Skip to main content

The Central Nervous System as a Direct Target for Growth Hormone Action

  • Chapter
Human Growth Hormone

Part of the book series: Contemporary Endocrinology ((COE,volume 19))

  • 237 Accesses

Abstract

To stimulate postnatal body growth in a coordinated fashion, growth hormone (GH) acts directly or indirectly on virtually every tissue in the body. Furthermore, GH has metabolic actions that are important in many species long after major statural growth has been accomplished. Although the actions of GH were long thought to be mediated entirely via the generation of hepatic insulin-like growth factor-1 (IGF-1), it is now clear that GH also has direct effects in many tissues acting in concert with locally generated IGF-1 (and probably many other growth factors) in addition to IGF-1 from the circulation. Although the brain is not usually considered an obvious target tissue for GH there is increasing circumstantial and direct evidence to support this idea. In this short chapter the authors address three principle questions:

  1. 1.

    Are there specific functional receptors for GH in the central nervous system (CNS)?

  2. 2.

    How does GH reach these receptors in adequate amounts? and

  3. 3.

    Do these receptors mediate physiological effects of GH within the CNS?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harvey S, Hull KL, Fraser RA. Mini-review: Growth hormone: neurocrine and neuroendocrine perspectives. Growth Reg 1993; 3: 161–171.

    CAS  Google Scholar 

  2. Zhai Q, Lai Z, Roos P, Nyberg F. Characterization of growth hormone binding sites in rat brain. Acta Paediatr Suppl 1994; 406: 92–95.

    PubMed  CAS  Google Scholar 

  3. Pellegrini E, Bluet-Pajot M-T, Mounier F, Bennett P, Kordon C, Epelbaum J. Central administration of a growth hormone (GH) receptor mRNA antisense increases GH pulsatility and decreases hypothalamic somatostatin expression in rats. J Neurosci 1996; 16: 8140–8148.

    PubMed  CAS  Google Scholar 

  4. Barnard R, Bundesen PG, Rylatt DB, Waters MJ. Evidence from the use of monoclonal antibody probes for the structural heterogeneity of the growth hormone receptor. Biochem J 1985; 231: 459–468.

    PubMed  CAS  Google Scholar 

  5. Lobie PE, Garcia-Aragon J, Lincoln DT, Barnard R, Wilcox JN, Waters MJ. Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Dev Brain Res 1993; 74: 225–233.

    CAS  Google Scholar 

  6. Hill DJ, Riley SC, Bassett NS, Waters MJ. Localization of the growth hormone receptor, identified by immunocytochemistry, in second trimester human fetal tissues and in placenta throughout gestation. J Clin Endocrinol Metab 1992; 75: 646–650.

    PubMed  CAS  Google Scholar 

  7. Smith WC, Kuniyoshi J, Talamantes F. Mouse serum growth hormone (GH) binding protein has GH receptor extracellular and substituted transmembrane domains Mol Endocrinology 1989; 3: 984–990.

    CAS  Google Scholar 

  8. Baumbach WR, Horner DL, Logan JS. The growth hormone-binding protein in rat serum is an alternatively spliced form of the rat growth hormone receptor. Genes Dev 1989; 3: 1199–1205.

    PubMed  CAS  Google Scholar 

  9. Cramer SD, Barnard R, Engbers C, Thordarson G, Talamantes F. A mouse growth hormone-binding protein RIA-concentrations in maternal serum during pregnancy. Endocrinology 1992; 130: 1074–1076.

    PubMed  CAS  Google Scholar 

  10. Lee G-H, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

    PubMed  CAS  Google Scholar 

  11. Bennett PA, Lindell K, Karlsson C, Carlsson LMS, Carlsson B, Robinson ICAF. Leptin receptor (Ob-R) gene expression and regulation in rat brain. J Endocrinol, Supplement Abs 0C35, 1997.

    Google Scholar 

  12. Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI. Growth hormone receptor and serum binding protein: purification, cloning, and expression. Nature 1987; 330: 537–543.

    PubMed  CAS  Google Scholar 

  13. Mathews LS, Enberg B, Norstedt G. Regulation of rat growth hormone receptor gene expression. J Biol Chem 1989; 264: 9905–9910.

    PubMed  CAS  Google Scholar 

  14. Harvey S, Fraser RA. Expression and translation of the growth hormone-receptor gene in the guinea-pig. J Endocrinol 1992; 133: 357–362.

    PubMed  CAS  Google Scholar 

  15. Fraser RA, Attardo D, Harvey S. Growth hormone receptors in hypothalamic and extrahypothalamic tissues. J Mol Endocrinol 1990; 5: 231–238.

    PubMed  CAS  Google Scholar 

  16. Hasegawa O, Minami S, Sugihara H, Wakabayashi I. Developmental expression of the growth hormone receptor gene in the rat hypothalamus. Dev Brain Res 1993; 74: 287–290.

    CAS  Google Scholar 

  17. Garcia-Aragon J, Lobie PE, Muscat GEO, Gobius KS, Norstedt G, Waters MJ. Prenatal expression of the growth hormone (GH) receptor/binding protein in the rat: a role for GH in embryonic and fetal development. Development 1992; 114: 869–876.

    PubMed  CAS  Google Scholar 

  18. Burton KA, Kabigting EB, Clifton DK, Steiner RA. Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 1992; 131: 958–963.

    PubMed  CAS  Google Scholar 

  19. Burton KA, Steiner RA, Clifton DK. Double-label in situ hybridization confirms that the GRF gene and the GH receptor gene are coexpressed in a subset of neurons in the arcuate nucleus. Proceedings of the 74th Annual Meeting of The Endocrine Society, San Antonio, TX, 1992, Abstract 1370.

    Google Scholar 

  20. Chan YY, Steiner RA, Clifton DK. Regulation of hypothalamic neuropeptide-Y neurons by growth hormone in the rat. Endocrinology 1996; 137: 1319–1325.

    PubMed  CAS  Google Scholar 

  21. Lobie PE, Mertani H, Morel G, Moralesbustos O, Norstedt G, Waters MJ. Receptor-mediated nuclear translocation of growth-hormone. J Biol Chem 1994;269:21, 330–21, 339.

    Google Scholar 

  22. Lobie PE, Garcia AJ, Lincoln DT, Barnard R, Wilcox JN, Waters MJ. Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Brain Res Dev Brain Res 1993; 74: 225–233.

    PubMed  CAS  Google Scholar 

  23. Baumbach W, Bingham B. One class of growth hormone (GH) receptor binding protein messenger ribonucleic acid in rat liver, GHRI, is sexually dimorphic and regulated by GH. Endocrinology 1995; 136: 749–760.

    PubMed  CAS  Google Scholar 

  24. Gabrielsson BG, Carmignac DF, Flavell DM, Robinson ICAF. Steroid regulation of growth hormone receptor (GHR) and GH binding protein (GHBP) messenger RNAs in the rat. Endocrinology 1995; 136: 209–217.

    Google Scholar 

  25. Domene HM, Cassorla F, Werner H, Roberts CT, LeRoith D. Rat growth hormone receptor/growth hormone-binding protein mRNAs with divergent 5’-untranslated regions are expressed in a tissue-specific manner. DNA Cell Biology 1995; 14: 195–204.

    Google Scholar 

  26. Zou L, Burmeister LA, Sperling MA. Isolation of a liver-specific promoter for human growth hormone receptor gene. Endocrinology 1997; 138: 1771–1774.

    PubMed  CAS  Google Scholar 

  27. Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM. Mutations of the growth hormone receptor in children with idiopathic short stature. New Engl J Med 1995; 333: 1093–1098.

    PubMed  CAS  Google Scholar 

  28. Walker J, Moats-Staats B, Stiles A, Underwood L. Tissue-specific developmental regulation of the messenger ribonucleic acids encoding the growth hormone receptor and the growth hormone receptor binding protein in rat fetal and postnatal tissues. Pediatr Res 1992; 31: 335–339.

    PubMed  CAS  Google Scholar 

  29. Ohlsson C, Lovstedt K, Holmes PV, Nilsson A, Carlsson L, Tornell J. Embryonic stem cells express growth hormone receptors: regulation by retinoic acid. Endocrinology 1993; 133: 2897–903.

    PubMed  CAS  Google Scholar 

  30. de-Zegher F, Bettendorf M, Grumbach MM, Kaplan SL. Hormone ontogeny in the ovine fetus. XXV Somatotrope desensitization to growth hormone releasing factor (GRF) independent of short-latency, ultrashortloop GH feedback. Neuroendocrinology 1990; 52: 429–433.

    PubMed  CAS  Google Scholar 

  31. Adcock CJ, Ogilvy-Stuart AL, Robinson ICAF, Lewin JE, Holly JMP, Harris DA, Watts AP, Doyle KL, Matthews DR, Wilkinson AR, Dunger DB. The use of an automated microsampling system for the characterization of growth hormone pulsatility in newborn babies. J Paediatr Res 1997; 42 (1): 66–71.

    CAS  Google Scholar 

  32. Barker DJ, Gluckman PD. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341: 938–941.

    PubMed  CAS  Google Scholar 

  33. Maiter D, Underwood LE, Maes M, Ketelslegers JM. Acute down-regulation of the somatogenic receptors in rat liver by a single injection of growth hormone. Endocrinology 1988; 122: 1291–1296.

    PubMed  CAS  Google Scholar 

  34. Herington A, Phillips LC, Daughaday WH. Pituitary regulation of human growth hormone binding sites in rat liver membranes. Metabolism 1976; 25: 341–353.

    PubMed  CAS  Google Scholar 

  35. Maiter D, Walker J, Adam E, Moats-Staats B, Mulumba N, Ketelslegers J-M, Underwood L. Differential regulation by growth hormone (GH) of insulin-like growth factor I and GH receptor/binding protein gene expression in rat liver. Endocrinology 1992; 130: 3257–3264.

    PubMed  CAS  Google Scholar 

  36. Gevers EF, Wit JM, Robinson ICAF. Growth, growth hormone (GH)-binding protein, and GH receptors are differentially regulated by peak and trough components of the GH secretory pattern in the rat. Endocrinology 1996; 137: 1013–1018.

    PubMed  CAS  Google Scholar 

  37. Frick GP, Leonard JL, Goodman HM. Effect of hypophysectomy on growth hormone receptor gene expression in rat tissues. Endocrinology 1990; 126: 3076–3082.

    PubMed  CAS  Google Scholar 

  38. Carlsson B, Nilsson OGP, Billig H. Growth hormone-receptor messenger RNA in the rat ovary: regulation and localization. Mol Cell Endocrinol 1993; 95: 59–66.

    PubMed  CAS  Google Scholar 

  39. Minami S, Kamegai J, Hasegawa O, Sugihara H, Okada K, Wakabayashi I. Expression of growth hormone receptor gene in rat hypothalamus. J Neuroendocrinol 1993; 5: 691–696.

    PubMed  CAS  Google Scholar 

  40. Bennett PA, Levy A, Sophokleous S, Robinson ICAF, Lightman SL. Hypothalamic growth hormone receptor gene expression in the rat. Journal of Endocrinology 1995; 147: 225–234.

    PubMed  CAS  Google Scholar 

  41. Dodson RE, Shapiro DJ. An estrogen-inducible protein binds specifically to a sequence in the 3’ untranslated region of estrogen-stabilized vitellogenin mRNA. Molecular and Cellular Biology 1994; 14: 3130–3138.

    PubMed  CAS  Google Scholar 

  42. Robinson ICAF, Carmignac DF, Fairhall KM. Growth hormone (GH) receptors, GH binding protein and GH: an autoregulatory system? Acta Paediatr Suppl 1993; 391: 22–28.

    Google Scholar 

  43. Maes M, de Hertogh R, Watrin-Granger P, Ketelslegers JM. Ontogeny of liver somatotropic and lactogenic binding sites in male and female rats. Endocrinology 1983; 113: 1325–1332.

    PubMed  CAS  Google Scholar 

  44. Massa G, Mulumba N, Ketelslegers J, Maes M. Initial characterization and sexual dimorphism of serum growth hormone-binding protein in adult rats. Endocrinology 1990; 126: 1976–1980.

    PubMed  CAS  Google Scholar 

  45. Carmignac DF, Gabrielsson B, Robinson ICAF. Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology 1993; 133: 2445–2452.

    PubMed  CAS  Google Scholar 

  46. Carlsson LM, Clark RG, Robinson ICAF. Sex difference in growth hormone feedback in the rat. J Endocrinol 1990; 126: 27–35.

    PubMed  CAS  Google Scholar 

  47. Bennett PA, Levy A, Carmignac DF, Robinson ICAF, Lightman SL. Differential regulation of the growth hormone receptor gene: effects of dexamethasone and estradiol. Endocrinology 1996; 137: 3891–3896.

    PubMed  CAS  Google Scholar 

  48. Senaris RM, Lago F, Coya R, Pineda J, Dieguez C. Regulation of hypothalamic somatostatin, growth hormone-releasing hormone, and growth hormone receptor messenger ribonucleic acid by glucocorticoids. Endocrinology 1996; 137: 5236–5241.

    PubMed  CAS  Google Scholar 

  49. Maes M, Underwood LE, Ketelslegers J-M. Plasma somatomedin-C in fasted and refed rats: close relationships with changes in liver somatogenic but not lactogenic binding sites. J Endocrinol 1983; 97: 243–252.

    PubMed  CAS  Google Scholar 

  50. Maes M, Underwood LE, Gerard G, Ketelslegers J-M. Relationship between plasma somatomedin-C and liver somatogenic binding sites in neonatal rats during malnutrition and after short and long term refeeding. Endocrinology 1984; 115: 786–792.

    PubMed  CAS  Google Scholar 

  51. Maes M, Underwood LE, Ketelslegers J-M. Low plasma somatomedin-C in strepozotocin-induced diabetes mellitus: correlation with changes in somatogenic and lactogenic liver binding sites. Diabetes 1993; 32: 1060.

    Google Scholar 

  52. Sato M, Frohman LA. Differential effects of central and peripheral administration of growth hormone (GH) and insulin-like growth factor on hypothalamic GH-releasing hormone and somatostatin gene expression in GH-deficient dwarf rats. Endocrinology 1993; 133: 793–799.

    PubMed  CAS  Google Scholar 

  53. Harel Z, Tannenbaum GS. Synergistic interaction between insulin-like growth factor-I and -II in central regulation of pulsatile growth hormone secretion. Endocrinology 1992; 131: 758–764.

    PubMed  CAS  Google Scholar 

  54. Hochberg Z, Bick T, Harvel Z. Alterations of human growth hormone binding by rat liver membranes during hypo-and hyperthyroidism. Endocrinology 1990; 126: 325–329.

    PubMed  CAS  Google Scholar 

  55. Linfoot JA, Garcia JF, Wei W, Fink R, Sarin R, Born JL, Lawrence JH. Human growth hormone levels in the cerebrospinal fluid. J Clin Endocrinol Metab 1970; 31: 230–232.

    PubMed  CAS  Google Scholar 

  56. Bengtsson B-A, Johansson J-O, Larsson G, Andersson M, Elmgren A, Lundberg P-A, Lindahl A, Isaksson OGP. Treatment of growth hormone deficient adults with recombinant human growth hormone results in an increase of beta-endorphin immunoreactivities in the cerebrospinal fluid. J Endocrinol Invest Suppl 1993; 16: 107.

    Google Scholar 

  57. Muccioli G, Genazzani E, Papotti M, Di Carlo R. Prolactin receptors in human choroid plexus. In: Hoshino K, ed. Prolactin Gene Family and Its Receptors. Elsevier, Amsterdam, The Netherlands, 1988, pp. 167–173.

    Google Scholar 

  58. Lai Z, Emtner M, Roos P, Nyberg F. Characterization of putative growth hormone receptors in human choroid plexus. Brain Res 1991; 546: 222–226.

    PubMed  CAS  Google Scholar 

  59. Bennett PA, Levy A, Carmignac DF, Robinson ICAF, Lightman SL. Differential regulation of growth hormone receptor gene expression. Program of the 77th Annual Meeting of The Endocrine Society, Washington. Abs 1995, p. 2–200.

    Google Scholar 

  60. Oliver C, Mical RS, Porter JC. Hypothalamic-pituitary vasculature: evidence for retrograde blood flow from the pituitary stalk. Endocrinology 1977; 101: 598–604.

    PubMed  CAS  Google Scholar 

  61. Pacold ST, Kirsteins L, Hojvat S, Lawerence AM, Hagen TC. Biologically active pituitary hormones in the rat brain amygdaloid nucleus. Science 1978; 199: 804–806.

    PubMed  CAS  Google Scholar 

  62. Hojvat S, Baker G, Kirsteins L, Lawrence AM. Growth hormone (GH) immunoreactivity in the rodent and primate CNS: distribution characterization and presence posthypophysectomy. Brain Res 1982; 239: 543–557.

    PubMed  CAS  Google Scholar 

  63. Belchetz PE, Ridley RM, Baker HF. Studies on the accessibility of prolactin and growth hormone to brain: effects of opiate on hormone levels in serial, simultaneous plasma and cerebrospinal fluid samples in the rhesus monkey. Brain Res 1982; 239: 310–314.

    PubMed  CAS  Google Scholar 

  64. Stern WC, Miller M, Resnick O, Morgane PJ. Distribution of 1251-labeled rat growth hormone in regional brain areas and peripheral tissue of the rat. Am J Anat 1976; 144: 503–508.

    Google Scholar 

  65. Mustafa A, Sharma HS, Olsson Y, Gordh Y, Thoren P, Sjoquist PO, Roos P, Adern A, Nyberg F. Vascular permeability to growth hormone in the rat central nervous system after focal spinal cord injury. Influence of a new anti-oxidant H 290/51 and age. Neurosci Res 1995; 23: 185–194.

    PubMed  CAS  Google Scholar 

  66. Gossard F, Dihl F, Pelletier G, Dubois PM, Morel G. In situ hybridization to rat brain and pituitary gland of growth hormone cDNA. Neurosci Lett 1987; 79: 251–256.

    PubMed  CAS  Google Scholar 

  67. Ogilvie S, Buhl WC, Olson JA, Shiverick KT. Identification of a novel family of growth hormone related proteins secreted by rat placenta. Endocrinology 1990; 97: 621–629.

    Google Scholar 

  68. Weigent DA, Baxter JB, Wear WE, Smith LR, Bost KL, Blalock JE. Production of immunoreactive growth hormone by mononuclear lymphocytes. FASEB J. 1988; 2: 2812–2818.

    Google Scholar 

  69. Mol JA, Henzen-Logmans SC, Hageman PH, Misdorp W, Blankenstein MA, Rijnberk A. Expression of the gene encoding growth hormone in the human mammary gland. J Clin Endocrinol Metab 1995; 80: 3094–3096.

    PubMed  CAS  Google Scholar 

  70. Mol JA, Van Garderen E, Selman PJ, Wolfswinkel J, Rijmberk A, Rutterman GR. Growth hormone mRNA in mammary gland tumours of dogs and cats. J Clin Invest 1995; 95: 2028–2034.

    PubMed  CAS  Google Scholar 

  71. Hollingshead PG, Martin L, Pitts SL, Stewart TA. A dominant phenocopy of hypopituitarism in transgenic mice resulting from central nervous system synthesis of human growth hormone. Endocrinology 1989; 125: 1556–1564.

    PubMed  CAS  Google Scholar 

  72. Banerjee SA, Roffler-Tarlov S, Szabo M, Frohman L, Chikaraishi DM. DNA regulatory sequences of the rat tyrosine hydroxylase gene directed correct catecholaminergic cell type specificity of human

    Google Scholar 

  73. growth reporter in the CNS of transgenic mice causing a dwarf phenotype. Mol Brain Res 1994; 24: 89–106.

    Google Scholar 

  74. Flavell DM, Wells T, Wells SE, Carmignac DF, Thomas GB, Robinson ICAF. Dominant dwarfism in transgenic rats by targeted human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons. EMBO J 1996; 15: 3871–3879.

    Google Scholar 

  75. Tannenbaum GS. Evidence for autoregulation of growth hormone secretion via the central nervous system. Endocrinology 1980; 107: 2117–2120.

    PubMed  CAS  Google Scholar 

  76. Willoughby JO, Menadue M, Zeegers P, Wise PH, Oliver JR. Effects of human growth hormone on the secretion of rat growth hormone. J Endocrinol 1980; 86: 165–169.

    Google Scholar 

  77. Chihara K, Minamitani N, Kaji H, Arimura A, Fujita T. Intraventricularly injected growth hormone stimulates somatostatin release into rat hypophysial portal blood. Endocrinology 1981; 109: 2279–2281.

    PubMed  CAS  Google Scholar 

  78. Abe H, Molitch ME, vanWyk JJ, Underwood LE. Human growth hormone and somatomedin-C suppress the spontaneous release of growth hormone in unanaesthetised rats. Endocrinology 1983; 113: 1319–1324.

    PubMed  CAS  Google Scholar 

  79. Clark RG, Carlsson LMS, Robinson ICAF. Growth hormone (GH) secretion in the conscious rat: negative feedback of GH on its own release. J Endocrinol 1988; 119: 201–209.

    PubMed  CAS  Google Scholar 

  80. Lanzi R, Pontiroli AE, Monti LD, Monzani M, Pozza G. The growth hormone clamp technique: inhibition of growth hormone release by growth hormone occurs independently of free fatty acids. Metabolism 1990; 39: 819–821.

    PubMed  CAS  Google Scholar 

  81. Pontiroli AE, Lanzi R, Monti LD, Sandoli E, Pozza G. Growth hormone (GH) autofeedback on GH response to GH-releasing hormone. Role of free fatty acids and somatostatin. J Clin Endocrinol Metab 1991; 72: 492–495.

    PubMed  CAS  Google Scholar 

  82. Carlsson L, Jansson J-O. Endogenous growth hormone (GH) secretion in male rats is synchronized to pulsatile GH infusions given at 3-hour intervals. Endocrinology 1990; 126: 6–10.

    PubMed  CAS  Google Scholar 

  83. Fraser RA, Harvey S. Ubiquitous distribution of growth hormone receptors and/or binding proteins in adenohypophyseal tissue. Endocrinology 1992; 130: 3593–3600.

    PubMed  CAS  Google Scholar 

  84. Richman RA, Weiss JP, Hochberg Z, Florini JR. Regulation of growth hormone release: evidence against negative feedback in rat pituitary cells. Endocrinology 1981; 108: 2287–2292.

    PubMed  CAS  Google Scholar 

  85. Goodyer CG, De Stephano L, Guyda HJ, Posner BI. Effects of insulin-like growth factors on adult male rat pituitary function in tissue culture. Endocrinology 1984; 115: 1568–1576.

    PubMed  CAS  Google Scholar 

  86. Conway S, McCann SM, Krulich L. On the mechanism of growth hormone autofeedback regulation: possible role of somatostatin and growth hormone-releasing factor. Endocrinology 1985; 117: 2284–2292.

    PubMed  CAS  Google Scholar 

  87. Lanzi R, Tannenbaum GS. Time course and mechanism of growth-hormones negative feedback effect on its own spontaneous release. Endocrinology 1992; 130: 780–788.

    PubMed  CAS  Google Scholar 

  88. Chomczynski P, Downs TR, Frohman LA. Feedback regulation of growth hormone (GH)-releasing hormone gene expression by GH in rat hypothalamus. Mol Endocrinol 1988; 2: 236–241.

    PubMed  CAS  Google Scholar 

  89. Rogers KV, Vician L, Steiner A, Clifton DK. The effect of hypophysectomy and growth hormone administration on pre-prosomatostatin messenger ribonucleic acid in the periventricular nucleus of the rat hypothalamus. Endocrinology 1988; 122: 586–591.

    PubMed  CAS  Google Scholar 

  90. Minami S, Kamegai J, Sugihara H, Hasegawa O, Wakabayashi I. Systemic administration of recombinant human growth hormone induces expression of the c-fos gene in the hypothalamic arcuate and periventricular nuclei in hypophysectomized rats. Endocrinology 1992; 131: 247–253.

    PubMed  CAS  Google Scholar 

  91. Kamegai J, Minami S, Sugihara H, Higuchi H, Wakabayashi I. Growth hormone induces expression of the c-fos gene on hypothalamic neuropeptide-Y and somatostatin neurons in hypophysectomized rats. Endocrinology 1994; 135: 2765–2771.

    PubMed  CAS  Google Scholar 

  92. Burton KA, Kabigting EB, Steiner RA, Clifton DK. Identification of target cells for growth hormone’ s action in the arcuate nucleus. Am J Physiol 1995; 269: E716 - E722.

    PubMed  CAS  Google Scholar 

  93. Rettori V, Milenkovic L, Aguila M, McCann SM. Physiologically significant effect of neuropeptide Y to suppress growth hormone release by stimulating somatostatin discharge. Endocrinology 1990; 126: 2296–2301.

    PubMed  CAS  Google Scholar 

  94. Pierroz DD, Catzeflis C, Aebi AC, Rivier JE, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle inhibits both pituitary-testicular axis and growth hormone and insulin-like growth factor I secretion in intact adult male rats. Endocrinology 1996; 137: 3–12.

    PubMed  CAS  Google Scholar 

  95. Chan YY, Steiner RA, Clifton DK. Regulation of hypothalamic neuropeptide-Y neurons by growth hormone in the rat. Endocrinology 1996; 137: 1319–1325.

    PubMed  CAS  Google Scholar 

  96. Bennett PA, Flavell DM, Sophokleous S, Robinson ICAF, Levy A, Lightman SL. Interactions between neuropeptide Y and growth hormone receptor gene transcripts in the arcuate nucleus. J Endocrinol, Supplement, P122, 1996.

    Google Scholar 

  97. Mounier F, Pellegrini E, Kordon C, Epelbaum J, Bluet-Pajot M-T. Continuous intracerebroventricular administration of a corticotropin releasing hormone antagonist amplifies spontaneous growth hormone pulses in the rat. J Endocrinol 1997; 152: 431–436.

    PubMed  CAS  Google Scholar 

  98. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996; 273: 974–977.

    PubMed  CAS  Google Scholar 

  99. McKee KK, Palyha OC, Feighner SD, Hreniuk DL, Tan CP, Philips MS, Smith RG, Van der Ploeg LHT, Howard AD. Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol 1997; 11: 415–423.

    PubMed  CAS  Google Scholar 

  100. Bennett PA, Thomas GB, Howard AD, Feighner SD, Van der Ploeg LHT, Smith RG, Robinson ICAF. Hypothalamic growth hormone secretagogue-receptor (GHS-R) expression is regulated by growth hormone in the rat. Endocrinology 1997; 138: 4552–4557.

    PubMed  CAS  Google Scholar 

  101. Dickson SL, Leng G, Robinson ICAF. Systemic administration of growth hormone-releasing peptide activates hypothalamic arcuate neurons. Neuroscience 1993; 53: 303–306.

    PubMed  CAS  Google Scholar 

  102. Dickson SL, Luckman SM. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6. Endocrinology 1997; 138: 771–777.

    PubMed  CAS  Google Scholar 

  103. Andersson K, Fuxe K, Eneroth P, Isaksson O, Nyberg F, Roos P. Rat growth hormone and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete reductions in dopamine and noradrenaline levels in the median eminence of the hypophysectomized male rat. Eur J Pharmacol 1983; 95: 271–275.

    PubMed  CAS  Google Scholar 

  104. Popova J, Robeva A, Iavorska N, Zaharieva J. Beta-adrenoreceptor activity change after prolonged treatment with growth hormone and somatostatin. Comp Biochem Physiol 1991; 100: 543–546.

    CAS  Google Scholar 

  105. Popova J, Ivanova E, Tosheva T, Iavorska N. Growth hormone and somatostatin treatment change 5-HT receptor activity. Gen Pharmocol 1991; 22: 1143–1146.

    CAS  Google Scholar 

  106. Morgan WW, King TS. Monoamine biosynthesis in hypothalamic regions of dwarf mice: effect of replacement of deficient anterior pituitary hormones. Neuroendocrinology 1986; 42: 351–356.

    PubMed  CAS  Google Scholar 

  107. Fuhrmann G, Kempf E, Ebel A. Effects of hormone therapy on the central cholinergic neurotransmission of the Snell dwarf mouse. J Neurosci Res 1986; 13: 417–430.

    Google Scholar 

  108. Noguchi T, Sugisaki T, Tsukada Y. Postnatal action of growth hormone and thyroid hormones in the retarded cerebral myelinogenesis of Snell dwarf mice. J Neurochem 1982; 38: 257–263.

    PubMed  CAS  Google Scholar 

  109. Sonksen P, Cuneo R, Salomon F, McGauley G, Wiles C, Wilmshurst P, Byrne C, Hesp R, Lowy C, Weissberger A. Growth hormone therapy in adults with growth hormone deficiency. Acta Paediatr Scand-Suppl 1991; 379: 139–146.

    PubMed  CAS  Google Scholar 

  110. Rogers LJ, Schanberg SM, Fellows RE. Growth and lactogenic hormone stimulation of ornithine decarboxylase in neonatal rat brain. Endocrinology 1974; 95: 904–909.

    Google Scholar 

  111. Krawiec L, Berti-Mattera N. In vitro effects of bovine growth hormone on RNA labelling in brain and liver slices of neonatal hypothyroid rats. Horm Res 1985; 17: 218, 219.

    Google Scholar 

  112. Nyberg F, Burman P Growth hormone and its receptors in the central nervous system: location and functional significance. Horm Res 1996; 45: 18–22.

    PubMed  CAS  Google Scholar 

  113. Li S, Crenshaw EB, Rawson EJ, Simmons DW, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990; 347: 528–533.

    PubMed  CAS  Google Scholar 

  114. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the prophet of Pit-I homeodomain factor defective in Ames dwarfism. Nature 1996; 384: 327–333.

    PubMed  CAS  Google Scholar 

  115. Godfrey P, Rahal J, Beamer W, Copeland N, Jenkins N, Mayo K. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genet 1993; 4: 227–232.

    PubMed  CAS  Google Scholar 

  116. Takeuchi T, Suzuki H, Sakurai S, Nogami H, Okuma S, Ishikawa H. Molecular mechanism of growth-hormone (GH) deficiency in the spontaneous dwarf rat-detection of abnormal splicing of GH messenger ribonucleic acid by the polymerase chain reaction. Endocrinology 1990; 126: 31–38.

    PubMed  CAS  Google Scholar 

  117. Charlton HM, Clark RG, Robinson ICAF, Porter-Goff AE, Cox BS, Bugnon C, Bloch BA. Growth hormone-deficient dwarfism in the rat: a new mutation. J Endocrinol 1988; 119: 51–58.

    PubMed  CAS  Google Scholar 

  118. Downs TR, Frohman LA. Evidence for a defect in growth hormone-releasing factor signal transduction in the dwarf (dw/dw) rat pituitary. Endocrinology 1991; 129: 58–67.

    PubMed  CAS  Google Scholar 

  119. Zeitler P, Downs TR, Frohman LA. Impaired growth hormone-releasing hormone signal transduction in the dwarf (dw) rat is independent of a generalized defect in the stimulatory G-protein, Gsa. Endocrinology 1993; 133: 2782–2786.

    PubMed  CAS  Google Scholar 

  120. Hurley DL, Phelps CJ. Hypothalamic preprosomatostatin messenger ribonucleic acid expression in mice transgenic for excess or deficient endogenous growth hormone. Endocrinology 1992; 130: 1809–1815.

    PubMed  CAS  Google Scholar 

  121. Phelps CJ, Dalcik H, Endo H, Talamantes F, Hurley DL. Growth hormone-releasing hormone peptide and mRNA are overexpressed in GH-deficient Ames dwarf mice. Endocrinology 1993; 133: 3034–3037.

    PubMed  CAS  Google Scholar 

  122. Cotterill AM, Camacho-Hubner C, Holly JM, Savage MO. The effect of recombinant human insulin-like growth factor-I treatment on growth hormone secretion in two subjects with growth hormone insensitivity (Laron syndrome). Clin Endocrinol 1993; 39: 119–122.

    CAS  Google Scholar 

  123. Hartman ML, Clayton PE, Johnson ML, Celniker A, Perlman Ai, Alberti K, et al. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans. J Clin Invest 1993; 91: 2453–2462.

    PubMed  CAS  Google Scholar 

  124. Zhou Y, Xu BC, Maheshwari H, He L, Reed M, Lozykowski M, Chen N, Knapp JR, Cataldo LA, Okada S, Wagner TE, Baumann G, Kopchick JJ. A mouse model for Laron syndrome produced by targeted disruption of the growth hormone receptor/binding protein gene. Proc 79th Annual Endocrine Meeting, Minneapolis, 1997, pp. 2–225.

    Google Scholar 

  125. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Brinberg NC, Evans RM. Dramatic growth in of mice that develop from eggs microinjected with metallothionein-growth hormone fusion gene. Nature 1982; 300: 611–615.

    PubMed  CAS  Google Scholar 

  126. Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL. Metallothionein-human GH fusion genes stimulate growth of mice. Science 1983; 222: 809–814.

    Google Scholar 

  127. Hammer RE, Brinster RL, Rosenfeld MG, Evans RM, Mayo KE. Expression of human growth hormone-releasing factor in transgenic mice results in increased somatic growth. Nature 1985; 315: 413–416.

    PubMed  CAS  Google Scholar 

  128. Orian JM, Lee CS, Weiss LM, Brandon MR. The expression of a metallothionein-ovine growth hormone fusion gene in transgenic mice does not impair fertility but results in pathological lesions in the liver. Endocrinology 1989; 124: 455–463.

    PubMed  CAS  Google Scholar 

  129. Bertherat J, Timsit J, Bluet-Pajot MT, MercadierJJ, Gourdji D, Kordon C, Epelbaum J. Chronic growth hormone (GH) hypersecretion induces reciprocal and reversible changes in mRNA levels from hypothalamic GH-releasing hormone and somatostatin neurons in the rat. J Clin Invest 1993; 91: 1783–1791.

    Google Scholar 

  130. Chen WY, White ME, Wagner TE, Kopchick JJ. Functional antagonism between endogenous mouse growth-hormone (GH) and a GH analog results in dwarf transgenic mice. Endocrinology 1991; 129: 1402–1408.

    Google Scholar 

  131. Behringer RR, Mathews LS, Palmiter RD, Brinster RL. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 1988; 2: 453–461.

    PubMed  CAS  Google Scholar 

  132. Matsumoto K, Kakidani H, Takahashi A, Nakagata N, Anzai M, Matsuzaki Y, Takahashi Y, Miyata K, Utsumi K, Iritani A. Growth retardation in rats whose growth hormone gene expression was suppressed by antisense RNA transgene. Mol Reprod and Dev 1993; 36: 53–58.

    CAS  Google Scholar 

  133. Wells T, Flavell DM, Wells SE, Carmignac DF, Robinson ICAF. Effects of growth hormone secretagogues in the transgenic growth-retarded (Tgr) rat. Endocrinology 1997; 138: 580–587.

    PubMed  CAS  Google Scholar 

  134. Conway S, Moherek R, Mauceri H, Richardson L. Sexually dimorphic characteristics of clonidineinduced growth hormone release and autofeedback. Endocrinology 1989; 125: 2475–2485.

    PubMed  CAS  Google Scholar 

  135. Pellegrini E, Carmignac DF, Bluet-Pajot M-T, Mounier F, Bennett P, Epelbaum J, Robinson ICAF. Intrahypothalamic growth hormone (GH) feedback: from dwarfism to acromegaly in the rat. Endocrinology 1997; 138: 4543–4554.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bennett, P.A., Robinson, I.C.A.F. (2000). The Central Nervous System as a Direct Target for Growth Hormone Action. In: Smith, R.G., Thorner, M.O. (eds) Human Growth Hormone. Contemporary Endocrinology, vol 19. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-015-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-015-5_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9610-9

  • Online ISBN: 978-1-59259-015-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics