Skip to main content

Cellular and Ionic Mechanisms Underlying Arrhythmogenesis

  • Chapter
Cardiac Repolarization

Abstract

The past decade has witnessed remarkable progress in our understanding of the molecular and electrophysiologic mechanisms underlying the development of a variety of cardiac arrhythmias (Table 1). These advances notwithstanding, our appreciation of the basis for many rhythm disturbances is incomplete. This chapter examines the state-of-the-art of our understanding of cellular mechanisms responsible for cardiac arrhythmias, placing them in historical perspective whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayer AG. Rhythmical pulsations is scyphomedusae. Publication 47 of the Carnegie Institute 1906; 1–62.

    Google Scholar 

  2. Mayer AG. Rhythmical pulsations in scyphomedusae. II. Publication 102 of the Carnegie Institute 1908;115–131.

    Google Scholar 

  3. Mines GR. On dynamic equilibrium in the heart. J Physiol 1913;46:349–382.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 1914;8:43–52.

    Google Scholar 

  5. Lewis T. The broad features and time-relations of the normal electrocardiogram. Principles of interpretation. In: The Mechanism and Graphic Registration of the Heart Beat. London: Shaw & Sons, Ltd., 1925:44–77.

    Google Scholar 

  6. Moe GK. Evidence for reentry as a mechanism for cardiac arrhythmias. Rev Physiol Biochem Pharmacol 1975;72:55–81.

    PubMed  CAS  Google Scholar 

  7. Kulbertus HE. In: Kulbertus HE, ed. Reentrant Arrhythmias, Mechanisms and Treatment. Baltimore: University Park Press, 1977.

    Google Scholar 

  8. Wit AL, Cranefield PF. Re-entrant excitation as a cause of cardiac arrhythmias. Am J Physiol 1978;235:H1-H17.

    PubMed  CAS  Google Scholar 

  9. Wit AL, Allessie MA, Fenoglic JJ, Jr, Bonke FIM, Lammers W, Smeets J. Significance of the endocardial and epicardial border zones in the genesis of myocardial infarction arrhythmias. In: Harrison D, ed. Cardiac Arrhythmias: A Decade of Progress. Boston: GK Hall, 1982:39–68.

    Google Scholar 

  10. Spear JF, Moore EN. Mechanisms of cardiac arrhythmias. Annu Rev Physiol 1982;44:485–497.

    PubMed  CAS  Google Scholar 

  11. Janse MJ. Reentry rhythms. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. The Heart and Cardiovascular System. New York: Raven Press, 1986:1203–1238.

    Google Scholar 

  12. Hoffman BF, Dangman KH. Mechanisms for cardiac arrhythmias. Experientia 1987;43:1049–1056.

    PubMed  CAS  Google Scholar 

  13. Antzelevitch C. Reflection as a mechanism of reentrant cardiac arrhythmias. Prog Cardiol 1988; 1:3–16.

    Google Scholar 

  14. El-Sherif N. Reentry revisited. PACE 1988;11:1358–1368.

    PubMed  CAS  Google Scholar 

  15. Lazzara R, Scherlag BJ. Generation of arrhythmias in myocardial ischemia and infarction. Am J Cardiol 1988;61:20A-26A.

    PubMed  CAS  Google Scholar 

  16. Rosen MR. The links between basic and clinical cardiac electrophysiology. Circulation 1988;77: 251–263.

    PubMed  CAS  Google Scholar 

  17. DiFrancesco D. The cardiac hyperpolarizing-activated current, IfOrigins and developments. Prog Biophys Mol Biol 1985;46:163–183.

    PubMed  CAS  Google Scholar 

  18. DiFrancesco D. The pacemaker current (1(f)) plays an important role in regulating SA node pacemaker activity. Cardiovasc Res 1995;30:307–308.

    PubMed  CAS  Google Scholar 

  19. Vassalle M. Analysis of cardiac pacemaker potential using a “voltage clamp” technique. Am J Physiol 1966;210:1335–1341.

    PubMed  CAS  Google Scholar 

  20. Vassalle M. The pacemaker current (1(f)) does not play an important role in regulating SA node pacemaker activity. Cardiovasc Res 1995;30:309–310.

    PubMed  CAS  Google Scholar 

  21. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+release contributes to automaticity in cat atrial pacemaker cells. J Physiol 2000;524 Pt 2:415–422.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Levy MN. Sympathetic- Parasympathetic interactions in the heart. Circ Res 1971;29:437–445.

    PubMed  CAS  Google Scholar 

  23. Imanishi S, Surawicz B. Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms. Circ Res 1976;39:751–759.

    PubMed  CAS  Google Scholar 

  24. Dangman KH, Hoffman BF. Studies on overdrive stimulation of canine cardiac Purkinje fibers: maximal diastolic potential as a determinant of the response. J Am Coll Cardiol 1983;2.T 183–1190.

    Google Scholar 

  25. Katzung BG, Morgenstern JA. Effects of extracellular potassium on ventricular automaticity and evidence for a pacemaker current in mammalian ventricular myocardium. Circ Res 1977;40:105–111.

    PubMed  CAS  Google Scholar 

  26. Pappano AJ, Carmeliet EE. Epinephrine and the pacemaking mechanism at plateau potentials in sheep cardiac Purkinje fibers. Pflugers Arch 1979;382:17–26.

    PubMed  CAS  Google Scholar 

  27. Katz LN, Pick A. Clinical Electrocardiography. Part 1. The Arrhythmias. Philadelphia: Lea and Febiger, 1956:224–236.

    Google Scholar 

  28. Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME. Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 1992;86:1872–1887.

    PubMed  CAS  Google Scholar 

  29. Arnar DO, Bullinga JR, Martins JB. Role of the Purkinje system in spontaneous ventricular tachycardia during acute ischemia in a canine model. Circulation 1997;96:2421–2429.

    PubMed  CAS  Google Scholar 

  30. Pogwizd SM. Focal mechanisms underlying ventricular tachycardia during prolonged ischemic cardiomyopathy. Circulation 1994;90:1441–1458.

    PubMed  CAS  Google Scholar 

  31. Pogwizd SM. Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation 1995;92:1034–1048.

    PubMed  CAS  Google Scholar 

  32. Pogwizd SM, McKenzie JP, Cain ME. Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation 1998;98:2404–2414.

    PubMed  CAS  Google Scholar 

  33. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339:659–666.

    PubMed  CAS  Google Scholar 

  34. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res 1994;28:1547–1554.

    PubMed  CAS  Google Scholar 

  35. Nuss HB, Kaab S, Kass DA, Tomaselli GF, Marban E. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Physiol 1999;277:H80-H91.

    PubMed  CAS  Google Scholar 

  36. Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 1998;97:55–65.

    PubMed  CAS  Google Scholar 

  37. Cerbai E, Barbieri M, Mugelli A. Occurrence and properties of the hyperpolarization-activated current Ifin ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 1996;94:1674–1681.

    PubMed  CAS  Google Scholar 

  38. Lai LP, Su MJ, Lin JL, et al. Measurement of funny current (1(f)) channel mRNA in human atrial tissue: correlation with left atrial filling pressure and atrial fibrillation. J Cardiovasc Electrophysiol 1999;10:947–953.

    PubMed  CAS  Google Scholar 

  39. Scherf D, Boyd LJ. Three unusual cases of parasystole. Am Heart J 1950;39:650–663.

    PubMed  CAS  Google Scholar 

  40. Jalife J, Moe GK. A biological model of parasystole. Am J Cardiol 1979;43:761–772.

    PubMed  CAS  Google Scholar 

  41. Jalife J, Antzelevitch C, Moe GK. The case for modulated parasystole. PACE 1982;5:911–926.

    PubMed  CAS  Google Scholar 

  42. Moe GK, Jalife J, Mueller WJ, Moe B. A mathematical model of parasystole and its application to clinical arrhythmias. Circulation 1977;56:968–979.

    PubMed  CAS  Google Scholar 

  43. Antzelevitch C, Jalife J, Moe GK. Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation 1980;61:182–191.

    PubMed  CAS  Google Scholar 

  44. Nau GJ, Aldariz AE, Acunzo RS, et al. Modulation of parasystolic activity by nonparasystolic beats. Circulation 1982;66:462–69.

    PubMed  CAS  Google Scholar 

  45. Antzelevitch C. Clinical applications of new concepts of parasystole, reflection, and tachycardia. Cardiol Clin 1983;1:39–50.

    PubMed  CAS  Google Scholar 

  46. Antzelevitch C, Jalife J, Moe GK. Electrotonic modulation of pacemaker activity. Further biological and mathematical observations on the behavior of modulated parasystole. Circulation 1982;66:1225–1232.

    PubMed  CAS  Google Scholar 

  47. Antzelevitch C, Bernstein MJ, Feldman HN, Moe GK. Parasystole, reentry, and tachycardia: A canine preparation of cardiac arrhythmias occurring across inexcitable segments of tissue. Circulation 1983;68:1101–1115.

    PubMed  CAS  Google Scholar 

  48. Castellanos A, Melgarejo E, Dubois R, Luceri RM. Modulation of ventricular parasystole by extraneous depolarizations. J Electrocardiol 1984;17:195–198.

    PubMed  CAS  Google Scholar 

  49. Jalife J, Moe GK. Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res 1976;39:801–808.

    PubMed  CAS  Google Scholar 

  50. Moe GK, Jalife J, Antzelevitch C. Models of parasystole and reentry in isolated Purkinje fibers. Mayo Clin Proc 1982;57 Suppl: 14–19.

    PubMed  Google Scholar 

  51. Oreto G, Luzza F, Satullo G, Schamroth L. Modulated ventricular parasystole as a mechanism for concealed bigeminy. Am J Cardiol 1986;58:954–958.

    PubMed  CAS  Google Scholar 

  52. Oreto G, Luzza F, Satullo G, Coglitore S, Schamroth L. Sinus modulation of atrial parasystole. Am J Cardiol 1986;58:1097–1099.

    PubMed  CAS  Google Scholar 

  53. Cranefield PF. Action potentials, afterpotentials and arrhythmias. Circ Res 1977;41:415–423.

    PubMed  CAS  Google Scholar 

  54. Wit AL, Rosen MR. Afterdepolarizations and triggered activity: Distinction from automaticity as an arrhythmogenic mechanism. In: Fozzard HA, et al., eds. The Heart and Cardiovascular System. New York: Raven Press, 1992:2113–2164.

    Google Scholar 

  55. Lab MJ. Contraction-excitation feedback in myocardium: Physiologic basis and clinical revelance. Circ Res 1982;50:757–766.

    PubMed  CAS  Google Scholar 

  56. Adamantidis MM, Caron JF, Dupuis BA. Triggered activity induced by combined mild hypoxia and acidosis in guinea pig Purkinje fibers. J Mol Cell Cardiol 1986;18:1287–1299.

    PubMed  CAS  Google Scholar 

  57. Coraboeuf E, Deroubaix E, Coulombe A. Acidosis-induced abnormal repolarization and repetive activity in isolated dog Purkinje fibers. J Physiol (Paris) 1980;76:97–106.

    CAS  Google Scholar 

  58. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol 1990;258:H1796-H1805.

    PubMed  CAS  Google Scholar 

  59. Volders PGA, Kulcsar A, Vos MA, et al. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res 1997;34:348–359.

    PubMed  CAS  Google Scholar 

  60. Brachmann J, Scherlag BJ, Rosenshtraukh LV, Lazzara R. Bradycardia-dependent triggered activity: Relevance to drug-induced multiform ventricular tachycardia. Circulation 1983;68:846–856.

    PubMed  CAS  Google Scholar 

  61. Damiano BP, Rosen MR. Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation 1984;69:1013–1025.

    PubMed  CAS  Google Scholar 

  62. El-Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R. QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early afterdepolarizations. Afterdepolarizations and ventricular arrhythmias. Circ Res 1988;63:286–305.

    PubMed  CAS  Google Scholar 

  63. January CT, Riddle JM, Salata JJ. A model for early afterdepolarizations: Induction with the Ca2+channel agonist BAY K 8644. Circ Res 1988;62:563–571.

    PubMed  CAS  Google Scholar 

  64. Davidenko JM, Cohen L, Goodrow RJ, Antzelevitch C. Quinidine-induced action potential prolongation, early afterdepolarizations, and triggered activity in canine Purkinje fibers. Effects of stimulation rate, potassium, and magnesium. Circulation 1989;79:674–686.

    PubMed  CAS  Google Scholar 

  65. Carmeliet E. Electrophysiologic and voltage clamp analysis of the effects of sotalol on isolated cardiac muscle and Purkinje fibers. J Pharmacol Exp Ther 1985;232:817–825.

    PubMed  CAS  Google Scholar 

  66. Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal-hypertension. Circ Res 1981;48:720–727.

    PubMed  CAS  Google Scholar 

  67. Volders PG, Sipido KR, Vos MA, Kulcsar A, Verduyn SC, Wellens HJ. Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes. Circulation 1998;98:1136–1147.

    PubMed  CAS  Google Scholar 

  68. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations: The role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 1994;23:259–277.

    PubMed  CAS  Google Scholar 

  69. Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers: Relationship to potassium and cycle length. Circ Res 1986;56:857–867.

    Google Scholar 

  70. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol 1998;9:934–948.

    PubMed  CAS  Google Scholar 

  71. Bril A, Faivre JF, Forest MC, et al. Electrophysiological effect of BRL-32872, a novel antiarrhythmic agent with potassium and calcium channel blocking properties, in guinea pig cardiac isolated preparations. J Pharmacol Exp Ther 1995;273:1264–1272.

    PubMed  CAS  Google Scholar 

  72. Marban E, Robinson SW, Wier WG. Mechanism of arrhythmogenic delayed and early afterdepolarizations in ferret muscle. J Clin Invest 1986;78:1185–1192.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Boutjdir M, El-Sherif N. Pharmacological evaluation of early afterdepolarisations induced by sea anemone toxin (ATXII) in dog heart. Cardiovasc Res 1991;25:815–819.

    PubMed  CAS  Google Scholar 

  74. Carlsson L, Abrahamsson C, Drews C, Duker GD. Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization in the rabbit. Circulation 1992;85:1491–1500.

    PubMed  CAS  Google Scholar 

  75. El-Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R. QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early-afterdepolarizations. Circ Res 1988;63:286–305.

    PubMed  CAS  Google Scholar 

  76. Nattel S, Quantz MA. Pharmacological response of quinidine induced early afterdepolarizations in canine cardiac Purkinje fibers: insights into underlying ionic mechanisms. Cardiovasc Res 1988;22:808–817.

    PubMed  CAS  Google Scholar 

  77. Sicouri S, Antzelevitch C. Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium: The effects of acetylstrophanthidin and Bay K 8644. PACE 1991;14:1714–1720.

    PubMed  CAS  Google Scholar 

  78. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKrand IKs) in canine ventricular epicardial, midmyocardial and endocardial myocytes: A weaker IKscontributes to the longer action potential of the M cell. Circ Res 1995;76:351–365.

    PubMed  CAS  Google Scholar 

  79. Burashnikov A, Antzelevitch C. Block of IKsdoes not induce early afterdepolarization activity but promotes p-adrenergic agonist-induced delayed afterdepolarization activity in canine ventricular myocardium. J Cardiovasc Electrophysiol 2000;11:458–465.

    PubMed  CAS  Google Scholar 

  80. Burashnikov A, Antzelevitch C. A prominent IKsin epicardium and endocardium contributes to the development of transmural dispersion of repolarization but protects against the development of early afterdepolarizations. J Cardiovasc Electrophysiol 2002;13:(in press).

    Google Scholar 

  81. Emori T, Antzelevitch C. Cellular basis for complex T waves and arrhythmic activity following combined I(Kr) and I(Ks) block. J Cardiovasc Electrophysiol 2001;12:1369–1378.

    PubMed  CAS  Google Scholar 

  82. El-Sherif N, Caref EB, Yin H, Restivo M. The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome: Tridimensional mapping of activation and recovery patterns. Circ Res 1996;79:474–492.

    PubMed  CAS  Google Scholar 

  83. Murakawa Y, Sezaki, K., Yamashita T, Kanese Y, Omata M. Three-dimensional activation sequence of cesium-induced ventricular arrhythmias. Am J Physiol 1997;273:H1377-H1385.

    PubMed  CAS  Google Scholar 

  84. Szabo B, Kovacs T, Lazzara R. Role of calcium loading in early afterdepolarizations generated by Cs in canine and guinea pig Purkinge fibers. J Cardiovasc Electrophysiol 1995;6:796–812.

    PubMed  CAS  Google Scholar 

  85. Patterson E, Scherlag BJ, Szabo B, Lazzara R. Facilitation of epinephrine-induced afterdepolarizations by class III antiarrhythmic drugs. J Electrocardiol 1997;30:217–224.

    PubMed  CAS  Google Scholar 

  86. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2, and LQT3 models of the long QT syndrome. J Am Coll Cardiol 2000;35:778–786.

    PubMed  CAS  Google Scholar 

  87. January CT, Riddle JM. Early afterdepolarizations: mechanism of induction and block: A role for L-type Ca2+current. Circ Res 1989;64:977–990.

    PubMed  CAS  Google Scholar 

  88. Zeng J, Rudy Y. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J 1995;68:949–964.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Ming Z, Nordin C, Aronson MD. Role of L-type calcium channel window current in generating current-induced early afterdepolarizations. J Cardiovasc Electrophysiol 1994;5:323–334.

    PubMed  CAS  Google Scholar 

  90. Patterson E, Scherlag B J, Lazzara R. Early afterdepolarizations produced by d,l-sotalol and clofilium. J Cardiovasc Electrophysiol 1997;8:667–678.

    PubMed  CAS  Google Scholar 

  91. Burashnikov A, Antzelevitch C. Mechanisms underlying early afterdepolarization activity are different in canine Purkinje and M cell preparations. Role of intracellular calcium, [abstr]. Circulation 1996;94:1–527.

    Google Scholar 

  92. Roden DM, Lazzara R, Rosen MR, et al. Multiple mechanisms in the long-QT syndrome: Current knowledge, gaps, and future directions. Circulation 1996;94:1996–2012.

    PubMed  CAS  Google Scholar 

  93. Antzelevitch C, Yan GX, Shimizu W, Sicouri S, Eddlestone GT, Zygmunt AC. Electrophysiologic characteristics of M cells and their role in arrhythmias. In: Franz MR, ed. Monophasic Action Potentials: Bridging Cell and Bedside. Armonk, NY: Futura, 2000:583–604.

    Google Scholar 

  94. Ben-David J, Zipes DP. Differential response to right and left ansae subclaviae stimulation of early afterdepolarizations and ventricular tachycardia induced by cesium in dogs. Circulation 1988;78: 1241–1250.

    PubMed  CAS  Google Scholar 

  95. Jackman WM, Friday KJ, Anderson JL, Aliot EM, Clark MA, Lazzara R. The long QT syndromes: A critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis 1988;31: 115–172.

    PubMed  CAS  Google Scholar 

  96. Shimizu W, Ohe T, Kurita T, et al. Early afterdepolarizations induced by isoproterenol in patients with congenital long QT syndrome. Circulation 1991;84:1915–1923.

    PubMed  CAS  Google Scholar 

  97. Asano Y, Davidenko JM, Baxter WT, Gray RA, Jalife J. Optical mapping of drug-induced polymorphic arrhythmias and torsade de pointes in the isolated rabbit heart. J Am Coll Cardiol 1997;29:831–842.

    PubMed  CAS  Google Scholar 

  98. Ben-David J, Zipes DP, Ayers GM, Pride HP. Canine left ventricular hypertrophy predisposes to ventricular tachycardia induction by phase 2 early afterdepolarizations after administration of BAY K 8644. J Am Coll Cardiol 1992;20(7): 1576–1584.

    PubMed  CAS  Google Scholar 

  99. Beuckelmann DJ, Nabauer M, Erdmann E. Alterations of K+currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 1993;73:379–385.

    PubMed  CAS  Google Scholar 

  100. Vermeulen JT. Mechanisms of arrhythmias in heart failure. J Cardiovasc Electrophysiol 1998;9: 208–221.

    PubMed  CAS  Google Scholar 

  101. Ferrier GR, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res 1973;32:600–609.

    PubMed  CAS  Google Scholar 

  102. Rosen MR, Gelband H, Merker C, Hoffman BF. Mechanisms of digitalis toxicity—effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation 1973;47:681–689.

    PubMed  CAS  Google Scholar 

  103. Saunders JH, Ferrier GR, Moe GK. Conduction block associated with transient depolarizations induced by acetylstrophanthidin in isolated canine Purkinje fibers. Circ Res 1973;32:610–617.

    PubMed  CAS  Google Scholar 

  104. Rozanski GJ, Lipsius SL. Electrophysiology of functional subsidiary pacemakers in canine right atrium. Am J Physiol 1985;249:H594-H603.

    PubMed  CAS  Google Scholar 

  105. Marchi S, Szabo B, Lazzara R. Adrenergic induction of delayed afterdepolarizations in ventricular myocardial cells: Beta-induction and Alpha-Modulation. J Cardiovasc Electrophysiol 1991;2: 476–491.

    Google Scholar 

  106. Wit AL, Cranefield PF. Triggered and automatic activity in the canine coronary sinus. Circ Res 1977;41:435–445.

    Google Scholar 

  107. Lazzara R, El-Sherif N, Scherlag BJ. Electrophysiological properties of canine Purkinje cells in one-day-old myocardial infarction. Circ Res 1973;33:722–734.

    PubMed  CAS  Google Scholar 

  108. Matsuda H, Noma A, Kurachi Y, Irisawa H. Transient depolarizations and spontaneous voltage fluctuations in isolated single cells from guinea pig ventricles. Circ Res 1982;51:142–151.

    PubMed  CAS  Google Scholar 

  109. Spinelli W, Sorota S, Siegel MB, Hoffman BF. Antiarrhythmic actions of the ATP-regulated K+current activated by pinacidil. Circ Res 1991;68:1127–1137.

    PubMed  CAS  Google Scholar 

  110. Belardinelli LL, Isenberg G. Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 1983;53(3):287–297.

    PubMed  CAS  Google Scholar 

  111. Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity within the ventricular wall: Electrophysi-ology and pharmacology of epicardial, endocardial and M cells. Circ Res 1991;69:1427–1449.

    PubMed  CAS  Google Scholar 

  112. Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cell (M cells) in the canine heart: Quinidine and Digitalis. J Cardiovasc Electrophysiol 1993;4:48–58.

    PubMed  CAS  Google Scholar 

  113. Schreieck J, Wang YG, Gjini V, et al. Differential effect of beta-adrenergic stimulation on the frequency-dependent electrophysiologic actions of the new class III antiarrhythmics dofetilide, ambasilide, and chromanol 293B. J Cardiovasc Electrophysiol 1997;8:1420–1430.

    PubMed  CAS  Google Scholar 

  114. Coetzee WA, Opie LH. Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ Res 1987;61:157–165.

    PubMed  CAS  Google Scholar 

  115. Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB. Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 1986;59:416–426.

    PubMed  CAS  Google Scholar 

  116. Song Y, Belardinelli L. ATP promotes development of afterdepolarizations and triggered activity in cardiac myocytes. Am J Physiol 1994;267:H2005-H2011.

    PubMed  CAS  Google Scholar 

  117. Wu Y, Roden DM, Anderson ME. Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res 1999;84:906–912.

    PubMed  CAS  Google Scholar 

  118. Caroni P, Villani F, Carafoli E. The cardiotoxic antibiotic doxorubicin inhibits the Na+/Ca2+exchange of dog heart sarcolemmal vesicles. FEBS Lett 1981;130:184–186.

    PubMed  CAS  Google Scholar 

  119. Kass RS, Tsien RW, Weingart R. Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 1978;281:209–226.

    CAS  Google Scholar 

  120. Cannell MB, Lederer WJ. The arrhythmogenic current ITIin the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J Physiol (Lond) 1986;374:201–219.

    CAS  Google Scholar 

  121. Fedida D, Noble D, Rankin AC, Spindler AJ. The arrhythmogenic transient inward current Itiand related contraction in isolated guinea-pig ventricular myocytes. J Physiol (Lond) 1987;392:523–542.

    CAS  Google Scholar 

  122. Laflamme MA, Becker PL. Ca2+-induced current oscillations in rabbit ventricular myocytes. Circ Res 1996;78:707–716.

    PubMed  CAS  Google Scholar 

  123. Zygmunt AC, Goodrow RJ, Weigel CM. INaCaand ICi(ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells. Am J Physiol 1998;275:H1979-H1992.

    PubMed  CAS  Google Scholar 

  124. Ritchie AH, Kerr CR, Qi A, Yeung-Lai-Wah JA. Nonsustained ventricular tachycardia arising from the right ventricular outflow tract. Am J Cardiol 1989;64:594–598.

    PubMed  CAS  Google Scholar 

  125. Wilber DJ, Blakeman BM, Pifarre R, Scanlon PJ. Catecholamine sensitive right ventricular outflow tract tachycardia: Intraoperative mapping and ablation of a free-wall focus. PACE 1989; 12: 1851–1856.

    PubMed  CAS  Google Scholar 

  126. Cardinal R, Scherlag BJ, Vermeulen M, Armour JA. Distinct activation patterns of idioventricular rhythms and sympathetically-induced ventricular tachycardias in dogs with atriventricular block. PACE 1992;15:1300–1316.

    PubMed  CAS  Google Scholar 

  127. Cardinal R, Savard P, Armour JA, Nadeau RA, Carson DL, LeBlanc AR. Mapping of ventricular tachycardia induced by thoracic neural stimulation in dogs. Can J Physiol Pharmacol 1986;64: 411–418.

    PubMed  CAS  Google Scholar 

  128. Lerman BB, Belardinelli LL, West GA, Berne RM, DiMarco JP. Adenosine-sensitive ventricular tachycardia: Evidence suggesting cyclic AMP-mediated triggered activity. Circulation 1986;74:270–280.

    PubMed  CAS  Google Scholar 

  129. Lerman BB, Stein K, Engelstein ED, et al. Mechanism of repetitive monomorphic ventricular tachycardia. Circulation 1995;92:421–429.

    PubMed  CAS  Google Scholar 

  130. Ter Keurs HE, Schouten VJA, Bucx JJ, Mulder BM, De Tombe PP. Excitation-contraction coupling in myocardium: implications of calcium release and Na+-Ca2+exchange. Can J Physiol Pharmacol 1987;65:619–626.

    PubMed  Google Scholar 

  131. Kent AFS. Observation on the auirculo-ventricular junction of the mammalian heart. Q J Exp Physiol 1913;7:193–197.

    Google Scholar 

  132. Schmitt FO, Erlanger J. Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions. Am J Physiol 1928;87:326–347.

    Google Scholar 

  133. Cranefield PF, Hoffman BF. Conduction of the cardiac impulse. II. Summation and inhibition. Circ Res 1971;28:220–233.

    PubMed  CAS  Google Scholar 

  134. Cranefield PF, Klein HO, Hoffman BF. Conduction of the cardiac impulse. I. Delay, block and oneway block in depressed Purkinje fibers. Circ Res 1971;28:199–219.

    PubMed  CAS  Google Scholar 

  135. Sasyniuk BI, Mendez C. A mechanism for reentry in canine ventricular tissue. Circ Res 1971;28:3–15.

    PubMed  CAS  Google Scholar 

  136. Wit AL, Cranefield PF, Hoffman BF. Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res 1972;30:11–22.

    PubMed  CAS  Google Scholar 

  137. Wit AL, Hoffman BF, Cranefield PF. Slow conduction and reentry in the ventricular conducting system. I. Return extrasystoles in canine Purkinje fibers. Circ Res 1972;30:1–10.

    PubMed  CAS  Google Scholar 

  138. Cranefield PF. The Conduction of the Cardiac Impulse. Mount Kisco, NY: Futura, 1975:153.

    Google Scholar 

  139. Garrey WE. Auricular fibrillation. Physiol Rev 1924;4:215–250.

    Google Scholar 

  140. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res 1973;33:54–62.

    PubMed  CAS  Google Scholar 

  141. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia: II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block as studied with multiple microelectrodes. Circ Res 1976;39:168–177.

    PubMed  CAS  Google Scholar 

  142. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 1977;41:9–18.

    PubMed  CAS  Google Scholar 

  143. Kamiyama A, Eguchi K, Shibayama R. Circus movement tachycardia induced by a single premature stimulus on the ventricular sheet: Evaluation of the leading circle hypothesis in the canine ventricular muscle. Jpn Circ J 1986;50:65–73.

    PubMed  CAS  Google Scholar 

  144. Allessie MA, Schalij MJ, Kirchhof CJ, Boersma L, Huybers M, Hollen J. Experimental electrophysiology and arrhythmogenicity. Anisotropy and ventricular tachycardia. Eur Heart J 1989; 10 Suppl E:2–8.

    PubMed  Google Scholar 

  145. El-Sherif N, Smith RA, Evans K. Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res 1981;49:255–265.

    PubMed  CAS  Google Scholar 

  146. El-Sherif N, Mehra R, Gough WB, Zeiler RH. Ventricular activation pattern of spontaneous and induced ventricular rhythms in canine one-day-old myocardial infarction. Evidence for focal and reentrant mechanisms. Circ Res 1982;51:152–166.

    PubMed  CAS  Google Scholar 

  147. Mehra R, Zeiler RH, Gough WB, El-Sherif N. Reentrant ventricular arrhythmias in the late myocardial infarction period. 9. Electrophysiologic-anatomic correlation of reentrant circuits. Circulation 1983;67:11–24.

    PubMed  CAS  Google Scholar 

  148. El-Sherif N, Mehra R, Gough WB, Zeiler RH. Reentrant ventricular arrhythmias in the late myocardial infarction period. Interruption of reentrant circuits by cyrothermal techniques. Circulation 1983;68:644–656.

    PubMed  CAS  Google Scholar 

  149. Wit AL, Allessie MA, Bonke FIM, Lammers WJEP, Smeets JL, Fenoglio JJ. Electrophysiological mapping to determine the mechanisms of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. Am J Cardiol 1982;49:166–185.

    PubMed  CAS  Google Scholar 

  150. Dillon SM, Allessie MA, Ursell PC, Wit AL. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res 1988;63:182–206.

    PubMed  CAS  Google Scholar 

  151. Clerc L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol (Lond) 1976;255:335–346.

    CAS  Google Scholar 

  152. Harumi K, Burgess MJ, Abildskov JA. A theoretic model of the T wave. Circulation 1966;34:657–668.

    PubMed  CAS  Google Scholar 

  153. Spach MS, Kootsey JM, Sloan JD. Active modulation of electrical coupling between cardiac cells of the dog. A mechanism for transient and steady state variations in conduction velocity. Circ Res 1982;51:347–362.

    PubMed  CAS  Google Scholar 

  154. El-Sherif N. The figure 8 model of reentrant excitation in the canine post-infarction heart. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. New York: Grune and Stratton, 1985: 363–378.

    Google Scholar 

  155. Lin SF, Roth BJ, Wikswo JP, Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol 1999;10:574–586.

    PubMed  CAS  Google Scholar 

  156. Weiner N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex 1946;16:205–265.

    Google Scholar 

  157. Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J. Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci USA 1990;87:8785–8789.

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res 1993;72:631–650.

    PubMed  CAS  Google Scholar 

  159. Jalife J, Davidenko JM, Michaels DC. A new perspective on the mechanisms of arrhythmias and sudden cardiac death: spiral wave of excitation in heart muscle. J Cardiovasc Electrophysiol 1991;2:S133-S152.

    Google Scholar 

  160. Athill CA, Ikeda T, Kim YH, Wu TJ, Fishbein MC, Karagueuzian HS, Chen PS. Transmembrane potential properties at the core of functional reentrant wave fronts in isolated canine right atria. Circulation 1998;98:1556–1567.

    PubMed  CAS  Google Scholar 

  161. Jalife J, Delmar M, Davidenko JM, Anumonwo JMB. Basic Cardiac Electrophysiology for the Clinician. Armonk, NY: Futura Publishing, 1999.

    Google Scholar 

  162. Pertsov AM, Jalife J. Three-dimensional vortex-like reentry. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders, 1995:403–410.

    Google Scholar 

  163. Davidenko JM. Spiral wave activity: a possible common mechanism for polymorphic and monomor-phic ventricular tachycardias. J Cardiovasc Electrophysiol 1993;4:730–746.

    PubMed  CAS  Google Scholar 

  164. Garfinkel A, Qu Z. Nonlinear dinamics of excitation and propagation in cardiac muscle. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders, 1999: 315–320.

    Google Scholar 

  165. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J 1964;67:200–220.

    PubMed  CAS  Google Scholar 

  166. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS. Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 1999;99:2819–2826.

    PubMed  CAS  Google Scholar 

  167. Chen J, Mandapati R, Berenfeld O, Skanes AC, Jalife J. High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart. Circ Res 2000;86:86–93.

    PubMed  CAS  Google Scholar 

  168. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res 2000;86:408–417.

    PubMed  CAS  Google Scholar 

  169. Sarnie FH, Berenfeld O, Anumonwo J, et al. Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circ Res 2001;89:1216–1223.

    Google Scholar 

  170. Gray RA, Jalife J, Panfilov AV, et al. Mechanisms of cardiac fibrillation. Science 1995;270:1222–1223.

    PubMed  CAS  Google Scholar 

  171. Janse MJ, Wilms-Schopman FJG, Coronel R. Ventricular fibrillation is not always due to multiple wavelet reentry. J Cardiovasc Electrophysiol 1995;6:512–521.

    PubMed  CAS  Google Scholar 

  172. Antzelevitch C. Ion channels and ventricular arrhythmias. Cellular and ionic mechanisms underlying the Brugada syndrome. Curr Opin Cardiol 1999;14:274–279.

    PubMed  CAS  Google Scholar 

  173. Janse MJ, Van Capelle FJL, Morsink H, et al. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res 1980;47:151–167.

    PubMed  CAS  Google Scholar 

  174. Pogwizd SM, Corr PB. Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circ Res 1990;66:672–695.

    PubMed  CAS  Google Scholar 

  175. Riccio ML, Koller ML, Gilmour RF, Jr. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ Res 1999;84:955–963.

    PubMed  CAS  Google Scholar 

  176. Rogers JC, Huang JL, Smith WM, Ideker RE. Incidence, evolution, and spatial distribution of functional reentry during ventricular fibrillation in pigs. Circ Res 1999;84:945–954.

    PubMed  CAS  Google Scholar 

  177. Choi BR, Liu T, Salama G. The distribution of refractory periods influences the dynamics of ventricular fibrillation. Circ Res 2001;88:E49-E58.

    PubMed  CAS  Google Scholar 

  178. Allessie MA, Lammers WJEP, Bonke FIM, Hollen J. Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. Grune & Stratton, 1985:265–276.

    Google Scholar 

  179. Schuessler RB, Grayson TM, Bromberg BI, Cox JL, Boineau JP. Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ Res 1992;71:1254–1267.

    PubMed  CAS  Google Scholar 

  180. Antzelevitch C, Moe GK. Electrotonically-mediated delayed conduction and reentry in relation to “slow responses” in mammalian ventricular conducting tissue. Circ Res 1981;49:1129–1139.

    PubMed  CAS  Google Scholar 

  181. Rozanski GJ, Jalife J, Moe GK. Reflected reentry in nonhomogeneous ventricular muscle as a mechanism of cardiac arrhythmias. Circulation 1984;69:163–173.

    PubMed  CAS  Google Scholar 

  182. Lukas A, Antzelevitch C. Reflected reentry, delayed conduction, and electrotonic inhibition in seg-mentally depressed atrial tissues. Can J Physiol Pharmacol 1989;67:757–764.

    PubMed  CAS  Google Scholar 

  183. Davidenko JM, Antzelevitch C. The effects of milrinone on action potential characteristics, conduction, automaticity, and reflected reentry in isolated myocardial fibers. J Cardiovasc Pharmacol 1985;7:341–349.

    PubMed  CAS  Google Scholar 

  184. Rosenthal JE, Ferrier GR. Contribution of variable entrance and exit block in protected foci to arrhythmogenesis in isolated ventricular tissues. Circulation 1983;67:1–8.

    PubMed  CAS  Google Scholar 

  185. Antzelevitch C, Lukas A. Reflection and reentry in isolated ventricular tissue. In: Dangman KH, Miura DS, eds. Basic and Clinical Electrophysiology of the Heart. New York: Marcel Dekker, 1991:251–275.

    Google Scholar 

  186. Antzelevitch C, Moe GK. Electrotonic inhibition and summation of impulse conduction in mammalian Purkinje fibers. Am J Physiol 1983;245:H42-H53.

    PubMed  CAS  Google Scholar 

  187. Jalife J, Moe GK. Excitation, conduction, and reflection of impulses in isolated bovine and canine cardiac Purkinje fibers. Circ Res 1981;49:233–247.

    PubMed  CAS  Google Scholar 

  188. Davidenko JM, Antzelevitch C. Electrophysiological mechanisms underlying rate-dependent changes of refractoriness in normal and segmentally depressed canine Purkinje fibers. The characteristics of post-repolarization refractoriness. Circ Res 1986;58:257–268.

    PubMed  CAS  Google Scholar 

  189. Davidenko JM, Antzelevitch C. The effects of milrinone on conduction, reflection and automaticity in canine Purkinje fibers. Circulation 1984;69:1026–1035.

    PubMed  CAS  Google Scholar 

  190. Winkle RA. The relationship between ventricular ectopic beat frequency and heart rate. Circulation 1982;66:439–46.

    PubMed  CAS  Google Scholar 

  191. Nau GJ, Aldariz AE, Acunzo RS, et al. Clinical studies on the mechanism of ventricular arrhythmias. In: Rosenbaum MB, Elizari MV, eds. Frontier of Cardiac Electrophysiology. Amsterdam: Martinus Nijhoff, 1983:239–273.

    Google Scholar 

  192. Rosenthal JE. Reflected reentry in depolarized foci with variable conduction impairment in 1 day old infarcted canine cardiac tissue. J Am Coll Cardiol 1988; 12:404–111.

    PubMed  CAS  Google Scholar 

  193. Van Hemel NM, Swenne CA, De Bakker JMT, Defauw JAM, Guiraudon GM. Epicardial reflection as a cause of incessant ventricular bigeminy. PACE 1988;11:1036–1044.

    PubMed  Google Scholar 

  194. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1988;62:116–126.

    PubMed  CAS  Google Scholar 

  195. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 1993;72:671–687.

    PubMed  CAS  Google Scholar 

  196. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 1990;67:1287–1291.

    PubMed  CAS  Google Scholar 

  197. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol (Lond) 1991;442:191–209.

    CAS  Google Scholar 

  198. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 1993;27:1795–1709.

    PubMed  CAS  Google Scholar 

  199. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 1994;75:473–482.

    PubMed  CAS  Google Scholar 

  200. Nabauer M, Beuckelmann DJ, Öberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 1996;93:168–177.

    PubMed  CAS  Google Scholar 

  201. Zygmunt AC. Intracellular calcium activates chloride current in canine ventricular myocytes. Am J Physiol 1994;267:H1984-H1995.

    PubMed  CAS  Google Scholar 

  202. Takano M, Noma A. Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflugers Arch 1992;420:223–226.

    PubMed  CAS  Google Scholar 

  203. Di Diego JM, Sun ZQ, Antzelevitch C. It0and action potential notch are smaller in left vs right canine ventricular epicardium. Am J Physiol 1996;271:H548-H561.

    PubMed  Google Scholar 

  204. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+currents ITOl and IKsare larger in right than left canine ventricular midmyocardium. Circulation 1999;99: 206–210.

    PubMed  CAS  Google Scholar 

  205. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle: The M cell. Circ Res 1991;68:1729–1741.

    PubMed  CAS  Google Scholar 

  206. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium: In vitro and in vivo correlations. Circulation 1996;94:1981–1988.

    PubMed  CAS  Google Scholar 

  207. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol 2001;281:H689–H697.

    CAS  Google Scholar 

  208. Zygmunt AC, Goodrow RJ, Antzelevitch C. INa.Cacontributes to electrical heterogeneity within the canine ventricle. Am J Physiol 2000;278:H1671–H1678.

    CAS  Google Scholar 

  209. Brahmajothi MV, Morales MJ, Reimer KA, Strauss HC. Regional localization of ERG, the channel protein responsible for the rapid component of the delayed rectifier, K+current in the ferret heart. Circ Res 1997;81:128–135.

    PubMed  CAS  Google Scholar 

  210. Burashnikov A, Antzelevitch C. Differences in the electrophysiologic response of four canine ventricular cell types to a adrenergic agonists. Cardiovasc Res 1999;43:901–908.

    PubMed  CAS  Google Scholar 

  211. Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially-perfused canine left ventricular wedge preparations. Circulation 1998;98:1921–1927.

    PubMed  CAS  Google Scholar 

  212. Antzelevitch C, Shimizu W, Yan GX, et al. The M cell. Its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999; 10:1124–1152.

    PubMed  CAS  Google Scholar 

  213. Sicouri S, Antzelevitch C. Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J Cardiovasc Electrophysiol 1995;6:591–603.

    PubMed  CAS  Google Scholar 

  214. Sicouri S, Fish J, Antzelevitch C. Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol 1994;5:824–837.

    PubMed  CAS  Google Scholar 

  215. Stankovicova T, Szilard M, De Scheerder I, Sipido KR. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 2000;45:952–960.

    PubMed  CAS  Google Scholar 

  216. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H. Electrophysiological characteristics of cells spanning the left ventricular wall of human heart: Evidence for the presence of M cells. J Am Coll Cardiol 1995;26:185–192.

    PubMed  CAS  Google Scholar 

  217. Weissenburger J, Nesterenko VV, Antzelevitch C. Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo. Torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 2000; 11:290–304.

    PubMed  CAS  Google Scholar 

  218. Sicouri S, Quist M, Antzelevitch C. Evidence for the presence of M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol 1996;7:503–511.

    PubMed  CAS  Google Scholar 

  219. Li GR, Feng J, Yue L, Carrier M. Transmural heterogeneity of action potentials and Itol in myocytes isolated from the human right ventricle. Am J Physiol 1998;275:H369-H377.

    PubMed  CAS  Google Scholar 

  220. Rodriguez-Sinovas A, Cinca J, Tapias A, Armadans L, Tresanchez M, Soler-Soler J. Lack of evidence of M-cells in porcine left ventricular myocardium. Cardiovasc Res 1997;33:307–313.

    PubMed  CAS  Google Scholar 

  221. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 1997;96:2038–2047.

    PubMed  CAS  Google Scholar 

  222. Shimizu W, McMahon B, Antzelevitch C. Sodium pentobarbital reduces transmural dispersion of repolarization and prevents torsade de pointes in models of acquired and congenital long QT syndromes. J Cardiovasc Electrophysiol 1999;10:156–164.

    Google Scholar 

  223. Shimizu W, Antzelevitch C. Cellular basis for the electrocardiographic features of the LQT1 form of the long QT syndrome: Effects of b-adrenergic agonists, antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 1998;98:2314–2322.

    PubMed  CAS  Google Scholar 

  224. Shimizu W, Antzelevitch C. Cellular and ionic basis for T-wave alternans under Long QT-conditions. Circulation 1999;99:1499–1507.

    PubMed  CAS  Google Scholar 

  225. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation 1998;98:1928–1936.

    PubMed  CAS  Google Scholar 

  226. Balati B, Varro A, Papp JG. Comparison of the cellular electrophysiological characteristics of canine left ventricular epicardium, M cells, endocardium and Purkinje fibres. Acta Physiol Scand 1998;164:181–190.

    PubMed  CAS  Google Scholar 

  227. Mcintosh MA, Cobbe SM, Smith GL. Heterogeneous changes in action potential and intracellular Ca2+in left ventricular myocyte sub-types from rabbits with heart failure. Cardiovasc Res 2000;45:397–409.

    PubMed  CAS  Google Scholar 

  228. Viskin S, Lesh MD, Eldar M, Fish R, Setbon I, Laniado S, Belhassen B. Mode of onset of malignant ventricular arrhythmias in idiopathic ventricular fibrillation. J Cardiovasc Electrophysiol 1997;8: 1115–1120.

    PubMed  CAS  Google Scholar 

  229. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol 1992;20:1391–1396.

    PubMed  CAS  Google Scholar 

  230. Antzelevitch C, Brugada P, Brugada J, Brugada R, Nademanee K, Towbin JA. The Brugada Syndrome. Armonk, NY: Futura Publishing Company, Inc., 1999:1–99.

    Google Scholar 

  231. Alings M, Wilde A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation 1999;99:666–673.

    PubMed  CAS  Google Scholar 

  232. Antzelevitch C. The Brugada syndrome: Ionic basis and arrhythmia mechanisms. J Cardiovasc Electrophysiol 2001;12:268–272.

    PubMed  CAS  Google Scholar 

  233. Antzelevitch C. The Brugada Syndrome. Diagnostic criteria and cellular mechanisms. Eur Heart J 2001;22:356–363.

    PubMed  CAS  Google Scholar 

  234. Nademanee K, Veerakul G, Nimmannit S, et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595–2600.

    PubMed  CAS  Google Scholar 

  235. Corrado D, Buja G, Basso C, Nava A, Thiene G. What is the Brugada syndrome? Cardiol Rev 1999;7:191–195.

    PubMed  CAS  Google Scholar 

  236. Brugada R, Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000;101:510–515.

    PubMed  CAS  Google Scholar 

  237. Remme CA, Wever EFD, Wilde AAM, Derksen R, Hauer RNW. Diagnosis and long-term follow-up of Brugada syndrome in patients with idiopathic ventricular fibrillation. Eur Heart J 2001;22:400–409.

    PubMed  CAS  Google Scholar 

  238. Viskin S, Fish R, Eldar M, Zeltser D, Lesh MD, Glick A, Belhassen B. Prevalence of the Brugada sign in idiopathic ventricular fibrillation and healthy controls. Heart 2000;84:31–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  239. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanisms for idiopathic ventricular fibrillation. Nature 1998;392:293–296.

    PubMed  CAS  Google Scholar 

  240. Yan GX, Antzelevitch C. Cellular basis for the Brugada Syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation 1999;100:1660–1666.

    PubMed  CAS  Google Scholar 

  241. Rook MB, Alshinawi CB, Groenewegen WA, et al. Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc Res 1999;44: 507–517.

    PubMed  CAS  Google Scholar 

  242. Dumaine R, Towbin JA, Brugada P, et al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res 1999;85:803–809.

    PubMed  CAS  Google Scholar 

  243. Deschenes I, Baroudi G, Berthet M, et al. Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes. Cardiovasc Res 2000;46:55–65.

    PubMed  CAS  Google Scholar 

  244. Priori SG, Napolitano C, Giordano U, Collisani G, Memml M. Brugada syndrome and sudden cardiac death in children. Lancet 2000;355:808–809.

    PubMed  CAS  Google Scholar 

  245. Bezzina C, Veldkamp MW, van Den Berg MP, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 1999;85:1206–1213.

    PubMed  CAS  Google Scholar 

  246. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation 1996;93: 372–379.

    CAS  Google Scholar 

  247. Gussak I, Antzelevitch C, Bjerregaard P, Towbin JA, Chaitman BR. The Brugada syndrome: clinical, electrophysiological and genetic aspects. J Am Coll Cardiol 1999;33:5–15.

    PubMed  CAS  Google Scholar 

  248. Miyazaki T, Mitamura H, Miyoshi S, Soejima K, Aizawa Y, Ogawa S. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol 1996;27:1061–1070.

    PubMed  CAS  Google Scholar 

  249. Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. The antiarrhythmic effects of 4-aminopyridine. Cardiovasc Res 1996;32:593–603.

    PubMed  CAS  Google Scholar 

  250. Antzelevitch C, Dumaine R. Electrical heterogeneity in the heart: Physiological, pharmacological and clinical implications. In: Page E, Fozzard HA, Solaro RJ, eds. Handbook of Physiology. The Heart. New York: Oxford University Press, 2002:654–692.

    Google Scholar 

  251. Tarin N, Farre J, Rubio JM, Tunon J, Castro-Dorticos J. Brugada-like electrocardiographic pattern in a patient with a mediastinal tumor. PACE 1999;22:1264–1266.

    PubMed  CAS  Google Scholar 

  252. Carlsson J, Erdogan A, Schulte B, Neuzner J, Pitschner HF. Possible role of epicardial left ventricular programmed stimulation in Brugada syndrome. PACE 2001;24:247–249.

    PubMed  CAS  Google Scholar 

  253. Litovsky SH, Antzelevitch C. Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 1990;67:615–627.

    PubMed  CAS  Google Scholar 

  254. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium: Phase 2 Reentry? Circulation 1993;87:562–572.

    PubMed  CAS  Google Scholar 

  255. Matsuo K, Shimizu W, Kurita T, et al. Increased dispersion of repolarization time determined by monophasic action potentials in two patients with familial idiopathic ventricular fibrillation. J Cardiovasc Electrophysiol 1998;9:74–83.

    PubMed  CAS  Google Scholar 

  256. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989;69:1049–1169.

    PubMed  CAS  Google Scholar 

  257. Janse MJ, Van Capelle FJL. Electrotonic interactions across an inexcitable region as a cause of ectopic activity in acute regional myocardial ischemia. A study in intact porcine and canine hearts and computer models. Circ Res 1982;50:527–537.

    PubMed  CAS  Google Scholar 

  258. Lukas A, Antzelevitch C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia: Role of the transient outward current. Circulation 1993; 88:2903–2915.

    PubMed  CAS  Google Scholar 

  259. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues: Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation 1993;88:1177–1189.

    PubMed  Google Scholar 

  260. Di Diego JM, Antzelevitch C. High [Ca2+]-induced electrical heterogeneity and extrasystolic activity in isolated canine ventricular epicardium: Phase 2 reentry. Circulation 1994;89:1839–1850.

    PubMed  Google Scholar 

  261. Gilmour RF, Jr, Zipes DP. Different electrophysiological responses of canine endocardium and epicardium to combined hyperkalemia, hypoxia, and acidosis. Circ Res 1980;46:814–825.

    PubMed  Google Scholar 

  262. Kimura S, Bassett AL, Kohya T, Kozlovskis PL, Myerburg RJ. Simultaneous recording of action potentials from endocardium and epicardium during ischemia in the isolated cat ventricle: Relation of temporal electrophysiologic heterogeneities to arrhythmias. Circulation 1986;74:401–409.

    PubMed  CAS  Google Scholar 

  263. Furukawa T, Kimura S, Cuevas J, Furukawa N, Bassett AL, Myerburg RJ. Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ Res 1991;68:1693–1702.

    PubMed  CAS  Google Scholar 

  264. Kimura S, Bassett AL, Furukawa T, Furukawa N, Myerburg RJ. Differences in the effect of metabolic inhibition on action potentials and calcium currents in endocardial and epicardial cells. Circulation 1991;84:768–777.

    PubMed  CAS  Google Scholar 

  265. Miller WT, Geselowitz DB. Simulation studies of the electrogram. 2. Ischemia and infarction. Circ Res 1978;43:315–323.

    PubMed  Google Scholar 

  266. Miller WT, Geselowitz DB. Simulation studies of the electrocardiogram. 1. The normal heart. Circ Res 1978;43:301–315.

    PubMed  CAS  Google Scholar 

  267. Mandel WJ, Burgess MJ, Neville J, Abildskov J A. Analysis of T-wave abnormalities associated with myocardial infarction using a theoretical model. Circulation 1968;38:178–188.

    PubMed  CAS  Google Scholar 

  268. Haws CW, Lux RL. Correlation between in vivotransmembrane action potential durations and action-recovery intervals from electrograms. Effects of interventions that alter repolarization time. Circulation 1990;81:281–288.

    PubMed  CAS  Google Scholar 

  269. Downar E, Janse MJ, Durrer D. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 1977;56:217–224.

    PubMed  CAS  Google Scholar 

  270. Ejima J, Martin D, Engle CL, Gettes LS, Kunimoto S, Gettes LS. Ability of activation recovery intervals to assess action potential duration during acute no-flow ischemia in the in situ porcine heart. J Cardiovasc Electrophysiol 1998;9:832–844.

    PubMed  CAS  Google Scholar 

  271. Madias JE. The earliest electrocardiographic signs of acute transmural myocardial infarction. J Electrocardiol 1977;10:193–196.

    PubMed  CAS  Google Scholar 

  272. Schwartz PJ, Periti M, Malliani A. The long QT syndrome. Am Heart J 1975;89:378–390.

    PubMed  CAS  Google Scholar 

  273. Moss AJ, Schwartz PJ, Crampton RS, Locati EH, Carleen E. The long QT syndrome: a prospective international study. Circulation 1985;71:17–21.

    PubMed  CAS  Google Scholar 

  274. Zipes DP. The long QT interval syndrome: A Rosetta stone for sympathetic related ventricular tachyarrhythmias. Circulation 1991;84:1414–1419.

    PubMed  CAS  Google Scholar 

  275. Shimizu W, Ohe T, Kurita T, et al. Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J Am Coll Cardiol 1995;26:1299–1309.

    PubMed  CAS  Google Scholar 

  276. Abbott GW, Sesti F, Splawski I, et al. MiRPl forms 1 potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999;97:175–187.

    PubMed  CAS  Google Scholar 

  277. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX. Cellular and ionic mechanisms underlying erythromy-cin-induced long QT and torsade de pointes. J Am Coll Cardiol 1996;28:1836–1848.

    PubMed  CAS  Google Scholar 

  278. Schwartz PJ. The idiopathic long QT syndrome: Progress and questions. Am Heart J 1985; 109: 399–411.

    PubMed  CAS  Google Scholar 

  279. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome: prospective longitudinal study of 328 families. Circulation 1991;84:1136–1144.

    PubMed  CAS  Google Scholar 

  280. Crampton RS. Preeminence of the left stellate ganglion in the long QT syndrome. Circulation 1979;59:769–778.

    PubMed  CAS  Google Scholar 

  281. Ali RH, Zareba W, Moss A, et al. Clinical and genetic variables associated with acute arousal and nonarousal-related cardiac events among subjects with long QT syndrome. Am J Cardiol 2000;85:457–461.

    PubMed  CAS  Google Scholar 

  282. El-Sherif N, Chinushi M, Caref EB, Restivo M. Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome. Detailed analysis of ventricular tridimensional activation patterns. Circulation 1997;96:4392–399.

    PubMed  CAS  Google Scholar 

  283. Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS. Optical maps reveal reentrant mechanism of torsade de pointes based on topography and electrophysiology of mid-myocardial cells [abstr]. Circulation 1997;96(8):I-355.

    Google Scholar 

  284. Ferrier GR, Rosenthal JE. Automaticity and entrance block induced by focal depolarization of mammalian ventricular tissues. Circ Res 1980;47:238–248.

    PubMed  CAS  Google Scholar 

  285. Wennemark JR, Ruesta VJ, Brody DA. Microelectrode study of delayed conduction in the canine right bundle branch. Circ Res 1968;23:753–769.

    PubMed  CAS  Google Scholar 

  286. Downar E, Waxman MB. Depressed conduction and unidirectional block in Purkinje fibers. In: Wellens HJ, Lie KI, Janse MJ, eds. The Conduction System of the Heart. Philadelphia: Lea and Febiger, 1976:393–409.

    Google Scholar 

  287. Antzelevitch C, Spach MS. Impulse conduction: continuous and discontinuous. In: Spooner PM, Rosen MR, eds. Foundations of Cardiac Arrhythmias. Basic Concepts: Fundamental Approaches. New York: Marcel Dekker, Inc., 2000:205–241.

    Google Scholar 

  288. Spach MS, Miller WT, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ Res 1981;48:39–54.

    PubMed  CAS  Google Scholar 

  289. Antzelevitch C, Jalife J, Moe GK. Frequency-dependent alternations of conduction in Purkinje fibers. A model of phase-4 facilitation and block. In: Rosenbaum MB, Elizari MV, eds. Frontiers of Cardiac Electrophysiology. Amsterdam: Martinus Nijhoff, 1983:397–415.

    Google Scholar 

  290. Gilmour RF, Jr., Salata JJ, Zipes DP. Rate-related suppression and facilitation of conduction in isolated canine cardiac Purkinje fibers. Circ Res 1985;57:35–45.

    PubMed  Google Scholar 

  291. Gilmour RF, Jr., Heger JJ, Prystowsky EN, Zipes DP. Cellular electrophysiologic abnormalities of diseased human ventricular myocardium. Am J Cardiol 1983;51:137–144.

    PubMed  Google Scholar 

  292. Gilmour RF, Jr., Zipes DP. Cellular basis for cardiac arrhythmias. Cardiol Clin 1983;1:3–11.

    PubMed  Google Scholar 

  293. Antzelevitch C, Shimizu W, Yan GX. Electrical heterogeneity and the development of arrhythmias. In: Olsson SB, Yuan S, Amlie JP, eds. Dispersion of Ventricular Repolarization: State of the Art. New York: Futura Publishing Company, Inc., 2000:3–21.

    Google Scholar 

  294. Gilmour RF, Jr. Phase resetting of circus movement reentry in cardiac tissue. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology, From Cell to Bedside. New York: WB Saunders, 1989.

    Google Scholar 

  295. Matsuda K, Kamiyama A, Hoshi T. Configuration of the transmenbrane action potential at the Purkinje-ventricular fiber junction and its analysis. In: Sano T, Mizuhira V, Matsuda K, eds. Electrophysiology and Ultrastructure of the Heart. New York: Grune & Stratton, 1967:177–187.

    Google Scholar 

  296. Overholt ED, Joyner RW, Veenstra RD, Rawling DA, Wiedman R. Unidirectional block between Purkinje and ventricular layers of papillary muscles. Am J Physiol 1984;247:H584-H595.

    PubMed  CAS  Google Scholar 

  297. Antzelevitch C. Electrotonus and reflection. In: Rosen MR, Janse MJ, Wit AL, eds. Cardiac Electrophysiology: A Textbook. Mount Kisco, NY: Futura Publishing Company, Inc., 1990:491–516.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antzelevitch, C., Burashnikov, A., Di Diego, J.M. (2003). Cellular and Ionic Mechanisms Underlying Arrhythmogenesis. In: Gussak, I., Antzelevitch, C., Hammill, S.C., Shen, WK., Bjerregaard, P. (eds) Cardiac Repolarization. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-362-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-362-0_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-336-7

  • Online ISBN: 978-1-59259-362-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics