Skip to main content

The Role of Inflammation and Fibrosis in Cystic Kidney Disease

  • Chapter
  • First Online:
Polycystic Kidney Disease

Abstract

Interstitial inflammation and fibrosis are among the most notable hallmarks of cystic kidney diseases. These biological processes represent key components of a complex multidirectional relationship that, together with abnormal injury and tissue repair, as well as renal tubular and vascular epithelial function, defines the pathobiology of renal cystic disease progression. This chapter provides a summary of key findings relevant to the role of inflammation and fibrosis in this complex relationship. It reviews major polycystic kidney disease (PKD)-associated inflammatory pathways, immune cell types and modulators of immune function, and their potential roles in the development of PKD therapeutics and identification of predictive biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cowley BD Jr, Ricardo SD, Nagao S, Diamond JR. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int. 2001;60(6):2087–96. PubMed PMID: 11737583.

    Article  PubMed  CAS  Google Scholar 

  2. Zheng D, Wolfe M, Cowley BD Jr, Wallace DP, Yamaguchi T, Grantham JJ. Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2003;14(10):2588–95. PubMed PMID: 14514736

    Article  PubMed  CAS  Google Scholar 

  3. Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, et al. Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2011.; Epub 2011/09/17. doi: ASN.2011010084 [pii] 10.1681/ASN.2011010084. PubMed PMID: 21921140.

    Google Scholar 

  4. Flores D, Battini L, Gusella GL, Rohatgi R. Fluid shear stress induces renal epithelial gene expression through polycystin-2-dependent trafficking of extracellular regulated kinase. Nephron Physiol. 2011;117(4):p27–36. Epub 2010/11/27. https://doi.org/10.1159/000321640. PubMed PMID: 21109758; PubMed Central PMCID: PMC2997441.

    Article  PubMed  CAS  Google Scholar 

  5. Zhou J, Ouyang X, Schoeb TR, Bolisetty S, Cui X, Mrug S, et al. Kidney injury accelerates cystogenesis via pathways modulated by heme oxygenase and complement. J Am Soc Nephrol. 2012;23(7):1161–71. Epub 2012/04/21. https://doi.org/10.1681/ASN.2011050442. PubMed PMID: 22518005; PubMed Central PMCID: PMC3380643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Song XW, Di Giovanni V, He N, Wang KR, Ingram A, Rosenblum ND, et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet. 2009;18(13):2328–43. https://doi.org/10.1093/Hmg/Ddp165. PubMed PMID: ISI:000266961400002.

    Article  PubMed  CAS  Google Scholar 

  7. Mrug M, Zhou J, Woo Y, Cui X, Szalai AJ, Novak J, et al. Overexpression of innate immune response genes in a model of recessive polycystic kidney disease. Kidney Int. 2008;73(1):63–76. Epub 2007/10/26. doi: 5002627 [pii] 10.1038/sj.ki.5002627. PubMed PMID: 17960140.

    Article  PubMed  CAS  Google Scholar 

  8. Grantham JJ, Mulamalla S, Swenson-Fields KI. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2011;7(10):556–66. Epub 2011/08/25. https://doi.org/10.1038/nrneph.2011.109. PubMed PMID: 21862990.

    Article  PubMed  CAS  Google Scholar 

  9. Chevalier RL. Obstructive nephropathy: lessons from cystic kidney disease. Nephron. 2000;84(1):6–12. Epub 2000/01/25. doi: 45532. PubMed PMID: 10644902.

    Article  PubMed  CAS  Google Scholar 

  10. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis: the role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int Suppl. 2003;87:S105–12. Epub 2003/10/09. PubMed PMID: 14531782.

    Article  CAS  Google Scholar 

  11. Chevalier RL, Thornhill BA, Forbes MS, Kiley SC. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol. 2010;25(4):687–97. Epub 2009/10/22. https://doi.org/10.1007/s00467-009-1316-5. PubMed PMID: 19844747.

    Article  PubMed  Google Scholar 

  12. Xu R, Franchi F, Miller B, Crane JA, Peterson KM, Psaltis PJ, et al. Polycystic kidneys have decreased vascular density: a micro-CT study. Microcirculation. 2013;20(2):183–9. Epub 2012/11/22. https://doi.org/10.1111/micc.12022. PubMed PMID: 23167921; PubMed Central PMCID: PMC3698948.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maser RL, Vassmer D, Magenheimer BS, Calvet JP. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. J Am Soc Nephrol: JASN. 2002;13(4):991–9. Epub 2002/03/26. PubMed PMID: 11912258

    PubMed  CAS  Google Scholar 

  14. Menon V, Rudym D, Chandra P, Miskulin D, Perrone R, Sarnak M. Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(1):7–13. Epub 2010/09/11. doi: CJN.04140510 [pii] 10.2215/CJN.04140510. PubMed PMID: 20829421; PubMed Central PMCID: PMC3022250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22(2):317–26. Epub 2011/02/04. doi: 22/2/317 [pii] 10.1681/ASN.2009060615. PubMed PMID: 21289217; PubMed Central PMCID: PMC3029904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Prasad S, McDaid JP, Tam FW, Haylor JL, Ong AC. Pkd2 dosage influences cellular repair responses following ischemia-reperfusion injury. Am J Pathol. 2009;175(4):1493–503. Epub 2009/09/05. https://doi.org/10.2353/ajpath.2009.090227. PubMed PMID: 19729489; PubMed Central PMCID: PMC2751546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gardner KD Jr, Burnside JS, Elzinga LW, Locksley RM. Cytokines in fluids from polycystic kidneys. Kidney Int. 1991;39(4):718–24. Epub 1991/04/01. PubMed PMID: 2051729.

    Article  PubMed  Google Scholar 

  18. Zhou J, Ouyang X, Cui X, Schoeb TR, Smythies LE, Johnson MR, et al. Renal CD14 expression correlates with the progression of cystic kidney disease. Kidney Int. 2010;78(6):550–60. Epub 2010/06/18. doi: ki2010175 [pii] 10.1038/ki.2010.175. PubMed PMID: 20555320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet. 2009;18(13):2328–43. Epub 2009/04/07. https://doi.org/10.1093/hmg/ddp165. PubMed PMID: 19346236.

    Article  PubMed  CAS  Google Scholar 

  20. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007;282(28):20059–63. Epub 2007/05/16. https://doi.org/10.1074/jbc.R700016200. PubMed PMID: 17502367.

    Article  PubMed  CAS  Google Scholar 

  21. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell. 2002;109(2):157–68. Epub 2002/05/15. PubMed PMID: 12007403

    Article  PubMed  CAS  Google Scholar 

  22. Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203–34. Epub 2012/02/04. https://doi.org/10.1101/gad.183434.111. PubMed PMID: 22302935; PubMed Central PMCID: PMC3278889.

  23. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66. Epub 1999/12/22. https://doi.org/10.1038/sj.onc.1203239. PubMed PMID: 10602461.

    Article  PubMed  CAS  Google Scholar 

  24. Qin S, Taglienti M, Cai L, Zhou J, Kreidberg JA. c-Met and NF-kappaB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J Am Soc Nephrol: JASN. 2012;23(8):1309–18. Epub 2012/06/09. https://doi.org/10.1681/ASN.2011030277. PubMed PMID: 22677559; PubMed Central PMCID: PMC3402281.

  25. Park EY, Seo MJ, Park JH. Effects of specific genes activating RAGE on polycystic kidney disease. Am J Nephrol. 2010;32(2):169–78. Epub 2010/07/08. https://doi.org/10.1159/000315859. PubMed PMID: 20606421.

    Article  PubMed  CAS  Google Scholar 

  26. Bacallao RL, McNeill H. Cystic kidney diseases and planar cell polarity signaling. Clin Genet. 2009;75(2):107–17. Epub 2009/02/14. https://doi.org/10.1111/j.1399-0004.2008.01148.x. PubMed PMID: 19215242.

    Article  PubMed  CAS  Google Scholar 

  27. Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121(12):4057–65. Epub 1995/12/01. PubMed PMID: 8575306.

    PubMed  CAS  Google Scholar 

  28. Horster MF, Braun GS, Huber SM. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev. 1999;79(4):1157–91. Epub 1999/10/03. PubMed PMID: 10508232.

    Article  PubMed  CAS  Google Scholar 

  29. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010;107(9):4194–9. Epub 2010/02/18. https://doi.org/10.1073/pnas.0912228107. PubMed PMID: 20160075; PubMed Central PMCID: PMC2840080.

    Article  CAS  Google Scholar 

  30. Wann AK, Knight MM. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response. Cell Mol Life Sci CMLS. 2012;69(17):2967–77. Epub 2012/04/07. https://doi.org/10.1007/s00018-012-0980-y. PubMed PMID: 22481441; PubMed Central PMCID: PMC3417094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wann AK, Chapple JP, Knight MM. The primary cilium influences interleukin-1beta-induced NFkappaB signalling by regulating IKK activity. Cell Signal. 2014;26(8):1735–42. Epub 2014/04/15. https://doi.org/10.1016/j.cellsig.2014.04.004. PubMed PMID: 24726893; PubMed Central PMCID: PMC4064300.

  32. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402. Epub 2014/01/30. https://doi.org/10.1146/annurev-immunol-032713-120240. PubMed PMID: 24471431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51. Epub 2014/12/04. https://doi.org/10.1038/nature13989. PubMed PMID: 25470051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308(1):232–46. Epub 2007/06/29. https://doi.org/10.1016/j.ydbio.2007.05.027. PubMed PMID: 17597598.

    Article  PubMed  CAS  Google Scholar 

  35. Rees AJ. Monocyte and macrophage biology: an overview. Semin Nephrol. 2010;30(3):216–33. Epub 2010/07/14. https://doi.org/10.1016/j.semnephrol.2010.03.002. PubMed PMID: 20620668.

    Article  PubMed  CAS  Google Scholar 

  36. Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE, Jr., et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008;74(12):1526–37. Epub 2008/10/10. https://doi.org/10.1038/ki.2008.500. PubMed PMID: 18843253; PubMed Central PMCID: PMC2652647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ta MH, Harris DC, Rangan GK. Role of interstitial inflammation in the pathogenesis of polycystic kidney disease. Nephrology (Carlton). 2013;18(5):317–30. Epub 2013/03/02. https://doi.org/10.1111/nep.12045. PubMed PMID: 23448509.

    Article  PubMed  CAS  Google Scholar 

  38. Lin SL, Castano AP, Nowlin BT, Lupher ML, Jr., Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol. 2009;183(10):6733–43. Epub 2009/10/30. https://doi.org/10.4049/jimmunol.0901473. PubMed PMID: 19864592.

    Article  PubMed  CAS  Google Scholar 

  39. Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C, Duffield J. The renal mononuclear phagocytic system. J Am Soc Nephrol: JASN. 2012;23(2):194–203. Epub 2011/12/03. https://doi.org/10.1681/ASN.2011070680. PubMed PMID: 22135312; PubMed Central PMCID: PMC3269181.

    Article  PubMed  CAS  Google Scholar 

  40. Lim AK, Tesch GH. Inflammation in diabetic nephropathy. Mediat Inflamm. 2012;2012:146154. Epub 2012/09/13. https://doi.org/10.1155/2012/146154. PubMed PMID: 22969168; PubMed Central PMCID: PMC3432398.

    Article  CAS  Google Scholar 

  41. Praga M, Gonzalez E. Acute interstitial nephritis. Kidney Int. 2010;77(11):956–61. Epub 2010/03/26. https://doi.org/10.1038/ki.2010.89. PubMed PMID: 20336051.

    Article  PubMed  Google Scholar 

  42. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Reports. 2014;6:13. Epub 2014/03/29. https://doi.org/10.12703/P6-13. PubMed PMID: 24669294; PubMed Central PMCID: PMC3944738.

  43. Huen SC, Cantley LG. Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol. 2015;30(2):199–209. Epub 2014/01/21. https://doi.org/10.1007/s00467-013-2726-y. PubMed PMID: 24442822.

    Article  PubMed  Google Scholar 

  44. Zeier M, Fehrenbach P, Geberth S, Mohring K, Waldherr R, Ritz E. Renal histology in polycystic kidney disease with incipient and advanced renal failure. Kidney Int. 1992;42(5):1259–65. PubMed PMID: 1453612.

    Article  PubMed  CAS  Google Scholar 

  45. Ibrahim S. Increased apoptosis and proliferative capacity are early events in cyst formation in autosomal-dominant, polycystic kidney disease. Sci World J. 2007;7:1757–67. Epub 2007/11/28. https://doi.org/10.1100/tsw.2007.274. PubMed PMID: 18040538.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mrug M, Zhou J, Guay-Woodford LM, Smythies LE. Renal macrophages in autosomal recessive polycystic kidney disease. Nephrology (Carlton). 2013;18(11):746. Epub 2014/02/28. https://doi.org/10.1111/nep.12153. PubMed PMID: 24571748.

    Article  PubMed  Google Scholar 

  47. Grantham JJ. Pathogenesis of autosomal dominant polycystic kidney disease: recent developments. Contrib Nephrol. 1997;122:1–9. Epub 1997/01/01. PubMed PMID: 9399029.

    Article  PubMed  CAS  Google Scholar 

  48. Takahashi H, Calvet JP, Dittemore-Hoover D, Yoshida K, Grantham JJ, Gattone VH 2nd. A hereditary model of slowly progressive polycystic kidney disease in the mouse. J Am Soc Nephrol: JASN. 1991;1(7):980–9. Epub 1991/01/01. PubMed PMID: 1883968.

    PubMed  CAS  Google Scholar 

  49. Cowley BD Jr, Gudapaty S, Kraybill AL, Barash BD, Harding MA, Calvet JP, et al. Autosomal-dominant polycystic kidney disease in the rat. Kidney Int. 1993;43(3):522–34. Epub 1993/03/01. PubMed PMID: 8455352.

    Article  PubMed  Google Scholar 

  50. Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, et al. Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol: JASN. 2011;22(10):1809–14. Epub 2011/09/17. https://doi.org/10.1681/ASN.2011010084. PubMed PMID: 21921140; PubMed Central PMCID: PMC3187181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Swenson-Fields KI, Vivian CJ, Salah SM, Peda JD, Davis BM, van Rooijen N, et al. Macrophages promote polycystic kidney disease progression. Kidney Int. 2013;83(5):855–64. Epub 2013/02/21. https://doi.org/10.1038/ki.2012.446. PubMed PMID: 23423256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Vogler C, Homan S, Pung A, Thorpe C, Barker J, Birkenmeier EH, et al. Clinical and pathologic findings in two new allelic murine models of polycystic kidney disease. J Am Soc Nephrol. 1999;10(12):2534–9. PubMed PMID: 10589692.

    PubMed  CAS  Google Scholar 

  53. Kaspareit-Rittinghausen J, Rapp K, Deerberg F, Wcislo A, Messow C. Hereditary polycystic kidney disease associated with osteorenal syndrome in rats. Vet Pathol. 1989;26(3):195–201. Epub 1989/05/01. PubMed PMID: 2763410.

    Article  PubMed  CAS  Google Scholar 

  54. McPherson EA, Luo Z, Brown RA, LeBard LS, Corless CC, Speth RC, et al. Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease. J Am Soc Nephrol: JASN. 2004;15(2):493–500. Epub 2004/01/30. PubMed PMID: 14747398.

    Article  PubMed  CAS  Google Scholar 

  55. Ruiz-Ortega M, Ruperez M, Esteban V, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc – Eur Ren Assoc. 2006;21(1):16–20. Epub 2005/11/11. https://doi.org/10.1093/ndt/gfi265. PubMed PMID: 16280370.

    Article  Google Scholar 

  56. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res. 2009;29(6):313–26. Epub 2009/05/16. https://doi.org/10.1089/jir.2008.0027. PubMed PMID: 19441883; PubMed Central PMCID: PMC2755091.

    Article  CAS  Google Scholar 

  57. Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta; Int J Clin Chem. 2010;411(21–22):1570–9. Epub 2010/07/17. https://doi.org/10.1016/j.cca.2010.07.006. PubMed PMID: 20633546.

    Article  CAS  Google Scholar 

  58. Cao Q, Wang Y, Wang XM, Lu J, Lee VW, Ye Q, et al. Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy. J Am Soc Nephrol. 2015;26(2):349–63. Epub 2014/07/12. https://doi.org/10.1681/ASN.2013121336. PubMed PMID: 25012165; PubMed Central PMCID: PMC4310657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Segerer S, Nelson PJ, Schlondorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol. 2000;11(1):152–76. Epub 2000/01/05. PubMed PMID: 10616852.

    PubMed  CAS  Google Scholar 

  60. Viedt C, Orth SR. Monocyte chemoattractant protein-1 (MCP-1) in the kidney: does it more than simply attract monocytes? Nephrol Dial Transplant. 2002;17(12):2043–7. Epub 2002/11/28. PubMed PMID: 12454208.

    Article  PubMed  CAS  Google Scholar 

  61. Munshi R, Johnson A, Siew ED, Ikizler TA, Ware LB, Wurfel MM, et al. MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol. 2011;22(1):165–75. Epub 2010/11/13. https://doi.org/10.1681/ASN.2010060641. PubMed PMID: 21071523; PubMed Central PMCID: PMC3014045.

    Article  PubMed  CAS  Google Scholar 

  62. Grantham J, Torres V, Chapman A, Bae K, Tao C, Guay-Woodford L, et al. Urinary monocyte chemotactic protein-1 (MCP1) predicts progression in autosomal dominant polycystic kidney disease (ADPKD). J Am Soc Nehrol. 2010;21(Suppl):526A.

    Google Scholar 

  63. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7(3):479–86. Epub 2012/02/22. https://doi.org/10.2215/CJN.09500911. PubMed PMID: 22344503; PubMed Central PMCID: PMC3302672.

  64. Mrug M, Mrug S, Landsittel D, Torres V, Bae K, Harris P, et al. Prediction of GFR endpoints in early autosomal dominant polycystic kidney disease. Am J Nephrol. 2013;24:59A.

    Google Scholar 

  65. Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119(3):651–65. Epub 2011/11/05. https://doi.org/10.1182/blood-2011-04-325225. PubMed PMID: 22053109; PubMed Central PMCID: PMC3265196.

    Article  PubMed  CAS  Google Scholar 

  66. Li X, Magenheimer BS, Xia S, Johnson T, Wallace DP, Calvet JP, et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med. 2008;14(8):863–8. PubMed PMID: 18552856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Partsch G, Steiner G, Leeb BF, Dunky A, Broll H, Smolen JS. Highly increased levels of tumor necrosis factor-alpha and other proinflammatory cytokines in psoriatic arthritis synovial fluid. J Rheumatol. 1997;24(3):518–23. Epub 1997/03/01. PubMed PMID: 9058659.

    PubMed  CAS  Google Scholar 

  68. Roix J, Saha S. TNF-alpha blockade is ineffective in animal models of established polycystic kidney disease. BMC Nephrol. 2013;14:233. Epub 2013/10/29. https://doi.org/10.1186/1471-2369-14-233. PubMed PMID: 24160989; PubMed Central PMCID: PMC4231369.

  69. Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y, et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 2000;105(10):1363–71. Epub 2000/05/17. https://doi.org/10.1172/JCI8621. PubMed PMID: 10811844; PubMed Central PMCID: PMC315463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bohana-Kashtan O, Ziporen L, Donin N, Kraus S, Fishelson Z. Cell signals transduced by complement. Mol Immunol. 2004;41(6–7):583–97. PubMed PMID: 15219997.

    Article  PubMed  CAS  Google Scholar 

  71. Ueda T, Rieu P, Brayer J, Arnaout MA. Identification of the complement iC3b binding site in the beta 2 integrin CR3 (CD11b/CD18). Proc Natl Acad Sci U S A. 1994;91(22):10680–4. PubMed PMID: 7524101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35. PubMed PMID: 12511873.

    Article  PubMed  CAS  Google Scholar 

  73. Bakun M, Niemczyk M, Domanski D, Jazwiec R, Perzanowska A, Niemczyk S, et al. Urine proteome of autosomal dominant polycystic kidney disease patients. Clin Proteomics 2012;9(1):13. Epub 2012/12/12. https://doi.org/10.1186/1559-0275-9-13. PubMed PMID: 23228063; PubMed Central PMCID: PMC3607978.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu Y, Xu J, Li S, Hsieh T, Lu T, Kong T. The role of complement C3 in focal inflammation and development of kidney cysts induced by Pkd1 inactivation. FASEB J. 2014;28(1 Suppl):690–3.

    Google Scholar 

  75. Mrug M, Zhou J, Mrug S, Guay-Woodford LM, Yoder BK, Szalai AJ. Complement C3 activation in cyst fluid and urine from autosomal dominant polycystic kidney disease patients. J Intern Med. 2014;276(5):539–40. Epub 2014/09/11. https://doi.org/10.1111/joim.12307. PubMed PMID: 25205519.

    Article  PubMed  CAS  Google Scholar 

  76. Fischer MB, Ma M, Goerg S, Zhou X, Xia J, Finco O, et al. Regulation of the B cell response to T-dependent antigens by classical pathway complement. J Immunol. 1996;157(2):549–56. PubMed PMID: 8752901.

    PubMed  CAS  Google Scholar 

  77. Hong Y, Zhou W, Li K, Sacks SH. Triptolide is a potent suppressant of C3, CD40 and B7h expression in activated human proximal tubular epithelial cells. Kidney Int. 2002;62(4):1291–300. PubMed PMID: 12234299.

    Article  PubMed  CAS  Google Scholar 

  78. Su Z, Wang X, Gao X, Liu Y, Pan C, Hu H, et al. Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease. J Intern Med. 2014. Epub 2014/02/06. https://doi.org/10.1111/joim.12214. PubMed PMID: 24494798.

  79. Mei C, Su Z, Wang X, Zhou J, Serra AL, Wuthrich RP. Excessive activation of the complement system in the progression of ADPKD. 2012;American Society of Nephrology meeting 2012:TH-PO639.

    Google Scholar 

  80. Mrug M, Zhou J, Mannon RB. C3 polymorphisms and outcomes of renal allografts. N Engl J Med. 2009;360(23):2477–8. Epub 2009/06/06. doi: 360/23/2477 [pii] 10.1056/NEJMc090635. PubMed PMID: 19494228.

    Article  PubMed  CAS  Google Scholar 

  81. Schafer K, Gretz N, Bader M, Oberbaumer I, Eckardt KU, Kriz W, et al. Characterization of the Han:SPRD rat model for hereditary polycystic kidney disease. Kidney Int. 1994;46(1):134–52. Epub 1994/07/01. PubMed PMID: 7933831.

    Article  PubMed  CAS  Google Scholar 

  82. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37. Epub 2003/01/07. https://doi.org/10.1038/ng1076. PubMed PMID: 12514735.

    Article  PubMed  CAS  Google Scholar 

  83. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69. Epub 2007/05/09. https://doi.org/10.1084/jem.20070075. PubMed PMID: 17485518; PubMed Central PMCID: PMC2118577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991;174(6):1549–55. Epub 1991/12/01. PubMed PMID: 1744584; PubMed Central PMCID: PMC2119047.

    Article  PubMed  CAS  Google Scholar 

  85. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118(11):3522–30. PubMed PMID: 18982158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Weimbs T. Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair? Cell Cycle. 2006;5(21):2425–9. Epub 2006/11/15. PubMed PMID: 17102641.

    Article  PubMed  CAS  Google Scholar 

  87. Torres VE, Abebe KZ, Chapman AB, Schrier RW, Braun WE, Steinman TI, et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2267–76. Epub 2014/11/18. https://doi.org/10.1056/NEJMoa1402686. PubMed PMID: 25399731; PubMed Central PMCID: PMC4284824.

    Article  PubMed  CAS  Google Scholar 

  88. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):830–40. Epub 2010/06/29. https://doi.org/10.1056/NEJMoa1003491. PubMed PMID: 20581392.

    Article  PubMed  CAS  Google Scholar 

  89. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):820–9. Epub 2010/06/29. https://doi.org/10.1056/NEJMoa0907419. PubMed PMID: 20581391.

    Article  PubMed  CAS  Google Scholar 

  90. Treille S, Bailly JM, Van Cauter J, Dehout F, Guillaume B. The use of lanreotide in polycystic kidney disease: a single-centre experience. Case Rep Nephrol Urol. 2014;4(1):18–24. Epub 2014/04/08. https://doi.org/10.1159/000358268. PubMed PMID: 24707279; PubMed Central PMCID: PMC3975724.

    Article  CAS  Google Scholar 

  91. Caroli A, Perico N, Perna A, Antiga L, Brambilla P, Pisani A, et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 2013;382(9903):1485–95. Epub 2013/08/27. https://doi.org/10.1016/S0140-6736(13)61407-5. PubMed PMID: 23972263.

    Article  CAS  Google Scholar 

  92. Gattone VH 2nd, Cowley BD Jr, Barash BD, Nagao S, Takahashi H, Yamaguchi T, et al. Methylprednisolone retards the progression of inherited polycystic kidney disease in rodents. Am J Kidney Dis. 1995;25(2):302–13. PubMed PMID: 7847359.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang T, Wang L, Xiong X, Mao Z, Wang L, Mei C. Mycophenolate mofetil versus rapamycin in Han: SPRD rats with polycystic kidney disease. Biol Res. 2009;42(4):437–44. Epub 2010/02/09. doi: /S0716-97602009000400005. PubMed PMID: 20140299.

    Article  PubMed  CAS  Google Scholar 

  94. Sankaran D, Bankovic-Calic N, Ogborn MR, Crow G, Aukema HM. Selective COX-2 inhibition markedly slows disease progression and attenuates altered prostanoid production in Han:SPRD-cy rats with inherited kidney disease. Am J Physiol Renal Physiol. 2007;293(3):F821–30. Epub 2007/06/01. https://doi.org/10.1152/ajprenal.00257.2006. PubMed PMID: 17537981.

    Article  PubMed  CAS  Google Scholar 

  95. Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, et al. PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab Inv; J Tech Methods Pathol. 2009;89(1):47–58. Epub 2008/11/13. https://doi.org/10.1038/labinvest.2008.104. PubMed PMID: 19002105.

  96. Perico N, Zoja C, Corna D, Rottoli D, Gaspari F, Haskell L, et al. V1/V2 vasopressin receptor antagonism potentiates the renoprotection of renin-angiotensin system inhibition in rats with renal mass reduction. Kidney Int. 2009;76(9):960–7. Epub 2009/07/25. https://doi.org/10.1038/ki.2009.267. PubMed PMID: 19625993.

    Article  PubMed  CAS  Google Scholar 

  97. Wang X, Gattone V 2nd, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51. PubMed PMID: 15728778.

    Article  PubMed  CAS  Google Scholar 

  98. Rossetti S, Chauveau D, Kubly V, Slezak JM, Saggar-Malik AK, Pei Y, et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet. 2003;361(9376):2196–201. PubMed PMID: 12842373.

    Article  PubMed  CAS  Google Scholar 

  99. Antiga L, Piccinelli M, Fasolini G, Ene-Iordache B, Ondei P, Bruno S, et al. Computed tomography evaluation of autosomal dominant polycystic kidney disease progression: a progress report. Clin J Am Soc Nephrol: CJASN. 2006;1(4):754–60. Epub 2007/08/21. https://doi.org/10.2215/CJN.02251205. PubMed PMID: 17699283.

    Article  PubMed  Google Scholar 

  100. Wilson PD, Norman JT, Kuo NT, Burrow CR. Abnormalities in extracellular matrix regulation in autosomal dominant polycystic kidney disease. Contrib Nephrol. 1996;118:126–34. Epub 1996/01/01. PubMed PMID: 8744049.

    Article  PubMed  CAS  Google Scholar 

  101. Wilson PD, Hreniuk D, Gabow PA. Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J Cell Physiol. 1992;150(2):360–9. Epub 1992/02/01. https://doi.org/10.1002/jcp.1041500220. PubMed PMID: 1734038.

    Article  PubMed  CAS  Google Scholar 

  102. Wilson PD, Sherwood AC. Tubulocystic epithelium. Kidney Int. 1991;39(3):450–63. Epub 1991/03/01. PubMed PMID: 1648146.

    Article  PubMed  CAS  Google Scholar 

  103. Wilson PD, Geng L, Li X, Burrow CR. The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Inv; J Tech Methods Pathol. 1999;79(10):1311–23. Epub 1999/10/26. PubMed PMID: 10532593.

    CAS  Google Scholar 

  104. Wilson PD, Burrow CR. Cystic diseases of the kidney: role of adhesion molecules in normal and abnormal tubulogenesis. Exp Nephrol. 1999;7(2):114–24. Epub 1999/04/24. doi: 20592. PubMed PMID: 10213865.

    Article  PubMed  CAS  Google Scholar 

  105. Norman J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta. 2011;1812(10):1327–36. Epub 2011/07/13. https://doi.org/10.1016/j.bbadis.2011.06.012. PubMed PMID: 21745567; PubMed Central PMCID: PMC3166379.

    Article  CAS  Google Scholar 

  106. Liu D, Wang CJ, Judge DP, Halushka MK, Ni J, Habashi JP, et al. A Pkd1-Fbn1 genetic interaction implicates TGF-beta signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2014;25(1):81–91. Epub 2013/09/28. https://doi.org/10.1681/ASN.2012050486. PubMed PMID: 24071006; PubMed Central PMCID: PMC3871766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS, ten Dijke P, et al. Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol. 2010;222(1):21–31. Epub 2010/06/16. https://doi.org/10.1002/path.2734. PubMed PMID: 20549648.

  108. Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, Vasilyev A, et al. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech. 2010;3(5–6):354–65. Epub 2010/03/26. https://doi.org/10.1242/dmm.003194. PubMed PMID: 20335443; PubMed Central PMCID: PMC2860853.

    Article  CAS  Google Scholar 

  109. Du J, Wilson PD. Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Phys. 1995;269(2 Pt 1):C487–95. Epub 1995/08/01. PubMed PMID: 7653531.

    Article  CAS  Google Scholar 

  110. Kuo NT, Norman JT, Wilson PD. Acidic FGF regulation of hyperproliferation of fibroblasts in human autosomal dominant polycystic kidney disease. Biochem Mol Med. 1997;61(2):178–91. Epub 1997/08/01. PubMed PMID: 9259983.

    Article  PubMed  CAS  Google Scholar 

  111. Horie S, Higashihara E, Nutahara K, Mikami Y, Okubo A, Kano M, et al. Mediation of renal cyst formation by hepatocyte growth factor. Lancet. 1994;344(8925):789–91. Epub 1994/09/17. PubMed PMID: 7916076.

    Article  PubMed  CAS  Google Scholar 

  112. Hu MC, Piscione TD, Rosenblum ND. Elevated SMAD1/beta-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development. 2003;130(12):2753–66. Epub 2003/05/09. PubMed PMID: 12736218.

    Article  PubMed  CAS  Google Scholar 

  113. Jena N, Martin-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res. 1997;230(1):28–37. Epub 1997/01/10. PubMed PMID: 9013703.

    Article  PubMed  CAS  Google Scholar 

  114. Sato M, Morrissey J, Klahr S. Bone morphogenetic protein-7 (BMP-7) delays cyst formation in a mouse model of polycystic kidney disease. J Am Soc Nehrol. 2004;15:659A.

    Google Scholar 

  115. Leonhard W, Kunnen S, Bouazzaoui F, Veraar K, Breuning M, De Heer E, et al. Soluble activin type IIB receptor treatment effectively blocks cyst formation in a mouse model for ADPKD. J Am Soc Nehrol. 2014;25:772A.

    Google Scholar 

  116. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol. 1996;7(12):2495–508. Epub 1996/12/01. PubMed PMID: 8989727.

    PubMed  CAS  Google Scholar 

  117. Rankin CA, Suzuki K, Itoh Y, Ziemer DM, Grantham JJ, Calvet JP, et al. Matrix metalloproteinases and TIMPS in cultured C57BL/6J-cpk kidney tubules. Kidney Int. 1996;50(3):835–44. Epub 1996/09/01. PubMed PMID: 8872958.

    Article  PubMed  CAS  Google Scholar 

  118. Schieren G, Rumberger B, Klein M, Kreutz C, Wilpert J, Geyer M, et al. Gene profiling of polycystic kidneys. Nephrol Dial Transplant. 2006;21(7):1816–24. PubMed PMID: 16520345.

    Article  PubMed  CAS  Google Scholar 

  119. Nakamura T, Ushiyama C, Suzuki S, Ebihara I, Shimada N, Koide H. Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol. 2000;20(1):32–6. Epub 2000/01/25. doi: 13552. PubMed PMID: 10644865.

    Article  PubMed  CAS  Google Scholar 

  120. Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A, Gaggar A, et al. A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science. 2010;330(6000):90–4. Epub 2010/09/04. https://doi.org/10.1126/science.1190594. PubMed PMID: 20813919; PubMed Central PMCID: PMC3072752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix – cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001;2(11):793–805. Epub 2001/11/21. https://doi.org/10.1038/35099066. PubMed PMID: 11715046.

    Article  PubMed  CAS  Google Scholar 

  122. Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW. Ras and relatives – job sharing and networking keep an old family together. Exp Hematol. 2002;30(10):1089–106. Epub 2002/10/18. PubMed PMID: 12384139.

    Article  PubMed  CAS  Google Scholar 

  123. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692(2–3):103–19. Epub 2004/07/13. https://doi.org/10.1016/j.bbamcr.2004.04.007. PubMed PMID: 15246682.

    Article  CAS  Google Scholar 

  124. Zeltner R, Hilgers KF, Schmieder RE, Porst M, Schulze BD, Hartner A. A promoter polymorphism of the alpha 8 integrin gene and the progression of autosomal-dominant polycystic kidney disease. Nephron Clin Pract. 2008;108(3):c169–75. Epub 2008/02/16. https://doi.org/10.1159/000116887. PubMed PMID: 18277079.

    Article  PubMed  CAS  Google Scholar 

  125. Wallace DP, Quante MT, Reif GA, Nivens E, Ahmed F, Hempson SJ, et al. Periostin induces proliferation of human autosomal dominant polycystic kidney cells through alphaV-integrin receptor. Am J Physiol Renal Physiol. 2008;295(5):F1463–71. Epub 2008/08/30. https://doi.org/10.1152/ajprenal.90266.2008. PubMed PMID: 18753297; PubMed Central PMCID: PMC2584901.

  126. Joly D, Morel V, Hummel A, Ruello A, Nusbaum P, Patey N, et al. Beta4 integrin and laminin 5 are aberrantly expressed in polycystic kidney disease: role in increased cell adhesion and migration. Am J Pathol. 2003;163(5):1791–800. Epub 2003/10/28. PubMed PMID: 14578180; PubMed Central PMCID: PMC1892423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wu W, Kitamura S, Truong DM, Rieg T, Vallon V, Sakurai H, et al. Beta1-integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. Am J Physiol Renal Physiol. 2009;297(1):F210–7. Epub 2009/05/15. https://doi.org/10.1152/ajprenal.90260.2008. PubMed PMID: 19439520; PubMed Central PMCID: PMC2711709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. McGlashan SR, Jensen CG, Poole CA. Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem. 2006;54(9):1005–14. Epub 2006/05/03. https://doi.org/10.1369/jhc.5A6866.2006. PubMed PMID: 16651393.

    Article  CAS  Google Scholar 

  129. Qi W, Chen X, Poronnik P, Pollock CA. The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol. 2006;38(1):1–5. Epub 2005/10/19. https://doi.org/10.1016/j.biocel.2005.09.005. PubMed PMID: 16230044.

    Article  CAS  Google Scholar 

  130. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11. Epub 1993/07/01. PubMed PMID: 8314838; PubMed Central PMCID: PMC2119614.

    Article  PubMed  CAS  Google Scholar 

  131. Follonier Castella L, Gabbiani G, McCulloch CA, Hinz B. Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res. 2010;316(15):2390–401. Epub 2010/05/11. https://doi.org/10.1016/j.yexcr.2010.04.033. PubMed PMID: 20451515.

    Article  PubMed  CAS  Google Scholar 

  132. Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol. 2011;15(1):8–13. Epub 2010/12/15. https://doi.org/10.1007/s10157-010-0372-2. PubMed PMID: 21152947.

    Article  PubMed  Google Scholar 

  133. Nishio S, Hatano M, Nagata M, Horie S, Koike T, Tokuhisa T, et al. Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J Clin Invest. 2005;115(4):910–8. Epub 2005/03/12. https://doi.org/10.1172/JCI22850. PubMed PMID: 15761494; PubMed Central PMCID: PMC1059447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K, Gobel N, et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A. 2009;106(42):17892–7. Epub 2009/10/10. https://doi.org/10.1073/pnas.0906070106. PubMed PMID: 19815530; PubMed Central PMCID: PMC2764893.

    Article  Google Scholar 

  135. Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011;80(9):915–25. Epub 2011/08/05. https://doi.org/10.1038/ki.2011.217. PubMed PMID: 21814171.

    Article  PubMed  CAS  Google Scholar 

  136. Vernon MA, Mylonas KJ, Hughes J. Macrophages and renal fibrosis. Semin Nephrol. 2010;30(3):302–17. Epub 2010/07/14. https://doi.org/10.1016/j.semnephrol.2010.03.004. PubMed PMID: 20620674.

    Article  PubMed  CAS  Google Scholar 

  137. Semedo P, Donizetti-Oliveira C, Burgos-Silva M, Cenedeze MA, Avancini Costa Malheiros DM, Pacheco-Silva A, et al. Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Investig. 2010;90(5):685–95. Epub 2010/03/24. https://doi.org/10.1038/labinvest.2010.45. PubMed PMID: 20308984.

    Article  PubMed  Google Scholar 

  138. Snelgrove SL, Kausman JY, Lo C, Lo C, Ooi JD, Coates PT, et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am J Pathol. 2012;180(1):91–103. Epub 2011/11/15. https://doi.org/10.1016/j.ajpath.2011.09.039. PubMed PMID: 22079432.

    Article  PubMed  CAS  Google Scholar 

  139. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S, et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest. 2009;119(5):1286–97. Epub 2009/04/22. https://doi.org/10.1172/JCI38399. PubMed PMID: 19381017; PubMed Central PMCID: PMC2673875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kim DH, Moon SO, Jung YJ, Lee AS, Kang KP, Lee TH, et al. Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int. 2009;75(10):1031–8. Epub 2009/02/27. https://doi.org/10.1038/ki.2009.1. PubMed PMID: 19242503.

    Article  PubMed  CAS  Google Scholar 

  141. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 2011;121(2):468–74. Epub 2011/03/04. PubMed PMID: 21370523; PubMed Central PMCID: PMC3026733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP, Serra AL. Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int. 2009;76(1):89–96. Epub 2009/04/03. https://doi.org/10.1038/ki.2009.93. PubMed PMID: 19340089.

    Article  PubMed  CAS  Google Scholar 

  143. Kistler AD, Serra AL, Siwy J, Poster D, Krauer F, Torres VE, et al. Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS One. 2013;8(1):e53016. Epub 2013/01/18. https://doi.org/10.1371/journal.pone.0053016. PubMed PMID: 23326375; PubMed Central PMCID: PMC3542378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Mrug MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harms, J.C., Song, C.J., Mrug, M. (2018). The Role of Inflammation and Fibrosis in Cystic Kidney Disease. In: Cowley, Jr., B., Bissler, J. (eds) Polycystic Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7784-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7784-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7782-6

  • Online ISBN: 978-1-4939-7784-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics