Skip to main content

The Electrophysiologic Matrix

Equilibrium and Arnsdorf’s Paradox

  • Chapter
Cardiac Repolarization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 109 Accesses

Abstract

The heart beat results from a tightly controlled flow of ions of several species through specialized channels in the cell membrane, within the myoplasm, through the gap junctions that connect the cells, and through the extracellular space. Impulse propagation is importantly affected by the structure of the cell membrane, the distribution of gap junctions, and the characteristics of the extracellular space as well as by neurohumoral influences and other feedback mechanisms. The objectives of this chapter are several.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsdorf MF, Makielski JC. Excitability and impulse propagation. In: Sperelakis N, Kurachi Y, Terzic A, Cohen MV, eds. Heart Physiology and Pathophysiology. 4th ed. New York: Academic Press, 2000: 99–132.

    Google Scholar 

  2. Fozzard HA, Schoenberg M. Strength-duration curves in cardiac Purkinje fibres: Effects of liminal length and charge distribution. J Physiol (Lond) 1972;226:593–618.

    CAS  Google Scholar 

  3. Prigogine I, Stengers I. Order Out of Chaos: Man’s New Dialogue with Nature. Boulder, CO: New Science Library, 1984.

    Google Scholar 

  4. Arnsdorf MF, Sawicki GJ. The effects of quinidine sulfate on the balance among active and passive cellular properties which comprise the electrophysiologic matrix and determine excitability in sheep Purkinje fibers. Circ Res 1987;61:244–255.

    Article  PubMed  CAS  Google Scholar 

  5. Ginsburg K, Arnsdorf MF. Cardiac excitability, gap junctions, cable properties and impulse propagation. In: Sperelakis N, ed. Physiology and Pathophysiology of the Heart. 3rd ed. Boston: M. Nijhoff, 1995:153–199.

    Google Scholar 

  6. Ginsburg KS, Arnsdorf MF. Interaction of transient ischemia with antiarrhythmic drugs. In: Breithardt G, ed. Modulation of Antiarrhythmic Drug Action by Disease and Injury. Berlin: Springer GmbH & Co, 1995:109–121.

    Google Scholar 

  7. Arnsdorf MF, Dudley S. Gap junctions, cardiac excitability and clinical arrhythmias. In: DeMello W, ed. Heart Cell Communication in Health and Disease. 1st ed. Philadelphia: Kluwer Academic Publishers, 1998:217–288.

    Chapter  Google Scholar 

  8. Weidmann S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol 1951;115:227–236.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Sawicki GJ, Arnsdorf MF. Electrophysiologic actions and interactions between lysophosphatidylcholine and lidocaine in the non-steady state: The match between multiphasic arrhythmogenic mechanisms and multiple drug effects in cardiac Purkinje fibers. J Pharmacol Exp Ther 1985;235:829–838.

    PubMed  CAS  Google Scholar 

  10. Arnsdorf MF, Mehlman DJ. Observations on the effects of selected antiarrhythmic drugs on mammalian cardiac Purkinje fibers with two levels of steady-state potential: influences of lidocaine, phenytoin, propranolol, disopyramide, and procainamide on repolarization, action potential shape and conduction. J Pharmacol Exp Ther 1977;207:983–991.

    Google Scholar 

  11. Antzelevitch C, Moe GK. Electrotonically mediated delayed conduction and reentry in relation to ventricular conducting tissue. Circ Res 1981;49:1129–1139.

    Article  PubMed  CAS  Google Scholar 

  12. Weidmann S. The electrical constants of Purkinje fibres. J Physiol (Lond) 1952;118:348–360.

    CAS  Google Scholar 

  13. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol 1970;210: 1041–1054.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Arnsdorf MF. The effect of antiarrhythmic drugs on triggered sustained rhythmic activity in cardiac Purkinje fibers. J Pharmacol Exp Ther 1977;201:689–700.

    PubMed  CAS  Google Scholar 

  15. Antzelevitch C, Burashnikov A. Cardiac arrhythmias: Reentry and triggered activity. In: Sperelakis N, Kurachi Y, Terzic A, Cohen MV, eds. Heart Physiology and Pathophysiology. 4th ed. New York: Academic Press, 2000:1153–1179.

    Google Scholar 

  16. Roden DM, Lazzara R, Rosen MR, et al. Multiple mechanisms in the long-QT syndrome: Current knowledge, gaps, and future directions. Circulation 1996;47:681–689.

    Google Scholar 

  17. Arnsdorf MF. Arnsdorf s Paradox. J Cardiovas Electrophys 1990;1:42–52.

    Article  Google Scholar 

  18. Arnsdorf MF, Sawicki GJ. Flecainide and the electrophysiologic matrix: The effects of flecainide acetate on the determinants of cardiac excitability in sheep Purkinje fibers. J Cardiovasc Electrophysiol 1996;7:1172–1182.

    Article  PubMed  CAS  Google Scholar 

  19. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Increased mortality due to encainide or flecainide in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989;321:406–412.

    Article  Google Scholar 

  20. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989;69:1049–1169.

    PubMed  CAS  Google Scholar 

  21. Kleber AG, Janse MJ. Impulse propagation in myocardial ischemia. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. 1st ed. Philadelphia: W. B. Saunders, 1990:156–161.

    Google Scholar 

  22. Allessie MA, Bonke FIM, Schopman FJG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomic obstacle. Circ Res 1977;41:9–18.

    Article  PubMed  CAS  Google Scholar 

  23. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The Sicilian Gambit: A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 1991;84:1831–1851.

    Article  Google Scholar 

  24. Vaughan Williams EM. Classification of antiarrhythmic drugs. In: Sandoe E, Flensted-Jensen E, Olesen KH, eds. Symposium on Cardiac Arrhythmias. Sodertalje, Sweden: Astra, 1970:449–472.

    Google Scholar 

  25. Vaughan Williams EM. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 1984;24:129–147.

    Article  PubMed  CAS  Google Scholar 

  26. Cardiac Arrhythmia Suppression Trial II (CAST-II) Investigators. Effect of the antiarrhythmic agent moricizine on survival after acute myocardial infarction. N Engl J Med 1992;327:227–233.

    Article  Google Scholar 

  27. Holland RP, Brooks H. TQ-ST segment mapping: critical review and analysis of current concepts. Am J Cardiol 1977;40:110–128.

    Article  PubMed  CAS  Google Scholar 

  28. Holland RP, Brooks H, Lidl B. Spatial and non-spatial influences on the TQ-ST segment deflection in ischemia: A theoretical and experimental analysis in the pig. J Clin Invest 1977;60:197–214.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Richeson F, Akiyama T, Schek E. A solid angle analysis of the epicardial ischemic TQ-ST deflection in the pig: A theoretical and experimental study. Circ Res 1978;43:879–888.

    Article  PubMed  CAS  Google Scholar 

  30. Plonsey R. An evaluation of several cardiac activation models. J Electrocardiol 1974;7:237–244.

    Article  PubMed  CAS  Google Scholar 

  31. Engelmann TW. Ueber die Leitung der Erregung im Herzmuskel. Pfluegers Arch Physiol 1875; 11:465–480.

    Article  Google Scholar 

  32. Engelmann TW. Vergleichende Untersuchungen zur Lehre von der Muskel-und Nervenelectricitat. Pfluegers Arch Physiol 1877;15:116–148.

    Article  Google Scholar 

  33. Smith F. The ligation of coronary arteries with electrocardiographic study. Arch Int Med 1918;22:8.

    Article  Google Scholar 

  34. Pardee HEB. An electrocardiographic sign of coronary artery obstruction. Arch Int Med 1920;26:244.

    Article  Google Scholar 

  35. Samson WE, Scher AM. Mechanism of ST segment alteration during acute myocardial injury. Circ Res 1960;8:780–787.

    Article  PubMed  CAS  Google Scholar 

  36. Cohen D, Kaufman LA. Magnetic determination of the relationship between the ST segment shift and the injury current produced by coronary artery occlusion. Circ Res 1975;36:414–424.

    Article  PubMed  CAS  Google Scholar 

  37. Holland RP, Brooks H. Precordial and epicardial surface potentials during myocardial ischemia in the pig: A theoretical and experimental analysis of the TQ and ST segment. Circ Res 1975;37:471–480.

    Article  PubMed  CAS  Google Scholar 

  38. Kleber AG, Fleischhauer J, Cascio WE. Ischemia-induced propagation failure in the heart. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. 2nd ed. Philadelphia: W. B. Saunders Company, 1995:174–181.

    Google Scholar 

  39. Boyden PA. Cellular electrophysiology of ischemic and infarcted tissues. In: Rosen MR, Janse MJ, Wit AL, eds. Cardiac Electrophysiology: A Textbook. 1st ed. Mt. Kisco, NY: Futura Publishing Co, 1990:673–694.

    Google Scholar 

  40. DeMello WC. On the control of junctional conductance. In: DeMello WC, Janse MJ, eds. Heart Cell Communication in Health and Disease. Boston: Kluwer Academic Publishers, 1998:105–124.

    Google Scholar 

  41. Holland RP, Arnsdorf MF. Nonspatial determinants of electrograms in guinea pig ventricle. Am J Physiol 1981;240:048–060.

    Google Scholar 

  42. Arnsdorf MF, Bigger JT Jr. Effect of lidocaine hydrochloride on membrane conductance in mammalian cardiac Purkinje fibers. J Clin Invest 1972;51:2252–2263.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Arnsdorf MF, Bigger JT Jr. The effect of lidocaine on components of excitability in long mammalian cardiac Purkinje fibers. J Pharmacol Exp Ther 1975;195:206–215.

    PubMed  CAS  Google Scholar 

  44. Arnsdorf MF. The effect of antiarrhythmmic drugs on sustained rhythmic activity in cardiac Purkinje fibers. J Pharmacol Exp Ther 1977;201:689–700.

    PubMed  CAS  Google Scholar 

  45. Franz MR, Zabel M. Electrophysiologic basis of QT dispersion measurements. Progr Cardiovasc Dis 2000;42:311–324.

    Article  CAS  Google Scholar 

  46. Day CP, McComb JM, Campbell RW. QT dispersion: An indication of arrhythmia risk in patients with long QT intervals. Brit Heart J 1990;63:342–344.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Rautaharju PM. QT dispersion of ventricular repolarization: The greatest fallacy in electrocardiography in the 1990’s. Circulation 1999;18:2477–2478.

    Google Scholar 

  48. Steinberg J, ed. QT Dispersion. Progr Cardiovasc Dis 2000;42:311–396.

    Google Scholar 

  49. Acar B, Yi G, Hnatkova K, Malik M. Spatial, temporal and wavefront direction characteristics of 12 lead T-wave morphology. Med Biol Eng Comput 1999;37:574–584.

    Article  PubMed  CAS  Google Scholar 

  50. Murda’h MA, McKenna WJ, Camm AJ. Repolarization alternans: Techniques, mechanisms and cardiac vulnerability. PACE 1997;20:2641–2657.

    Article  PubMed  Google Scholar 

  51. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. Mechanism linking T wave alternans to the genesis of cardiac fibrillation. Circulation 1999;99:1385–1394.

    Article  PubMed  CAS  Google Scholar 

  52. Breithardt G, Cain ME, El-Sherif N, et al. Standards for analysis of ventricular late potentials using high resolution or signal-averaged electrocardiography: A statement by a task force committee of the European Society of Cardiology, the American Heart Association, and the American College of Cardiology. J Am Coll Cardiol 1991;999–1006.

    Google Scholar 

  53. Holland R, Arnsdorf MF. Solid angle theory and the electrocardiogram. Progr Cardiovasc Dis 1977;19:431–57.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnsdorf, M.F. (2003). The Electrophysiologic Matrix. In: Gussak, I., Antzelevitch, C., Hammill, S.C., Shen, WK., Bjerregaard, P. (eds) Cardiac Repolarization. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-362-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-362-0_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-336-7

  • Online ISBN: 978-1-59259-362-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics