Skip to main content

Cellular Responses to Chemical Carcinogens

  • Chapter
The Molecular Basis of Human Cancer

Abstract

Cancer is the second leading cause of death in the United States. It i s estimated that approximately a third of all Americans will develop cancer in their lifetime. The American Cancer Society estimated that 1,220,000 new cases of cancer and 550,000 deaths occurred in 2000 (see www.cancer.org). Agents that can cause cancer are called carcinogens. Carcinogens can be classified into agents that are chemical, viral, or physical (radiation such as untraviolet [UV] light, X-rays, and gamma rays). Approximately 60–90% of all cancers are now generally believed to be due to these environmental factors to which humans are exposed in food, water, or air. It is important to mention that the term environmental factors includes both natural and human-made agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Searle, C. E. (ed.) (1984) Chemical Carcinogens, 2nd ed. (ACS Monograph 182 ), American Chemical Society, Washington DC.

    Google Scholar 

  2. Politzer, P. and Martin, F. J. (eds.) (1988) Chemical Carcinogens. (Bioactive Molecules, vol. 5 ), Elsevier, New York.

    Google Scholar 

  3. Bowman, M.C. (ed.) (1982) Handbook of Carcinogens and Hazardous Substances. Marcel Dekker, Inc., New York.

    Google Scholar 

  4. Bartsch, H., Hemminli, K., and O’Neill, I. K. (eds.) (1988) Methods for Detecting DNA Damaging Agents in Humans: Applications in Cancer Epidemiology and Prevention. International Agency for Research on Cancer, Lyon, France.

    Google Scholar 

  5. Milman, H. A. and Weisburger, E. K. (eds.) (1985) Handbook of Carcinogen Testing. Noyes Publications, Park Ridge, NJ.

    Google Scholar 

  6. Montesano, R., Bartsch, H., Vainio, H., Wilbourn, J., and Yamasaki, H. (eds.) (1986) Long-term and Short-term Assays for Carcinogens: A Critical Appraisal. International Agency for Research on Cancer, Lyon, France.

    Google Scholar 

  7. Harvey, R. G. (1997)Polycy clic AromaticHydrocarbons: Chemistry and Cancer. Wiley-VCH, Inc., New York, New York.

    Google Scholar 

  8. Singer, B. and Grunberger, D. (1983) Molecular Biology of Mutagens and Carcinogens. Plenum Press, New York.

    Book  Google Scholar 

  9. Redmond, D. E., Jr. (1970) Tobacco and Cancer: the first clinical report, 1761. N. Engl. J. Med. 282: 18–23.

    Article  PubMed  Google Scholar 

  10. Pott, P. (1963) Chirurgical observations relative to the cancer of the scrotum. London, 1775. Natl. Cancer Inst. Monograph 10: 7–13.

    Google Scholar 

  11. Yamagiwa, K. and Ichikawa, K. (1915) Verh. Japn. Path. Ges. 5: 142–148.

    Google Scholar 

  12. Kennaway, E. L. and Hieger, I. (1930) Carcinogenic substances and their fluorescent spectra. BMJ ii: 1044–1046.

    Google Scholar 

  13. Cook. J. W., Hewett, C. L., and Hieger, I. (1933) The isolation of a cancer-producing hydrocarbon from coal tar, Parts I-III. J. Chem. Soc. 395–405.

    Google Scholar 

  14. Hueper, W. C. (1942) Occupational Tumors and Allied Diseases. Thomas Co., Springfield IL.

    Google Scholar 

  15. Hueper, W. C., Wiley, F. H., and Wolfe, H. D. (1938) Experimental production of bladder tumors in dogs by administration of betanaphthylamine. J. Ind. Hyg. Toxicol. 20: 46–84.

    CAS  Google Scholar 

  16. Rehn, L. (1895) Blasengeschwulste bei fuchsinarbeitern. Arch. Klin. Chir. 50: 588–600.

    Google Scholar 

  17. Case, R. A. M., Hosker, M. W., McDonald, D. B., and Pearson, J. T. (1954) Tumors of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical inductry. Br. J. Ind. Med. 11: 75–104.

    PubMed  CAS  Google Scholar 

  18. Doll, R. and Peto, R. (1981) The Causes of Cancer. Oxford Press, New York.

    Google Scholar 

  19. Schulte, P. A., Ward, E., Boeniger, M., and Hills, B. (1988) Occupational exposure to N-substituted aryl compounds. In: Carcinogenic and Mutagenic Responces to Aromatic Amines and Nitroarenes ( King, C. M., Romano, L. J. and Schuetzle, D., eds.), Elsevier Science, New York, pp. 23–35.

    Google Scholar 

  20. Guerin, M. R. and Buchanan, M. V. (1988) Environmental exposure to N-substituted aryl compounds. In: Carcinogenic and Mutagenic Responces to Aromatic Amines and Nitroarenes ( King, C. M., Romano, L. J. and Schuetzle, D., eds.), Elsevier Science, New York, pp. 37–45.

    Google Scholar 

  21. Ross, R. K., Paganini-Hill, A. and Henderson, B. E. (1988) Epidemeology of bladder cancer. In: Diagnosis and Management of Genitourinary Cancer ( Skinner, D. G. and Lieshovsky, G., eds.), W.B. Saunders Co., Philadephia, pp. 23–31.

    Google Scholar 

  22. Asao, T., Buchi, G., Abdel-Kader, M. M., Chang, S. B., Wick, E. L., and Wogan, G. N. (1963) Aflatoxins B and G. J. Am. Chem. Soc. 85: 1706–1707.

    Article  CAS  Google Scholar 

  23. Eaton, D. L. and Groopman, J. D. (eds.) (1994) The Toxicology of Aflatoeins. Academic Press, New York.

    Google Scholar 

  24. Muller, F. H. (1939) Tobacco abuse and carcinoma of the lung. Z. Krebsforsch. 49: 57–85.

    Google Scholar 

  25. Doll, R. and Hill, A. B. (1950) Smoking and carcinoma of the lung. Br. Med. J. ii: 739–748.

    Google Scholar 

  26. Peto, R. (1986) Tobacco: an overview of health effects. In: Tobacco. A Major International Health Hazard ( Zaridze, D. G. and Peto, R., eds.), International Agency for Research on Cancer, Lyon, France, pp. 12–22.

    Google Scholar 

  27. Hoffmann, D. and Hoffmann, I. (1997) The changing cigarette, 1950–1995. J. Toxicol. Environ. Health 50: 307–364

    Article  PubMed  CAS  Google Scholar 

  28. Holleb, H. B. and Angrist, A. (1942) Bronchiogenic carcinoma in association with pulmonary asbestosis. Am. J. Pathol. xviii: 123.

    Google Scholar 

  29. Selikoff, I. and Hammond, E. C. (1978) Asbestos-associated diseases in the United States shipyards. Cancer 28: 67–99.

    Google Scholar 

  30. Blair, A. and Kazerouni, N. (1997) Reactive chemicals and cancer. Cancer Causes Control 8: 473–490.

    Article  PubMed  CAS  Google Scholar 

  31. Higginson, J. (1969) Present trends in cancer epidemiology. Canadian Cancer Conf. 8: 40–75.

    CAS  Google Scholar 

  32. Haenszel, W. and Kurihara, M. (1968) Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J. Natl. Cancer Inst. 40: 43–68.

    PubMed  CAS  Google Scholar 

  33. Haenszel, W. (1975) Migrant studies. In: Persons at High Risk of Cancer. An approach to Cancer Etiology and Control. ( Fraumeni Jr., J. F., ed.), Academic Press, New York, pp. 361–371.

    Google Scholar 

  34. Boveri, T. (1914) Zur frage der entstehung maligner tumoren. Gustave Fischer Verlag, Jena, Germany.

    Google Scholar 

  35. Crow, J. F. and Abrahamson S. (1997) Seventy years ago: mutation becomes experimental. Genetics 147: 1491–1496.

    PubMed  CAS  Google Scholar 

  36. McCann, J., Choi, E., Yamasaki, E., and Ames, B. N. (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135–5139.

    Google Scholar 

  37. Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., et al. (1982) Mechanism of activation of a human oncogene. Nature 300: 143–149.

    Article  PubMed  CAS  Google Scholar 

  38. Reddy, E. P., Reynolds, R. K., Santos, E., and Barbacid, M. (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 149–152.

    Article  PubMed  CAS  Google Scholar 

  39. Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., and Wigler, M. (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300: 762–765.

    Article  PubMed  CAS  Google Scholar 

  40. Vogelstein, B., and Kinzler, K. W. (1992) Carcinogens leave fingerprints. Nature 355: 209–210.

    Article  PubMed  CAS  Google Scholar 

  41. Greenblatt, M. S., Bennett, W. P., Hollstein, M., and Harris, C. C. (1994) Perspectives in Cancer Research: Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  42. Hainaut, P., Hernandez, T., Robinson, A., Rodriguez-Tome, P., Flores, T., Hollstein, M., et al. (1998) IARC database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 26: 205–213.

    Article  PubMed  CAS  Google Scholar 

  43. Ortiz de Montellano, P. R. (ed.) (1995) Cytochrome P450: Structure, Mechanism, and Biochemistry, 2nd ed., Plenum Press, New York.

    Google Scholar 

  44. Schenkman, J. B. and Greim, H. (eds.) (1993) Cytochrome P450. Springer-Verlag, New York.

    Google Scholar 

  45. Jakoby, W. B., Bend, J. R., and Caldwell, J. (eds.) (1982) Metabolic Basis of Detoxification: Metabolism of Functional Groups. Academic Press, New York.

    Google Scholar 

  46. Caldwell, J. and Jakoby, W. B. (eds.) (1983) Metabolic Basis of Detoxification. Academic Press, New York.

    Google Scholar 

  47. Jakoby, W. B. (ed.) (1980) Enzymatic Basis of Detoxification. Academic Press, New York.

    Google Scholar 

  48. Miller, E. C. (1978) Some current perspectives on chemical carcinogenesis in humans and experimental animals: presidential address. Cancer Res. 38: 1479–1496.

    PubMed  CAS  Google Scholar 

  49. Nelson, D. R., Koymans, L., Kamataki, T., Stegemann, J. J., Feyereisen, R., Waxman, D. J., et al. (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomeclature. Pharmacogenetics 6: 1–42.

    Article  PubMed  CAS  Google Scholar 

  50. Correia, M. A. (1995) Rat and human liver cytochrome P450. Substrate and inhibitor specificities and functional markers. In: Cytochrome P450: Structure, Mechanism, and Biochemistry. ( Ortiz de Montellano, P. R., ed.), Plenum Press, New York, pp. 607–630.

    Google Scholar 

  51. Guengerich, F. P. (1995) Human cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanism, and Biochemistry. ( Ortiz de Montellano, P. R., ed.), Plenum Press, New York, pp. 473–535.

    Google Scholar 

  52. Harvey, R. G. (1991) Polycyclic Aromatic Hydrocarbons: Chemistry and Cancer, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  53. Phillips, D. H. (1983) Fifty years of benzo[a]pyrene. Nature 303: 468–472.

    Article  PubMed  CAS  Google Scholar 

  54. Conney, A. H. (1982) Induction ofmicrosomal enzymes by foreign chemicals and carcinogens by polycyclic aromatic hydrocarbons. Cancer Res. 42: 4875–4917.

    PubMed  CAS  Google Scholar 

  55. Preussmann, R. and Stewart, B. W. (1984) N-nitroso carcinogens. In: Chemical Carcinogens, 2nd ed. (ACS Monograph I82), ( Searle, C. E., ed.), American Chemical Society, Washington DC, pp. 643–828.

    Google Scholar 

  56. Preussmann, R. and Eisenbrand, G. (1984) N-nitroso carcinogens in the environment. In: Chemical Carcinogens, 2nd ed. (ACS Monograph 182), ( Searle, C. E., ed.), American Chemical Society, Washington DC, pp. 829–868.

    Google Scholar 

  57. Whitlock, J. P., Jr. and Denison, M. S. (1995) Induction of cytochrome P450 enzymes that metabolize xenobiotics. In: Cytochrome P450: Structure, Mechanism, and Biochemistry ( Ortiz de Montellano, P.R., ed.), Plenum Press, New York, pp. 367–390.

    Google Scholar 

  58. Jakoby, W. B. and Ziegler, D. M. (1990) The enymes of detoxification. J. Biol. Chem. 265: 20715–20718.

    PubMed  CAS  Google Scholar 

  59. Miller, J. A. and Surh, Y.-J. (1994) Historical perspectives on conjugate-dependent bioactivation of foreign compounds. Adv. Pharmacol. 27: 1–16.

    Article  PubMed  CAS  Google Scholar 

  60. Andersson, C., Mosialou, E., Weinander, R., and Morgenstern, R. (1994) Enzymology of microsomal glutathione S-transferase. Adv. Pharmacol. 27: 19–35.

    Article  PubMed  CAS  Google Scholar 

  61. Ketterer, B. and Christodoulides, L. G. (1994) Enzymology of cytosolic glutathione S-transferase. Adv. Pharmacol. 27: 37–51.

    Article  PubMed  CAS  Google Scholar 

  62. Commandeur, J. N. M., Stijntjes, G. J., and Vermeulen, N. P. E. (1995) Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Pharmacol. Rev. 47: 271–330.

    PubMed  CAS  Google Scholar 

  63. Zia-Amirhosseini, P., Spahn-Langguth, H., andBenet, L. Z. (1994) Bioactivation by glucuronide-conjugate formation. Adv. Pharmacol. 27: 385–397.

    Article  PubMed  CAS  Google Scholar 

  64. Bock, K. W. (1994) UDP-glucuronosyltransferases and their role in metabolism and disposition of carcinogens. Adv. Pharmacol. 27: 367–383.

    Article  PubMed  CAS  Google Scholar 

  65. Tephly, T. R. and Burchell, B. (1990) UDP-glucuronosyltransferases: a family of detoxifying enzymes. Trends Pharmacol. Sci. 11: 276–279.

    Article  PubMed  CAS  Google Scholar 

  66. Coughtrie, M. W. H., Bamforth, K. J., Sharp, S., Jones, A. L., Borthwick, E. B., Barker, E. V., et al. (1994) Sulfation of endogenous compounds and xenobiotics: interactions and function in health and disease. Chem. Biol. Interactions 92: 247–256.

    Article  CAS  Google Scholar 

  67. Matsui, M. and Homma H. (1994) Biochemistry and molecular biology of drug-metabolizing sulfotransferase. Int. J Biochem. 26: 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  68. Falany, C. N. and Wilborn, T. W. (1994) Biochemistry of cytosolic sulfotransferases involved in bioactivation. Adv. Pharmacol. 27: 301–330.

    Article  PubMed  CAS  Google Scholar 

  69. Machejda, C. J. and Koepke, M. B. K. (1994) Carcinogen activation by sulfate conjugate formation. Adv. Pharmacol. 27: 331–362.

    Article  Google Scholar 

  70. Hanna, P. E. (1995)N-acetyltransferases, 0-acetyltransferases, and N,O-acetyltransferases: enzymology and bioactivation. Pharmacol. Rev. 47: 401–430.

    Google Scholar 

  71. King, C. M., Land, S. J., Jones, R. F., Debiec-Rychter, M., Lee, M.-S., and Wang, C. Y. (1997) Role of acetyltransferases in the metabolism and carcinogenicity of aromatic amines. Mut. Res. 376: 123–128.

    Article  CAS  Google Scholar 

  72. Grant, D. M., Hughes, N. C., Janezic, S. A., Goodfellow, G. H., Chen, H. J., Gaedigk, A., et al. (1997) Human acetyltransferase polymorphisms. Mut. Res. 376: 61–70.

    Article  CAS  Google Scholar 

  73. Ozawa, N. and Geungerich, F. P. (1983) Evidence for formation of an S-[2-(N7-guanyl)ethyl]glutathione adduct in glutathione-mediated binding of the carcinogen 1,2-dibromoethane to DNA. Proc. Natl. Acad. Sci. USA 80: 5266–5270.

    Article  PubMed  CAS  Google Scholar 

  74. Kim, M. S. and Guengerich, F. P. (1997) Synthesis of oligonucleotides containing the ethylene dibromide DNA adducts S-[2-(N7guanyl)ethyl]glutathione, S-[2-(N2-guanyl)ethyl]glutathione, and S-[2-(06-guanyl)ethyl]glutathione at a single site. Chem. Res. Toxicol. 10: 1133–1143.

    Article  PubMed  CAS  Google Scholar 

  75. Beland, F. A. and Kadlubar, F. F. (1985) Formation and persistence of arylamine DNA adducts in vivo. Environ. Health Perspectives 62: 19–30.

    Article  CAS  Google Scholar 

  76. Kadlubar, F. F. and Beland, F. A. (1985) Chemical properties of ultimate carcinogenic metabolites of arylamine and arylamides. In: Polycyclic Hydrocarbons and Carcinogenesis ( Harvey, R. G., ed.), American Chemical Society, Washington, DC, pp. 341–370.

    Chapter  Google Scholar 

  77. Kadlubar, F. F. (1994) DNA adducts of carcinogenic aromatic amines. IARC Sci. Publ. 125: 199–216.

    PubMed  CAS  Google Scholar 

  78. Kadlubar, F. F., Miller, J. A., and Miller, E. C. (1994) Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res. 37: 805–814.

    Google Scholar 

  79. Wise, R. W., Zenser, T. V., Kadlubar, F. F., and Davis, B. B. (1984) Metabolic activation of carcinogenic aromatic amines by dog bladder and kidney prostaglandin H synthase. Cancer Res. 44: 1893–1897.

    PubMed  CAS  Google Scholar 

  80. King, C. M., Romano, L. J. and Schuetzle, D. (eds.) (1988) Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes. Elsevier Science, New York.

    Google Scholar 

  81. Nagao, M., Wakabayashi, N. M., Ushijima, T., Toyota, M., Totsuka, Y., and Sugimura, T. (1996) Human exposure to carcinogenic heterocyclic amines and their mutationmal fingerprints in experimental animals. Environ. Health Perspectives 104: 497–501.

    CAS  Google Scholar 

  82. Gooderham, N. J., Murray, S., Lynch, A. M., Edwards, R. J., Yadollahi-Farsani, M., Bratt, C., et al. (1996) Heterocyclic amines: evaluation of their role in diet associated human cancer. Br. J. Pharmacol. 42: 91–98.

    CAS  Google Scholar 

  83. Layton, D. W., Bogen, K. T., Knize, M. G., Hatch, F. T., Johnson, V. M., and Felton, J. S. (1995) Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis 16: 39–52.

    Article  PubMed  CAS  Google Scholar 

  84. Perera, F. (1997) Environment and cancer: who are susceptible? Science 278: 1068–1073.

    Article  PubMed  CAS  Google Scholar 

  85. Dipple, A., Moschel, R. C., and Bigger, A. H. (1984) Polynuclear aromatic carcinogens. In: Chemical Carcinogens, 2nd ed. (ACS Monograph 182) ( Searle, C. E., ed.), American Chemical Society, Washington DC, pp. 41–164.

    Google Scholar 

  86. Agarwal, R., Canella, K. A., Yagi, H., Jerina, D. M., and Dipple, A. (1996) Benzo[c]phenthrene-DNA adducts in mouse epidermis in relation to the tumorigenicities of four configurationally isomeric 3,4-dihydrodiol 1,2-epoxides. Chem. Res. Toxicol. 9: 586–592.

    Article  PubMed  CAS  Google Scholar 

  87. Geacintov, N. E. (1986) Is intercalation a critical factor in the covalent binding of mutagenic and tumorigenic polycyclic aromatic diol epoxides to DNA? Carcinogenesis 7: 759–766.

    Article  PubMed  CAS  Google Scholar 

  88. Loechler, E. L. (1991) Molecular modeling in mutagenesis and carcinogenesis. Methods Enzymol. 203: 458–476.

    Article  PubMed  CAS  Google Scholar 

  89. Geacintov, N. E., Cosman, M., Hingerty, B. E., Amin, S., Broyde, S., and Patel, D. J. (1997) NMR solution structures of stereoisomeric polycyclic aromatic carcinogen-DNA adducts: Principles, patterns and diversity. Chem. Res. Toxicol. 10: 111–131.

    Article  PubMed  CAS  Google Scholar 

  90. Cavalieri, E. L., Rogan, E. G., Devanesan, P. D., Cremonesi, P., Cerny, R.L., Gross, M. L., et al. (1990) Binding of benzo[a]pyrene to DNA by cytochrome P-450 catalyzed one-electron oxidation in rat liver microsomes and nuclei. Biochemistry 29: 4820–4827.

    Article  PubMed  CAS  Google Scholar 

  91. Devanesan, P. D., RamaKrishna, N. V. S., Todorovic, R., Rogan, E. G., Cavalieri, E. L., Jeong, H., et al. (1992) Identification and quantitation of benzo[a]pyrene-DNA adducts formed by rat liver microsomes in vitro. Chem. Res. Toxicol. 5: 302–309.

    Article  PubMed  CAS  Google Scholar 

  92. Chakravarti, D., Pelting, J., Cavalieri, E. L., and Rogan, E. G. (1995) Relating aromatic hydrocarbon-induced DNA adducts and the c-Hras mutations in mouse skin papillomas: The role of apurinic sites. Proc. Natl. Acad. Sci. USA 92: 10422–10426.

    Article  PubMed  CAS  Google Scholar 

  93. Chen, L., Devanesan, R., Higginbotham, S., Ariese, F., Jankowiak, R., Small, G. J., et al. (1996) Expanded analysis of benzo[a]pyreneDNA adducts formed in vitro and in mouse skin: their significance in tumor initiation. Chem. Res. Toxicol. 9: 897–903.

    Article  PubMed  CAS  Google Scholar 

  94. Todorovic, R., Ariese, F. Devanesan, R., Jankowiak, R., Small, G. J., Rogan, E. G., et al. (1997) Determination of benzo[a]pyrene-and 7,12-dimethylbenz[a]anthracene-DNA adducts formed in rat mammary glands. Chem. Res. Toxicol. 10: 941–947.

    Article  PubMed  CAS  Google Scholar 

  95. Humphreys, W. G., Kadlubar, F. F., and Guengerich, F. P. (1992) Mechanism of C8 alkylation of guanine residues by activated arylamines: evidence for initial adduct formation at the N7 position. Proc. Natl. Acad. Sci. USA 89: 8278–8282.

    Article  PubMed  CAS  Google Scholar 

  96. Patel, D. J., Mao, B., Gu, Z., Hingerty, B. E., Gorin, A., Basu, A. K., et al. (1998) Nuclear magnetic resonance solution structures of covalent aromatic amine-DNA adducts and their mutagenic relevance. Chem. Res. Toxicol. 11: 391–407.

    Article  PubMed  CAS  Google Scholar 

  97. Hoffmann, G. R. and Fuchs, R. P. (1997) Mechanisms of frameshift mutations: Insights from aromatic amines. Chem. Res. Toxicol. 10: 347–359.

    Article  PubMed  CAS  Google Scholar 

  98. Loechler, E. L. (1994) A violation of the Swain-Scott principle and not SN1 vs. SN2 reaction mechanisms, explains why carcinogenic alkylating agents can form different proportions of adducts at oxygen vs. nitrogen in DNA. Chem. Res. Toxicol. 7: 277–280.

    Article  PubMed  CAS  Google Scholar 

  99. Lawley, P. D. (1984) carcinogenesis of alkylating agents. In:Chemical Carcinogens, 2nd ed., (ACS Monograph 182), (Searle, C. E., ed.), American Chemical Society, Washington DC, pp. 325–484.

    Google Scholar 

  100. Loechler, E. L. (1991) Rotation about the C6–06 Bond in O6methylguanine: the syn and anti-conformers can be of similar energies in duplex DNA as estimated by molecular modeling techniques. Carcinogenesis 12: 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  101. Dosanjh, M. K., Loechler, E. L., and Singer, B. (1993) Evidence from in vitro replication that 06-methylguanine can adopt multiple conformations. Proc. Natl. Acad. Sci. USA 90: 3983–3987.

    Article  PubMed  CAS  Google Scholar 

  102. Essigmann, J. M., Croy, R. G., Nadzan, A. M., Busby, W. F., Reinhold, V. N., Buchi, G., et al. (1977) Structural identification of the major DNA adducts formed by aflatoxin B1 in vitro. Proc. Natl. Acad. Sci. USA 74: 1870–1974.

    Article  PubMed  CAS  Google Scholar 

  103. Baiuley, G. S. (1994) Role of aflatoxin B1 adducts in the cancer process. In: The Toxicology of Aflatoxins ( Eaton, D. L. and Groopman, J. D., eds.), Academic Press, New York, pp. 137–148.

    Google Scholar 

  104. Gopalakrishnan, S., Byrd, S., Stone, M. P., and Harris, T. M. (1989) Carcinogen-nucleic acid interactions: Equilibrium binding studies of aflatoxin B1 with the oligonucleotide d(ATGCAT)2 and with plasmid pBR322 support intercalative association with the B-DNA helix. Biochemistry 28: 726–734.

    Article  PubMed  CAS  Google Scholar 

  105. Gopalakrishnan, S., Harris, T. M., and Stone, M. P. (1990) Intercalation of afaltoxin B1 in two oligodeoxynucleotide adducts: Comparative I NMR analysis of d(ATCAFBGAT):d(ATCGAT) and d(ATAFBGCAT)2. Biochemistry 29: 10438–10448.

    Article  PubMed  CAS  Google Scholar 

  106. Friedberg, E. C. Walker, G. W., and Seide, W. (1995) DNA Repair and Mutagenesis. ASM Press, Washington, DC.

    Google Scholar 

  107. Chaney, S. G. and Sancar, A. (1996) DNA repair: enzymatic mechanisms and relevance to drug response. J. Natl. Cancer Inst. 88: 1346–1360.

    Article  PubMed  CAS  Google Scholar 

  108. Wood, R. D. (1997) Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272: 23465–23468.

    Article  PubMed  CAS  Google Scholar 

  109. Wood, R. D. and Shivji, M. K. K. (1997) Which DNA polymerases are used for DNA repair in eukaryotes? Carcinogenesis 18: 605–610.

    Article  PubMed  CAS  Google Scholar 

  110. Hanawalt, P. C. (1994) Transcription-coupled repair and human disease. Science 266: 1957–1958.

    Article  PubMed  CAS  Google Scholar 

  111. Lindahl, T., Karran, P., and Wood, R. D. (1997) DNA excision repair pathways. Curr. Opin. Genet. Dev. 7: 158–169.

    Article  PubMed  CAS  Google Scholar 

  112. Scicchitano, D. A. and Mellon, I. (1997) Transcription and DNA damage: A link to a kink. Environ. Health Perspectives 105: 145153.

    Google Scholar 

  113. Krokan, H. E., Standal, R., and Slupphaug, G. (1997) DNA glycosylases in the base excision repair of DNA. Biochem. J. 325: 1–25.

    PubMed  CAS  Google Scholar 

  114. Wilson, D. M., III and Thompson, L. H. (1997) Life without DNA repair. Proc. Natl. Acad. Sci. USA 95: 12754–12757.

    Article  Google Scholar 

  115. Kunkel, T. A. and Wilson, S. H. (1996) Push and pull of base flipping. Nature 384: 25–26.

    Article  PubMed  CAS  Google Scholar 

  116. Roberts, R. (1995) On base flipping. Cell 82: 9–12.

    Article  PubMed  CAS  Google Scholar 

  117. Camerini-Otero, R. D. and Hseih, P. (1995) Homologous recombination proteins in prokaryotes and eukaryotes. Ann. Rev. Genet. 29: 509–552.

    Article  PubMed  CAS  Google Scholar 

  118. Kanaar, R. and Hoeijmakers (1998) From competition to collaboration. Nature 391: 335–336.

    Article  PubMed  CAS  Google Scholar 

  119. Hegde, S. P., Qin, M.-H., Li, X.-H., Atkinson, M. A. L., Clark, A. J., Rajagopalan, M., et al. (1996) Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveals roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc. Natl. Acad. Sci. USA 93: 14468–14473.

    Article  PubMed  CAS  Google Scholar 

  120. Dixon, D. A. and Kowalczykowski, S. C. (1993) The recombination hotspot x is a regulatory sequence that acts by attentuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73: 87–96.

    Article  PubMed  CAS  Google Scholar 

  121. West, S. C. (1997) Processing of recombination intermediates by the RuvABC proteins. Ann. Rev. Genet. 31: 213–244.

    Article  PubMed  CAS  Google Scholar 

  122. Parsons, C. A., Stasiak, A., Bennett, R. J., and West, S. C. (1995) Structure of a multisubunit complex that promotes DNA branch migration. Nature 374: 375–378.

    Article  PubMed  CAS  Google Scholar 

  123. Rafferty, J. B., Sedelnikova, S. E., Hargreaves, D., Artymiuk, P. J., Baker, P. J., Sharpies, G. J., et al. (1996) Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science 274: 415–421.

    Article  PubMed  CAS  Google Scholar 

  124. Ariyoshi, M., Vassylyev, D. G., Iwasaki, H., Nakamura, H., Shinagawa, H., and Morikawa, K. (1994) Atomic resolution of the RuvC resolvase: a Holliday junction-specfic endonuclease from E. coli. Cell 78: 1063–1072.

    CAS  Google Scholar 

  125. Wang, G., Rahman, W. S., and Humayun, M. Z. (1997) Replication of M13 single-stranded viral DNA bearing single site-specfic adducts by Escherichia coli cell extracts: differential efficiency of translesion DNA synthesis for SOS-dependent and SOS-independent lesions. Biochemistry 36: 9486–9492.

    Article  PubMed  CAS  Google Scholar 

  126. Palewala, V. A., Pandya, G. A., Bhanot, O. S., Solomon, J. J., Murphy, II. S., Dunman, P. M., et al. (1994) UVM, an ultraviolet-inducible RecA-independent mutagenic phenomenon in Escherichia coli. J. Biol. Chem. 269: 27433–27440.

    Google Scholar 

  127. Napolitano, R. L., Lambert, I. B., and Fuchs, R. P. (1997) SOS factors involved in translesion synthesis. Proc. Natl. Acad. Sci. USA 94: 5733–5738.

    Article  PubMed  CAS  Google Scholar 

  128. Dynan, W. S. and Yoo, S. (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26: 1551–1559.

    Article  PubMed  CAS  Google Scholar 

  129. Jin, S., Inoue, S., and Weaver, D. T. (1997) Functions of the DNA dependent protein kinase. Cancer Surv. 29: 221–261.

    PubMed  CAS  Google Scholar 

  130. Jeggo, P. A. (1997) DNA-PK at the cross-roads of biochemistry and genetics. Mut. Res. 384: 1–14.

    Article  CAS  Google Scholar 

  131. Jackson, S. P. (1997) DNA-dependent protein kinase. Int. J. Biochem. Cell Biol. 29: 935–938.

    Article  PubMed  CAS  Google Scholar 

  132. Lieber, M. R., Grawunder, U., Wu, X., and Yaneva, M. (1997) Tying up loose ends: roles for Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr. Opin. Genet, Dev. 7: 99–104.

    CAS  Google Scholar 

  133. Hendrickson, E. A. (1997) Cell-cycle regulation of mammalian DNA double-strand-break repair. Am. J. Human Genet. 61: 795–800.

    Article  CAS  Google Scholar 

  134. Stahl, F. (1996) Meiotic recombination in yeast: Coronation of the double-strand-break repair model. Cell 87: 965–968.

    Article  PubMed  CAS  Google Scholar 

  135. Dolganov, G. M., Maser, R. S., Novikov, A., Tosto, L., Chong, S., Brtessan, D. A., et al. (1996) Human Rad50 is physically associated with human Mrel l: identification ofa conserved multiprotein complex implicated in recombinational repair. Mol. Cell Biol. 16: 4832–4841.

    PubMed  CAS  Google Scholar 

  136. Maser, R. S., Monson, K. J., Nelms, B. E., and Petrini, J. H. (1997) hMrel l and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell Biol. 17: 6087–6096.

    Google Scholar 

  137. Johzhuka, K. and Ogawa, H. (1995) Interaction of Mrel l and Rad50: two proteins required for DNA repair and meiosis-specific double-srand break formation in Saccharamoyces cerevisiae. Genetics 139: 1521–1532.

    Google Scholar 

  138. Murane, J. P. (1996) Role of induced genetic instability in the mutagenic effects of chemicals and radiation. Mut. Res. 367: 11 23.

    Google Scholar 

  139. Kronenberg, A. (1994) Radiation-induced genomic instability. Int. J. Rad. Biol. 66: 603–609.

    Article  PubMed  CAS  Google Scholar 

  140. Solomon, E., Borrow, J., and Goddard, A. D. (I 991) Chromosome aberrations and cancer. Science 254: 1153–1160.

    Google Scholar 

  141. Rabbitts, T. H. (1994) Chromosomal translocations in human cancer. Nature 372: 143–149.

    Article  PubMed  CAS  Google Scholar 

  142. Chang, W. P. and Little, J. B. (1992) Persitently elevated frequency of spontaneous mutations in progeny of CHO cells surviving X-irradiation: association with delayed reproductive death phenotype. Mut. Res. 270: 191–199.

    Article  CAS  Google Scholar 

  143. Grosovsky, A. J., Parks, K. K., Giver, C. R., and Nelson, S. L. (1996) Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability. Mol. Cell Biol. 16: 6252–6262.

    PubMed  CAS  Google Scholar 

  144. Holmberg, K., Meijer, A. E., Auer, G., and Lambert, B. O. (1995) Delayed chromosomal instability in human T-lymphocyte clones exposed to ionizing radiation. Int. J. Rad. Biol. 68: 245–255.

    Article  PubMed  CAS  Google Scholar 

  145. Holmberg, K., Fah, S., Johansson, A., and Lambert, B. (1993) Clonal chromosomal aberrations and genomic instability in X-irradiated human T-lymphocyte cultures. Mut. Res. 286: 321–330.

    Article  CAS  Google Scholar 

  146. Pardee, A. B. (1989) G 1 events and regulation of cell proliferation. Science 240: 603–608.

    Article  Google Scholar 

  147. Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  148. Paulovich, A. G., Toczyski, D. P., and Hartwell, L. H. (1997) When checkpoints fail. Cell 88: 315–321.

    Article  PubMed  CAS  Google Scholar 

  149. Sherr, C. J. (1993) Mammalian GI cyclins. Cell 73: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  150. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  PubMed  CAS  Google Scholar 

  151. Weinberg, R. A. (1996) E2F and cell proliferation: a world turned upside down. Cell 85: 457–459.

    Article  PubMed  CAS  Google Scholar 

  152. Herwig, S. and Strauss, M. (1997) The Rb protein: a master regulator of cell cycle, differentiation and apoptosis. Eur. J. Biochem. 246: 581–601.

    Article  PubMed  CAS  Google Scholar 

  153. Hunter, T. (1997) Oncoprotein networks. Cell 88: 333–346.

    Article  PubMed  CAS  Google Scholar 

  154. Collins, K., Jacks, T., and Pavletich, N. P. (1997) The cell cycle and cancer. Proc. Natl. Acad. Sci. USA 94: 2776–2778.

    Article  PubMed  CAS  Google Scholar 

  155. Elledge, S. J. (1996) Cell cycle checkpoints: preventing an idenitity crisis. Science 274: 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  156. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Google Scholar 

  157. Bjelogrlic, N. M., Mäkinen, M., Stenbäck, and Vähäkangas, K. (1994) Benzo[a]pyrene-7,8-dio1–9,10-epoxide-DNA adducts and increased p53 protein in mouse skin. Carcinogenesis 15: 771–774.

    CAS  Google Scholar 

  158. Khan, Q. A., Vousden, K. H., and Dipple, A. (1997) Cellular response to DNA damage from a potent carcinogen involves stabilization ofp53 without induction of p21 (wafl/cipl). Carcinogenesis 18: 2313–2318.

    Article  PubMed  CAS  Google Scholar 

  159. Vaziri, C. and Faller, D. V. (1997) A benzo[a]pyrene-induced cell cycle checkpoint resulting in p53-independent G1 arrest in 3T3 fibroblasts. J. Biol. Chem. 272: 2762–2769.

    Article  PubMed  CAS  Google Scholar 

  160. Hengartner, M. O. (1998) Death cycle and Swiss army knives. Nature 391: 441–442.

    Article  PubMed  CAS  Google Scholar 

  161. Wertz, I. E. and Hanley, M. R. (1996) Diverse molecular provocation of programmed cell death. Trends Biol. Res. 21: 359–364.

    CAS  Google Scholar 

  162. Nagata, S. (1997) Apoptosis by death factor. Cell 88: 355–365.

    Article  PubMed  CAS  Google Scholar 

  163. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326: 1–16.

    PubMed  CAS  Google Scholar 

  164. Wyllie, A. (1998) An endonuclease at last. Nature 391: 20–21.

    Article  PubMed  CAS  Google Scholar 

  165. Vuax, D. L. and Strasser, A. (1996) The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA 93: 2239–2244.

    Article  Google Scholar 

  166. Hale, A. J., Smith, C. A., Sutherland, L. C., Stoneman, V. E. A., Longhorn, V. L., Culhane, A. C., et al. (1996) Apoptosis: molecular regulation of cell death. Eur. J. Biochem. 236: 1–26.

    Article  PubMed  CAS  Google Scholar 

  167. White, E. (1996) Life, death, and the pursuit of apoptosis. Genes Develop. 10: 1–15.

    Article  PubMed  CAS  Google Scholar 

  168. Peter, M. E., Heufelder, A. E., and Hengartner, M. O. (1997) Advances in apoptosis research. Proc. Natl. Acad. Sci. USA 94: 12736–12737.

    Article  PubMed  CAS  Google Scholar 

  169. Kerr, A. H., Wylie, J. F., and Currie, A. R. (1972) Apoptosis: abasic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239–257.

    Article  PubMed  CAS  Google Scholar 

  170. Jacobson, M. D. (1996) Reactive oxygen species and programmed cell death. Trends Biol. Res. 21: 83–86.

    CAS  Google Scholar 

  171. Kinzler, K. W. and Vogelstein, B. (1996) Life (and death) in a malignant tumor. Nature 379: 19–20.

    Article  PubMed  CAS  Google Scholar 

  172. Muchmore, S. W., Sattlet, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., et al. (1996) X-ray and NMR structure of human Bcl-xL an inhibitor of programmed cell death. Nature 381: 335–341.

    Article  PubMed  CAS  Google Scholar 

  173. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M., et al. (1996) Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183: 1533–1544.

    Article  PubMed  CAS  Google Scholar 

  174. Vander Heiden, V., Chandel, N. S., Williamson, E. K., Schumacker, P. T. and Thompson, C. B. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637.

    Article  PubMed  CAS  Google Scholar 

  175. Salvesen, G. S. and Dixit, V. M. (1997) Caspases: intracellular signaling by proteolysis. Cell 91: 443–446.

    Article  PubMed  CAS  Google Scholar 

  176. Hampton, M. B., Zhivotsky, B., Slater, A. F. G., Burgess, D. H., and Orrenius, S. (1998) Importance of the redox state of cytochrome C during caspase activation in cytosolic extracts. Biochem. J. 329: 95–99.

    PubMed  CAS  Google Scholar 

  177. Kluck, R. M., Martin, S. J., Hoffman, B. M., Zhou, J. S., Green, D. R., andNewmeyer, D. D. (1997) Cytochrome c activation ofCPP32like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16: 4639–3649.

    Article  PubMed  CAS  Google Scholar 

  178. Oren, M. (1998) Teaming up to restrain cancer. Nature 391: 233–234.

    Article  PubMed  CAS  Google Scholar 

  179. Yin, Y., Terauchi, Y., Solomon, G. S., Aizawa, S., Rangarajan, P. N., Yazaki, Y., et al. (1998) Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391: 707–710.

    Article  PubMed  CAS  Google Scholar 

  180. Loechler, E. L. (1994) Mechanism by which aflatoxins and other bulky carcinogens induce mutations. In: The Toxicology ofAflatoxins: Human Health, Veterinary, and Agricultural Significance ( Eaton, D. L. and Groopman, J.D., eds.), Academic Press, Orlando, FL, pp. 149–178.

    Google Scholar 

  181. Miller, J. H. (1983) Mutational specificity in bacteria. Ann. Rev. Genet. 17: 215–238.

    Article  PubMed  CAS  Google Scholar 

  182. Rodriguez, H. and Loechler, E. L. (1993) Mutational spectra of the (+)-anti-diol epoxide of benzo[a]pyrene in a supF gene of an Escherichia coli plasmid: DNA sequence context influences hotspots, mutational specficity and the extent of SOS enhancement of mutagenesis. Carcinogenesis 14: 373–383.

    Article  PubMed  CAS  Google Scholar 

  183. Rodriguez, H. and Loechler, E. L. (1993) Mutagenesis by the (+)anti-diol epoxide of benzo[a]pyrene: What controls mutagenic specificity? Biochemistry 32: 373–383.

    Google Scholar 

  184. Wei, S.-J. C., Chang, R. L., Wong, C.-Q., Bhachech, N., Cui, X. X., Hennig, E., et al. (1991) Dose-dependent differences in the profile of mutations induced by an ultimate carcinogen from benzo[a]pyrene. Proc. Natl. Acad. Sci. USA 88: 11227–11230.

    Article  PubMed  CAS  Google Scholar 

  185. Wei, S.-J. C., Chang, R. L., Bhachech, N., Cui, X. X., Merkler, K. A., Wong, C. Q., et al. (1993) Dose-dependent differences in the profile of mutations induced (+)-7R,8S-dihydroxy-9S,10R-epoxy7,8,9,10-tetrahydrobenzo[a]pyrene in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase gene in Chinese hampster V79 cells. Cancer Res. 53: 3294–3301.

    PubMed  CAS  Google Scholar 

  186. Wei, S.-J. C., Chang, R. L., Hennig, E., Cui, X. X., Merkler, K. A., Wong, C.-Q., et al. (1994) Mutagenic selectivity at the HPRT locus in V-79 cells: comparison of mutations caused by bay-region benzo[a]pyrene 7,8-dio1–9,10-epoxide enantiomers with high and low carcinogenic activity. Carcinogenesis 15: 1729–1735.

    Article  PubMed  CAS  Google Scholar 

  187. Wei, S.-J. C., Chang, R. L., Cui, X. X., Merkler, K. A., Wong, C.-Q., Yagi, H., et al. (1996) Dose-dependent differences in the mutational profiles of (-)-(1R,2S,3S,4R)-3,4-dihydroxy-1,2-epoxy1,2,3,4-tetrahydrobenzo[c]phenanthrene and its less carcinogenic enantiomer. Cancer Res. 56: 3695–3703.

    PubMed  CAS  Google Scholar 

  188. Bigger, C. A. H., St. John, J., Yagi, H., Jerina, D. M., and Dipple, A. (1992) Mutagenic specificities of four stereoisomeric benzo[c]phenanthrene dihydrodiol epoxides. Proc. Natl. Acad. Sci. USA 89: 368–372.

    Article  CAS  Google Scholar 

  189. D’Ayala, M., Cui, X. X., Merkler, K. A., Wong, C.-Q., Yagi, H., Jerina, D. M., et al. (1998) Lack of dose dependence in mutation profile induced by (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10tetrahydrobenzo[a]pyrene [(+)-BPDE] at the hprt gene in repair deficient Chinese hampster V-H1 cells. Proc. Am. Assoc. Cancer Res. 39: 639a.

    Google Scholar 

  190. Singer, B. and Essigmann J. M. (1991) Site-specific mutagenesis: retrospective and prospective. Carcinogenesis 12: 949–955.

    Article  PubMed  CAS  Google Scholar 

  191. Loechler, E. L. (1996) Commentary: The role of adduct site-specific mutagenesis in understanding how carcinogen DNA adducts cause mutations: perspective, prospects and problems. Carcinogenesis 17: 895–902.

    Article  PubMed  CAS  Google Scholar 

  192. Mackay, W., Benasutti, M., Drouin, E., and Loechler, E. L. (1992) Mutagenesis by the major adduct of activated benzo[a]pyrene, (+)anti-BP-N2-Gua, when studied in an Escherichia coli plasmid using site-directed methods. Carcinogenesis 13: 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  193. Jelinsky, S. A., Mao, B., Geacintov, N. E., and Loechler, E. L. (1995) The major, N2-Gua adduct of the (+)-anti-benzo[a]pyrene diol epoxide is capable of inducing GEA and GEC, in addition to GET, mutations. Biochemistry 34: 13545–13553.

    Article  PubMed  CAS  Google Scholar 

  194. Shukla, R., Liu, Y., Geacintov, N., and Loechler, E. L. (1997) The major, N2-dG adduct of (+)-anti-B[a]PDE shows a dramatically different mutagenic specificity (predominantly, GEA) in a 5’-CGT3’ sequence context. Biochemistry 36: 10256–10261.

    Article  PubMed  CAS  Google Scholar 

  195. Shukla, R, Jelinsky, S., Liu T., Geacintov, N. E., and Loechler, E. L. (1997) How stereochemistry affects mutagenesis by N2-dG adducts of B[a]PDE: configuration of the adduct bond is more important than of the hydroxyl groups. Biochemistry 36: 13263–13269.

    Article  PubMed  CAS  Google Scholar 

  196. Moriya, M., Spiegel, S., Fernandes, A., Amin, S., Liu, T.-M., Geacintov, N. E., et al. (1996) Fidelity of translesion synthesis past benzo[a]pyrene diol epoxide-2’-deoxyguanosine DNA adducts: marked effects of host cell, sequence context, and chirality. Biochemistry 35: 16646–16651.

    Article  PubMed  CAS  Google Scholar 

  197. Fuchs, R. P. P. (1985) DNA binding spectrum of the carcinogen Nacetoxy-N-2-acetylaminofluorene significantly differs from the mutation spectrum. J. Mol. Biol. 177: 173–180.

    Article  Google Scholar 

  198. Reid, T. M., Lee, M.-S., and King, C. M. (1990) Mutagenesis by site-specific arylamine adducts in plasmid DNA: enhancing replication of the adducted strand alters mutation frequency. Biochemistry 29: 6153–6161.

    Article  PubMed  CAS  Google Scholar 

  199. Burnout’, D., Koehl, P., and Fuchs, R. P. P. (1989) Single adduct mutagenesis: Strong effect of the position of a single acetylaminofluorene adduct within a mutation hot spot. Proc. Natl. Acad. Sci. USA 86: 4147–4151.

    Article  Google Scholar 

  200. Seeberg, E. and Fuchs, R. P. P. (1990) Acetylaminofluorene bound to different guanines of the sequence -GGCGCC- is excised with different efficiencies by the UvrABC exicision nuclease in a pattern not correlated to the potency of mutation induction. Proc. Natl. Acad. Sci. USA 87: 191–194.

    Article  PubMed  CAS  Google Scholar 

  201. Delagoutte, E., Bertrand-Burggraf, E., Dunand, J., and Fuchs, R. P. (1997) Sequence-dependent modulation of nucleotide excision repair: the efficiency of the incision reaction correlated with the stability of the pre-incision UvrB-DNA complex. J. Mol. Biol. 266: 703–710.

    Article  PubMed  CAS  Google Scholar 

  202. Lambert, I. B., Napolitano, R. L., and Fuchs, R. P. P. (1992) Carcinogen-induced frameshift mutagenesis in repetitive equences. Proc. Natl. Acad. Sci. USA 89: 1310–1314.

    Article  PubMed  CAS  Google Scholar 

  203. Napolitano, R. L., Lambert, I. B., and Fuchs, R. P. P. (1994) DNA sequence determinants of carcinogen-induced frameshift mutagenesis. Biochemistry 33: 1311–1315.

    Article  PubMed  CAS  Google Scholar 

  204. Koffel-Schwartz, N., Coin, F., Veaute, X., and Fuchs, R. P. (1996) Cellular strategies for accomodating replication-hindering adducts in DNA: control by the SOS response in Escherichia coli. Proc. Natl. Acad. Sci. USA 93: 7805–7810.

    Article  CAS  Google Scholar 

  205. Ezaz-Nikpay, K. and Verdine, G. L. (1994) The effects of N7methylguanine on duplex DNA structure. Chem. Biol. 1: 235–240.

    Article  PubMed  CAS  Google Scholar 

  206. Bhanot, O. P., Grevatt, P. C., Donahue, J. M., Gabrielides, C. N., and Solomon, J. J. (1992) In vitro DNA replication implicates O2ethyldeoxythymidine in transversion mutagenesis by ethylating agents. Nucleic Acids Res. 20: 587–594.

    Article  PubMed  CAS  Google Scholar 

  207. Kunkel, T. A. (1984) Mutational specificity of depurination. Proc. Natl. Acad. Sci. USA 81: 1494 1498.

    Google Scholar 

  208. Lawrence, C. W., Borden, A., Banerjee, S. K., and LeClerc, J. E. (1990) Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Res. 18: 2153–2157.

    Article  PubMed  CAS  Google Scholar 

  209. Bailey, E. A., Iyer, R. S., Stone, M. P., Harris, T. M., and Essigmann, J. M. (1996) Mutational properties of the primary aflatxoin B1-DNA adduct. Proc. Natl. Acad. Sci. USA 93: 1535–1539.

    Article  PubMed  CAS  Google Scholar 

  210. Kunkel, T. A. and Wilson, S. H. (1998) DNA polymerases on the move. Nature Struct. Biol. 5: 95–103.

    Article  PubMed  CAS  Google Scholar 

  211. Cooper, G. M. (1995) Oncogenes, 2nd ed. Jones and Bartlett, London.

    Google Scholar 

  212. Cooper, D. N. and Krawczak, M. (1993) Human Gene Mutations. BIOS Scientific Publishers Limited, London UK.

    Google Scholar 

  213. Nagase, H. and Nakamura, Y. (1993) Mutations of the APC (Adenomatous Polyposis Coli) gene. Human Mut. 2: 425–434.

    Article  CAS  Google Scholar 

  214. Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W. (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 278: 775–780.

    Google Scholar 

  215. Duncan, B. K. and Miller, J. H. (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287: 560–565.

    Article  PubMed  CAS  Google Scholar 

  216. Schaaper, R. M. and Dunn, R. L. (1987) Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch corrections: the nature of in vivo DNA replication errors. Proc. Natl. Acad. Sci. USA 84: 6220–6224.

    Article  PubMed  CAS  Google Scholar 

  217. Schaaper, R. M. and Dunn, R. L. (1991) Spontaneous mutation in the Escherichia coli strains lacl gene. Genetics 129: 317–326.

    PubMed  CAS  Google Scholar 

  218. Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., et al. (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 88: 10124–10128.

    Article  PubMed  CAS  Google Scholar 

  219. Dumaz, N., Stary, A., Soussi, T., Daya-Grosjean, L., and Sarasin, A. (1994) Can we predict solar ultraviolet radiation as the causal event in human tumors by analyzing the mutation spectra of the p53 gene? Mut. Res. 307: 375–386.

    Article  CAS  Google Scholar 

  220. Daya-Grosjean, L. Dumaz, N., and Sarasin, A. (1995) The specificity of p53 mutation spectra in sunlight induced human cancers. J. Photochem. Photobiol. 28: 115–124.

    CAS  Google Scholar 

  221. D’errico, M., Calcagnile, A., and Dogliotti, E. (1996) Genetic alterations in skin cancer. Ann. 1st. Super. Sanita 32: 53–63.

    Google Scholar 

  222. Miller, J. H. and Reznikoff, W. S., eds. (1980) The Operon, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  223. Miller, J. H. (1983) Mutagenic specificity in bacteria. Ann. Rev. Genet. 17: 215–238.

    Article  PubMed  CAS  Google Scholar 

  224. Miller, J. H. (1985) Mutagenic specificity of ultraviolet light. J. Mol. Biol. 182: 45–65.

    Article  PubMed  CAS  Google Scholar 

  225. Hsia, H. C., Lebkowski, J. S., Leong, P. M., Calos, M. P., and Miller, J. H. (1989) Comparison of ultraviolet irradiation-induced mutagenesis of the lad gene in Escherichia coli and in human 293 cells. J. Mol. Biol. 205: 103–113.

    Article  PubMed  CAS  Google Scholar 

  226. Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274: 430–432.

    Article  PubMed  CAS  Google Scholar 

  227. Denissenko, M. F., Pao, A., Pfeifer, G. P., and Tang, M.-S. (1998) Slow repair of bulky DNA adducts along thre nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene 16: 1241–1247.

    Article  PubMed  CAS  Google Scholar 

  228. El-Bayoumy, K. (1992) Environmental carcinogens that may be involved in human breast cancer etiology. Chem. Res. Toxicol. 5: 585–590.

    Article  PubMed  CAS  Google Scholar 

  229. Klein, C. B., Snow, E. T., and Frenkel, K. (1998) Molecular mechanisms in metal carcinogenesis: Role of oxidative stress. In: Molecular Biology of Free Radicals in Human Diseases ( Aruoma, O. I. and Halliwell, B., eds.), OICA International, Santa Lucia, West Indies, pp. 80–137.

    Google Scholar 

  230. Klein, C. B. (1996) Carcinogenicity and genotoxicity of chromium. In: Toxicology of Metal ( Magos, L. and Suzuki, T., eds.), CRC Press, Boca Raton, FL.

    Google Scholar 

  231. Snow, E. T. (1992) Metal carcinogenesis: mechanistic implications. Pharmacol. Ther. 53: 31–65.

    Article  PubMed  CAS  Google Scholar 

  232. Snow, E. and Costa, M. (1998) Nickel toxicity and carcinogenesis. In: Environmental and Occupational Medicine, 3rd ed. ( Rom, W.N., ed.), Lippincott-Raven, Philadelphia, PA.

    Google Scholar 

  233. Mossman, B. T., Faux, S., Janssen, Y., Jimenez, L. A., Timblin, C., Zanella, C., et al. (1997) Cell signalling pathways elicited by asbestos. Environ. Health Perspect. 105: 1 121–1125.

    Google Scholar 

  234. Boutwell, R. K. (1964) Some biological aspects of skin carcinogenesis. Prog. Exp. Tumor Res. 4: 207–250.

    PubMed  CAS  Google Scholar 

  235. Boutwell, R. K. (1974) The function and mechanism of promoters of carcinogens. CRC Crit. Rev. Toxicol. 2: 419–443.

    Article  PubMed  CAS  Google Scholar 

  236. Boutwell, R. K. (1985) Tumor promoters in human carcinogenesis. Important. Adv. Oncol. 1985: 16–27.

    Google Scholar 

  237. Slaga, T. J. and DiGiovanni, J. (1984) In: Chemical Carcinogens, 2nd ed. (ACS Monograph 182), (Searle, C. E., ed.), American Chemical Society, Washington DC, pp. 1279–1321.

    Google Scholar 

  238. Slaga, T. J., DiGiovanni, J., Winberg, L. D., and Budunova, I. V. (1995) Skin carcinogenesis: characteristics, mechanisms, and prevention. Prog. Clin. Biol. Res. 391: 1–20.

    PubMed  CAS  Google Scholar 

  239. Kensler, T., Guyton, K., Egner, P., McCarthy, T., Lesko, S., and Akman, S. (1995) Role of reactive intermediates in tumor promotion and progression. Prog. Clin. Biol. Res. 391: 103–116.

    PubMed  CAS  Google Scholar 

  240. Nishizuki, Y. (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–698.

    Article  Google Scholar 

  241. El-Shemerly, M. Y., Besser, D., Nagasawa, M., and Nagamine, Y. (1997)12-O-tetradecanoylphorbol-13-acetate activates the Ras/extracellular signal-regulated kinase (ERK) signaling pathway upstream of SOS involving serine phosphorylation of Shc in NIH3T3 cells. J. Biol. Chem. 272: 30599–30602.

    Google Scholar 

  242. Kuroki, D. W., Bignami, G. S., and Wattenberg, E. V. (1996) Activation of stress-activated protein kinase/c-Jun N-terminal kinase by the non-TPA-type tumor promoter palytoxin. Cancer Res. 56: 637–644.

    PubMed  CAS  Google Scholar 

  243. Dong, Z., Crawford, H. C., Lavrovsky, V., Taub, D., Watts, R., Matrisian, L. M., and Colburn, N. H. (1997) A dominant negative mutant of jun blocking 12-O-tetradecanoylphorbol-13-acetate-induced invasion in mouse keratinocytes. Mol. Carcinogenesis 19: 204–212.

    Article  CAS  Google Scholar 

  244. Dong, Z., Lavrovsky, V., and Colbum, N. H. (1995) Transversion reversion induced in JB6 RT 101 cells by AP-1 inhibitors. Carcinogenesis 16: 749–756.

    Article  PubMed  CAS  Google Scholar 

  245. Bernstein, L. R. and Colburn, N. H. (1989) AP-1/jun function is differentially induced in promotion-sensitive and resistant JB6 cells. Science 244: 566–569.

    Article  PubMed  CAS  Google Scholar 

  246. Ransome, L.J. and Verma, I. M. (1990) Nuclear proto-oncogenes FOS and JUN. Ann. Rev. Cell Biol. 6: 539–557.

    Article  Google Scholar 

  247. Kuroki, D. W., Minden, A., Sanchez, I., and Wattenberg, E. V. (1997) Regulation of a c-Jun amino-terminal kinase/stress-activated protein kinase cascade by a sodium-dependent signal transduction pathway. J. Biol. Chem. 272: 23905–23911.

    Article  PubMed  CAS  Google Scholar 

  248. Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M., et al. (1988) Okadaic acid: An additional nonphorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl. Acad. Sci. USA 85: 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  249. Nagao, M., Sakai, R., Kitagawa, Y., Ikeda, I., Sasaki, K., Shima, H., et al. (1989) Role of protein phosphatases in malignant transformation. Princess Takamatsu Symp. 20: 177–184.

    PubMed  CAS  Google Scholar 

  250. Schonthal, A., Tsukitani, Y., and Feramisco, J. R. (1991) Transcriptional and post-translational regulation of c-fos expression by the tumor promoter okadaic acid. Oncogene 6: 423–430.

    PubMed  CAS  Google Scholar 

  251. Peng, J., Bowden, G. T., and Domann, F. E. (1997) Activation of AP-1 by okadaic acid in mouse keratinocytes associated with hyperphorphorylation of c-jun. Mol. Carcinogenesis 18: 37–43.

    Article  CAS  Google Scholar 

  252. Willis, I., Menter, J. M., and Whyte, H. J. (1981) The rapid induction of cancers in the hairless mouse utlizing the principle of photoaugmentation. J. Invest. Dermatol. 76: 404–408.

    Article  PubMed  CAS  Google Scholar 

  253. Strickland, P. T. (1986) Photocarcinogenesis by near-ultraviolet (UVA) radiation in Sancar mice. J. Invest. Dermatol. 87: 272–278.

    Article  PubMed  CAS  Google Scholar 

  254. Ronai, Z. A., Lambert, M. E., and Weinstein, I. B. (1990) Inducible cellular responses to ultraviolet irradiation and other mediators of DNA damage in mammalian cells. Cell Biol. Toxicol. 6: 105–126.

    Article  PubMed  CAS  Google Scholar 

  255. Angel, P. (1995) The role and regulation of the Jun proteins in response to phorbol esters and UV light. In: Inducible Gene Expression, ( Baeuerle, P. A., ed.), Birkhauser, Boston, pp. 62–92.

    Chapter  Google Scholar 

  256. Melikian, A. A., Leszczynska, J. M., Hecht, S. S., and Hoffmann, D. (1986) Effects of the co-carcinogen catechol on benzo[a]pyrene metabolism and DNA adduct formation in mouse skin. Carcinogenesis 7: 9–15.

    Article  PubMed  CAS  Google Scholar 

  257. Lau, H. H. and Baird, W. M. (1992) The co-carcinogen benzo[e]pyrene increases the binding of a low dose of the carcinogen benzo[a]pyrene to DNA in Sencar mouse epidermis. Cancer Lett. 63: 229–236.

    Article  PubMed  CAS  Google Scholar 

  258. Reed, G.A. and Jones, B.C. (1996) Enhancement ofbenzo[a]pyrene diol epoxide mutagenicity by sulfite in a mammalian test system. Carcinogenesis 17: 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  259. Friedberg, E.C., Feaver, W.J. and Gerlach, V.L. (2000) The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance. Proc. Natl. Acad. Sci USA, 97: 5681–5683.

    Article  PubMed  CAS  Google Scholar 

  260. Johnson, R.E., Washington, M.T., Prakash, S. and Prakash, L. (1999) Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc. Natl. Acad. Sci. USA, 96: 12224–12226.

    Article  PubMed  CAS  Google Scholar 

  261. Goodman, M.F. and Tippin, B. (2000) Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev. 10: 162–168.

    Article  PubMed  CAS  Google Scholar 

  262. Yu, S.L., Johnson, R.E., Prakash, S. and Prakash, L. (2001) Requirement of DNa polymerise eta for error-free bypass of UV-inuduced CC and TC photoproducts Mol. Cell. Biol. 21: 185–188.

    Google Scholar 

  263. Gibbs, P.E., Wang, X.D., Li, Z., McManus, T.P., McGregor, W.G., Lawrence, C.W. and Maher, V.M. (2000) The function of the human homolog of Secharomyces cerevisiae REV1 is required for mutagenesis induced by UV light. Proc. Natl. Acad. Sci. USA 97: 4186–4191.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loechler, E.L., Henry, B., Seo, KY. (2002). Cellular Responses to Chemical Carcinogens. In: Coleman, W.B., Tsongalis, G.J. (eds) The Molecular Basis of Human Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-125-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-125-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-107-3

  • Online ISBN: 978-1-59259-125-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics