dermatitis. Eur. J. Immunol. 23, 1715–1718.

    Article  CAS  PubMed  Google Scholar 

  58. Shiohara, T. and Moriya, N. (1997) Epidermal T cells: their functional role and disease relevance for dermatologists. J. Invest. Dermatol. 109, 271–275.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M., and Tabira, T. (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 186, 1677–1687.

    Article  CAS  PubMed  Google Scholar 

  60. Shi, F. D., Takeda, K., Akira, S., Sarvetnick, N., and Ljunggren, H. G. (2000) IL-18 directs auto-reactive T cells and promotes autodestruction in the central nervous system via induction of IFNgamma by NK cells. J. Immunol. 165, 3099–3104.

    CAS  PubMed  Google Scholar 

  61. Singh, A. K., Wilson, M. T., Hong, S., et al. (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811.

    Article  CAS  PubMed  Google Scholar 

  62. Jahng, A. W., Maricic, I., Pedersen, B., et al. (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799.

    Article  CAS  PubMed  Google Scholar 

  63. Fritz, R. B. and Zhao, M. L. (2001) Regulation of experimental autoimmune encephalomyelitis in the C57BL/6J mouse by NK1.1+, DX5+, alpha beta+ T cells. J. Immunol. 166, 4209–4215.

    CAS  PubMed  Google Scholar 

  64. Pal, E., Tabira, T., Kawano, T., Taniguchi, M., Miyake, S., and Yamamura, T. (2001) Costimulationdependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V alpha 14 NK T cells. J. Immunol. 166, 662–668.

    CAS  PubMed  Google Scholar 

  65. Encinas, J. A., Lees, M. B., Sobel, R. A., et al. (2001) Identification of genetic loci associated with paralysis, inflammation and weight loss in mouse experimental autoimmune encephalomyelitis. Int. Immunol. 13, 257–264.

    Article  CAS  PubMed  Google Scholar 

  66. Fehniger, T. A., Yu, H., Cooper, M. A., Suzuki, K., Shah, M. H., and Caligiuri, M. A. (2000) Cutting edge: IL-15 costimulates the generalized Shwartzman reaction and innate immune IFNgamma production in vivo. J. Immunol. 164, 1643–1647.

    CAS  PubMed  Google Scholar 

  67. Seki, S., Habu, Y., Kawamura, T., et al. (2000) The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol. Rev. 174, 35–46.

    Article  CAS  PubMed  Google Scholar 

  68. Kim, S., lizuka, K., Aguila, H. L., Weissman, I. L., and Yokoyama, W. M. (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc. Natl. Acad. Sci. USA 97, 2731–2736.

    Article  CAS  PubMed  Google Scholar 

  69. Lindemann, R. A. (1991) The regulatory effects of monocytes on human natural killer cells activated by lipopolysaccharides. J. Periodontal Res. 26, 486–490.

    Article  CAS  PubMed  Google Scholar 

  70. Mattei, F., Schiavoni, G., Belardelli, F., and Tough, D. F. (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167, 1179–1187.

    CAS  PubMed  Google Scholar 

  71. Ohteki, T., Suzue, K., Maki, C., Ota, T., and Koyasu, S. (2001) Critical role of IL-15-IL-15R for antigen-presenting cell functions in the innate immune response. Nat. Immunol. 2, 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  72. Kirman, I. and Nielsen, O. H. (1996) Increased numbers of interleukin-l5-expressing cells in active ulcerative colitis. Am. J. Gastroenterol. 91, 1789–1794.

    CAS  PubMed  Google Scholar 

  73. Liu, Z., Geboes, K., Colpaert, S., D’Haens, G. R., Rutgeerts, P., and Ceuppens, J. L. (2000) IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J. Immunol. 164, 3608–3615.

    CAS  PubMed  Google Scholar 

  74. Lai, Y. G., Gelfanov, V., Gelfanova, V., et al. (1999) IL-15 promotes survival but not effector function differentiation of CD8+ TCRalphabeta+ intestinal intraepithelial lymphocytes. J. Immunol. 163, 5843–5850.

    CAS  PubMed  Google Scholar 

  75. Porter, B. O. and Malek, T. R. (1999) IL-2Rbeta/IL-7Ralpha doubly deficient mice recapitulate the thymic and intraepithelial lymphocyte (IEL) developmental defects of gammac-/- mice: roles for both IL-2 and IL-15 in CD8alphaalpha IEL development. J. Immunol. 163, 5906–5912.

    CAS  PubMed  Google Scholar 

  76. Nielsen, O. H., Vainer, B., Bregenholt, S., Claesson, M. H., Bishop, P. D., and Kirman, I. (1997) Inflammatory bowel disease: potential therapeutic strategies. Cytokines Cell. Mol. Ther. 3, 267–281.

    CAS  PubMed  Google Scholar 

  77. Cao, S., Black, J. D., Troutt, A. B., and Rustum, Y. M. (1998) Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cancer Res. 58, 3270–3274.

    CAS  PubMed  Google Scholar 

  78. Shinozaki, M., Hirahashi, J., Lebedeva, T., et al. (2002) IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis. J. Clin. Invest. 109, 951–960.

    CAS  PubMed  Google Scholar 

  79. Lugering, N., Kucharzik, T., Maaser, C., Kraft, M., and Domschke, W. (1999) Interleukin-15 strongly inhibits interleukin-8 and monocyte chemoattractant protein-1 production in human colonic epithelial cells. Immunology 98, 504–509.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sivakumar, P.V., Brown, S.N., Goldrath, A.W., Van der Vuurst de Vries, A.R., Viney, J.L., Kennedy, M.K. (2003). IL-15. In: Fantuzzi, G. (eds) Cytokine Knockouts. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-405-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-405-4_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-415-9

  • Online ISBN: 978-1-59259-405-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics