Skip to main content

Scale-Up Issues and Cost of Manufacturing Bioactive Compounds by Supercritical Fluid Extraction and Ultrasound Assisted Extraction

  • Chapter
  • First Online:
Global Food Security and Wellness

Abstract

Because of the today’s pursuit for healthy products, the production of vegetable extracts by supercritical fluid extraction (SFE) and ultrasound assisted extraction (UAE) is a field of industrial interest. Nonetheless, the lack of information on scale-up of these technologies to the industrial level and the relatively high investment associated with emergent extraction processes is responsible for the elimination of these technologies at the very early stages of process design, that is, during the selection of the extraction process. In order to avoid this prejudice, a preliminary analysis of the cost of manufacturing (COM) should be conducted with a minimum of experimental information, possibly gathered from the literature. If this tool is available to process design engineers, the various extraction techniques can be analyzed without any high investment bias. Thus, a simple method to estimate the COM of extracts by SFE and UAE is needed. In this chapter, rapid methods to estimate the COM of extracts obtained by these techniques are presented. The information required to perform such analysis is discussed based on scale-up issues. A compilation of the published data on the scale-up and COM of SFE and UAE processes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Bed cross section area

CER:

Constant extraction rate period

CO2 :

Carbon dioxide

COL:

Cost of operational labor

COM:

Cost of manufacturing

CQC:

Cost of quality control and research and development

CRM:

Cost of raw material

CUT:

Cost of utilities

CWT:

Cost of waste treatment

d b :

Bed diameter

DC:

Diffusion-controlled period

DFC:

Direct fixed capital

d p :

Particle diameter

E :

Porosity of the bed + particles

F :

Feeding mass

FCI:

Capital investment cost

FER:

Falling extraction rate period

GRAS:

“Generally recognized as safe”

H b :

Bed height

LPSE:

Low-pressure solvent extraction

MAE:

Microwave assisted extraction

M CER :

Mass transfer rate during the CER period

OEC:

Overall extraction curve

PLE:

Pressurized liquid extraction

\( {Q}_{{\mathrm{CO}}_2} \) :

CO2 mass flow rate

\( {\rho}_{{\mathrm{CO}}_2} \) :

CO2 density

R CER :

Yield in the CER period

Re :

Reynolds number

S/F :

Solvent to feed ratio

SD:

Steam distillation

SFE:

Supercritical fluid extraction

t CER :

Duration of the CER period

t FER :

Duration of the FER period

TPC:

Total plant cost

TPDC:

Total plant direct cost

TPIC:

Total plant indirect cost

t RES :

Solvent residence time in the extractor

UAE:

Ultrasound assisted extraction

USFE:

Ultrasound assisted supercritical fluid extraction

Y CER :

Mass ratio of solute to solvent in the bed outlet during the CER period

ν :

Solvent superficial velocity

References

  • Achat S, Tomao V, Madani K, Chibane M, Elmaataoui M, Dangles O, Chemat F (2012) Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason Sonochem 19:777

    Article  CAS  Google Scholar 

  • Adam F, Nikitenko S, Chemat F (2011) Extraction assisté par ultrasons. In: Chemat F (ed) Éco-extraction du végétal: procédés innovants et solvants alternatifs. Dunod Éditeur de Savoirs, Paris, pp 91–118

    Google Scholar 

  • Aguiar AC, Visentainer JV, Martínez J (2012) Extraction from striped weakfish (Cynoscion striatus) wastes with pressurized CO2: global yield, composition, kinetics and cost estimation. J Supercrit Fluids 71:1–10. doi:10.1016/j.supflu.2012.07.005

    Article  CAS  Google Scholar 

  • Albuquerque CLC, Meireles MAA (2012) Defatting of annatto seeds using supercritical carbon dioxide as a pretreatment for the production of bixin: experimental, modeling and economic evaluation of the process. J Supercrit Fluids 66:86–95. doi:10.1016/j.supflu.2012.01.004

    Article  CAS  Google Scholar 

  • Al‐Jabari M (2002) Kinetic models of supercritical fluid extraction. J Sep Sci 25(8):477–489

    Article  Google Scholar 

  • Alonso E, Cantero FJ, Garcıa J, Cocero MJ (2002) Scale-up for a process of supercritical extraction with adsorption of solute onto active carbon. Application to soil remediation. J Supercrit Fluids 24(2):123–135. doi:10.1016/S0896-8446(02)00016-5

    Article  CAS  Google Scholar 

  • Alshekhli O, Foo DCY, Hii CL, Law CL (2011) Process simulation and debottlenecking for an industrial cocoa manufacturing process. Food Bioprod Process 89(4):528–536. doi:10.1016/j.fbp.2010.09.013

    Article  Google Scholar 

  • Athimulam A, Kumaresan S, Foo DCY, Sarmidi MR, Aziz RA (2006) Modelling and optimization of Eurycoma longifolia water extract production. Food Bioprod Process 84(2):139–149. doi:10.1205/fbp.06004

    Article  Google Scholar 

  • Badalyan AG, Wilkinson GT, Chun BS (1998) Extraction of Australian ginger root with carbon dioxide and ethanol entrainer. J Supercrit Fluids 13(1):319–324

    Article  CAS  Google Scholar 

  • Balachandran S, Kentish SE, Mawson R, Ashokkumar M (2006) Ultrasonic enhancement of the supercritical extraction from ginger. Ultrason Sonochem 13(6):471–479. doi:10.1016/j.ultsonch.2005.11.006

    Article  CAS  Google Scholar 

  • Berna A, Tarrega A, Blasco M, Subirats S (2000) Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. J Supercrit Fluids 18(3):227–237

    Article  CAS  Google Scholar 

  • Blasco M, Reverter J, Casas E, Riera E (2010) Effect of high power ultrasounds on mass-transfer zone in supercritical fluid extraction processes. In: Proceedings of 20th International Congress on Acoustics, Sydney, Australia, ICA, 2010. pp 1–4

    Google Scholar 

  • Boonkird S, Phisalaphong C, Phisalaphong M (2008) Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab-and pilot-plant scale. Ultrason Sonochem 15(6):1075–1079

    Article  CAS  Google Scholar 

  • Braga MEM, Meireles MAA (2007) Accelerated solvent extraction and fractioned extraction to obtain the Curcuma longa volatile oil and oleoresin. J Food Process Eng 30(4):501–521

    Article  Google Scholar 

  • Braga MEM, Moreschi SRM, Meireles MAA (2006) Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches. Carbohydr Polym 63(3):340–346. doi:10.1016/j.carbpol.2005.08.055

    Article  CAS  Google Scholar 

  • Bravi M, Bubbico R, Manna F, Verdone N (2002) Process optimisation in sunflower oil extraction by supercritical CO2. Chem Eng Sci 57(14):2753–2764

    Article  CAS  Google Scholar 

  • Brunner G (1994) Gas extraction. An introduction to fundamentals of supercritical fluids and the application to separation processes. Springer, New York, NY

    Google Scholar 

  • Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67(1–2):21–33. doi:10.1016/j.jfoodeng.2004.05.060

    Article  Google Scholar 

  • Brunner G (2010) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342

    Article  CAS  Google Scholar 

  • Buchwald-Werner S, Bischoff F (2011) Natural products–market development and potentials. In: Industrial scale natural products extraction. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 247–267. doi:10.1002/9783527635122.ch8

    Chapter  Google Scholar 

  • Carvalho RN Jr, Moura LS, Rosa PTV, Meireles MAA (2005) Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. J Supercrit Fluids 35(3):197–204. doi:10.1016/j.supflu.2005.01.009

    Article  CAS  Google Scholar 

  • Casas L, Mantell C, Rodríguez M, Torres A, Macías F (2007) Supercritical fluid extraction of bioactive compounds from sunflower leaves: comparison of analytical and pilot-scale extraction. Paper presented at the European Congress of Chemical Engineering (ECCE-6), Copenhagen,

    Google Scholar 

  • Casas L, Mantell C, Rodríguez M, Torres A, Macias F, Martínez de la Ossa E (2008) Supercritical fluid extraction of bioactive compounds from sunflower leaves with carbon dioxide and water on a pilot plant scale. J Supercrit Fluids 45(1):37–42

    Article  CAS  Google Scholar 

  • Cavalcanti RN, Navarro-Díaz HJ, Santos DT, Rostagno MA, Meireles MAA (2012) Supercritical carbon dioxide extraction of polyphenols from pomegranate (Punica granatum L.) leaves: chemical composition, economic evaluation and chemometric approach. J Food Res 1(3):12

    Article  CAS  Google Scholar 

  • Cavitus (2013) www.cavitus.com. Accessed on Feb 2 2013

  • Chemat F, Zill EH, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18(4):813–835

    Article  CAS  Google Scholar 

  • Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13(7):8615–8627

    Article  CAS  Google Scholar 

  • Clavier JY, Perrut M (2004) Scale-up issues for supercritical fluid processing in compliance with GMP. In: Supercritical fluid technology for drug product development. Drugs and the pharmaceutical sciences. Informa Healthcare, Boca Raton, FL. doi:10.1201/9780203021378.ch15

    Google Scholar 

  • Coelho J, Pereira A, Mendes R, Palavra A (2003) Supercritical carbon dioxide extraction of Foeniculum vulgare volatile oil. Flav Frag J 18(4):316–319

    Article  CAS  Google Scholar 

  • Comim SRR, Madella K, Oliveira JV, Ferreira SRS (2010) Supercritical fluid extraction from dried banana peel (Musa spp., genomic group AAB): extraction yield, mathematical modeling, economical analysis and phase equilibria. J Supercrit Fluids 54(1):30–37. doi:10.1016/j.supflu.2010.03.010

    Article  CAS  Google Scholar 

  • del Valle J, Jimenez M, De la Fuente J (2003) Extraction kinetics of pre-pelletized jalapeño peppers with supercritical CO2. J Supercrit Fluids 25(1):33–44

    Article  Google Scholar 

  • del Valle JM, Rivera O, Mattea M, Ruetsch L, Daghero J, Flores A (2004) Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. J Supercrit Fluids 31(2):159–174. doi:10.1016/j.supflu.2003.11.005

    Article  CAS  Google Scholar 

  • del Valle JM, de la Fuente JC, Cardarelli DA (2005) Contributions to supercritical extraction of vegetable substrates in Latin America. J Food Eng 67(1):35–57

    Article  Google Scholar 

  • Eggers R, Sievers U (1989) Current state of extraction of natural materials with supercritical fluids and developmental trends. In Johnson KP, Penninger JML (eds) Supercritical fluid science and technology. American Chemical Society, Washington, DC, p. 478

    Google Scholar 

  • Eggers R, Pilz S (2011) High pressure processing. In: Industrial scale natural products extraction. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 87–122. doi:10.1002/9783527635122.ch4

    Chapter  Google Scholar 

  • Esclapez M, García-Pérez J, Mulet A, Cárcel J (2011) Ultrasound-assisted extraction of natural products. Food Eng Rev 3(2):108–120

    Article  Google Scholar 

  • Farías-Campomanes AM, Rostagno MA, Meireles MAA (2013) Production of polyphenol extracts from grape bagasse using supercritical fluids: yield, extract composition and economic evaluation. J Supercrit Fluids 77:70–78. doi:10.1016/j.supflu.2013.02.006

    Article  CAS  Google Scholar 

  • Fiori L (2007) Grape seed oil supercritical extraction kinetic and solubility data: critical approach and modeling. J Supercrit Fluids 43(1):43–54

    Article  CAS  Google Scholar 

  • Fiori L (2010) Supercritical extraction of grape seed oil at industrial-scale: plant and process design, modeling, economic feasibility. Chem Eng Process Process Intensif 49(8):866–872. doi:10.1016/j.cep.2010.06.001

    Article  CAS  Google Scholar 

  • Fiori L, Basso D, Costa P (2008) Seed oil supercritical extraction: particle size distribution of the milled seeds and modeling. J Supercrit Fluids 47(2):174–181

    Article  CAS  Google Scholar 

  • Flora JRV, McAnally AS, Petrides D (1998) Treatment plant instructional modules based on SuperPro Designer® v. 2.7. Environ Model Software 14(1):69–80. doi:10.1016/S1364-8152(98)00059-0

    Article  Google Scholar 

  • Galvão EL, Martínez J, de Oliveira HNM, de Sousa EMBD (2012) Supercritical extraction of linseed oil: economical viability and modeling extraction curves. Chem Eng Commun 200(2):205–221. doi:10.1080/00986445.2012.699482

    Article  CAS  Google Scholar 

  • Gao Y, Nagy B, Liu X, Simándi B, Wang Q (2009) Supercritical CO2 extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. J Supercrit Fluids 49(3):345–350. doi:10.1016/j.supflu.2009.02.006

    Article  CAS  Google Scholar 

  • García-Reverter J, Redón C, Benedito J, Riera E (2008) Development of a new and robust ultrasonic device for supercritical extraction processes. Paper presented at the 11th European Meeting on Supercritical Fluids, Barcelona, Spain,

    Google Scholar 

  • Gilbertson CB, Lehman MW (2011) Century 21 accounting: multicolumn journal, Introductory Course. Cengage Learning College

    Google Scholar 

  • Gogate PR, Pandit AB (2004) Sonochemical reactors: scale up aspects. Ultrason Sonochem 11(3):105–117

    Article  CAS  Google Scholar 

  • Gogate PR, Mujumdar S, Pandit AB (2003) Large-scale sonochemical reactors for process intensification: design and experimental validation. J Chem Technol Biotechnol 78(6):685–693

    Article  CAS  Google Scholar 

  • Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166(3):1066–1082

    Article  CAS  Google Scholar 

  • Goodarznia I, Eikani MH (1998) Supercritical carbon dioxide extraction of essential oils: modeling and simulation. Chem Eng Sci 53(7):1387–1395

    Article  CAS  Google Scholar 

  • Han X, Cheng L, Zhang R, Bi J (2009) Extraction of safflower seed oil by supercritical CO2. J Food Eng 92(4):370–376. doi:10.1016/j.jfoodeng.2008.12.002

    Article  CAS  Google Scholar 

  • Harjo B, Wibowo C, Ng K (2004) Development of natural product manufacturing processes: phytochemicals. Chem Eng Res Des 82(8):1010–1028

    Article  CAS  Google Scholar 

  • He HP, Corke H, Cai JG (2003) Supercritical carbon dioxide extraction of oil and squalene from Amaranthus grain. J Agric Food Chem 51(27):7921–7925

    Article  CAS  Google Scholar 

  • Herrero M, Cifuentes A, Ibañez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem 98(1):136–148. doi:10.1016/j.foodchem.2005.05.058

    Article  CAS  Google Scholar 

  • Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217(16):2495–2511

    Article  CAS  Google Scholar 

  • Hu A-j, Zhao S, Liang H, T-q Q, Chen G (2007) Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrason Sonochem 14(2):219–224

    Article  CAS  Google Scholar 

  • Jiménez-González C, Curzons AD, Constable DJ, Cunningham VL (2004) Expanding GSK’s solvent selection guide—application of life cycle assessment to enhance solvent selections. Clean Tech Environ Policy 7(1):42–50

    Article  CAS  Google Scholar 

  • Jully T, Yee DFC, Kumaresan S, Aziz RA (2004) Modelling, optimisation, and debottlenecking of pharmaceutical production process utilising a batch process simulator. Paper presented at the MSMBB Scientific Meeting Melaka

    Google Scholar 

  • Kamuri MF, Foo DCY, Mel M (2012) Batch process modelling and economic evaluation of glucuronidase enzyme production. Bioprocess Biotechniq 7:1–7

    Google Scholar 

  • Kawachale N, Kumar A (2011) Simulation, scale-up and economics of adsorption and membrane based processes for isoflavones recovery. Chem Eng Res Des 89(4):428–435. doi:10.1016/j.cherd.2010.07.015

    Article  CAS  Google Scholar 

  • Kiriamiti H, Rascol E, Marty A, Condoret J (2002) Extraction rates of oil from high oleic sunflower seeds with supercritical carbon dioxide. Chem Eng Process Process Intensif 41(8):711–718

    Article  CAS  Google Scholar 

  • Kotnik P, Škerget M, Knez Ž (2007) Supercritical fluid extraction of chamomile flower heads: comparison with conventional extraction, kinetics and scale-up. J Supercrit Fluids 43(2):192–198. doi:10.1016/j.supflu.2007.02.005

    Article  CAS  Google Scholar 

  • Kotoupas A, Rigas F, Chalaris M (2007) Computer-aided process design, economic evaluation and environmental impact assessment for treatment of cheese whey wastewater. Desalination 213(1–3):238–252. doi:10.1016/j.desal.2006.03.611

    Article  CAS  Google Scholar 

  • Leal PF (2008) Estudo comparativo entre os custos de manufatura e as propriedades funcionais de óleos voláteis obtidos por extração supercrítica e destilação por arraste a vapor. Doctoral Thesis, University of Campinas

    Google Scholar 

  • Leal PF, Takeuchi TM, Orestes T, Rosa PTV, Meireles MAA (2006) Simulation of flash tank operation conditions to improve anethole obtaining from two different sources by supercritical technology. Paper presented at the VII Iberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design, Morelia, Mich. (México)

    Google Scholar 

  • Leal PF, Takeuchi TM, Meireles MAA (2007) Comparison of two anethole sources (Foeniculum vulgare and Croton zethntneri Pax Et Hoffm) in terms of supercritical extraction: economical evaluation. Paper presented at the I Iberoamerican Conference on Supercritical Fluids - PROSCIBA 2007, Foz do Iguaçu, Brazil

    Google Scholar 

  • Leal PF, Maia NB, Carmello QA, Catharino RR, Eberlin MN, Meireles MAA (2008) Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food Bioprocess Technol 1(4):326–338

    Article  Google Scholar 

  • Leal PF, Kfouri MB, Alexandre FC, Fagundes FHR, Prado JM, Toyama MH, Meireles MAA (2010) Brazilian Ginseng extraction via LPSE and SFE: global yields, extraction kinetics, chemical composition and antioxidant activity. J Supercrit Fluids 54(1):38–45. doi:10.1016/j.supflu.2010.03.007

    Article  CAS  Google Scholar 

  • Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process Process Intensif 49(9):885–900

    Article  CAS  Google Scholar 

  • Li D, Sypert GW, Gow RT (2008) Compositions and methods comprising zingiber species. United States Patent US 2008/0160116 A1, Jul. 3, 2008

    Google Scholar 

  • Luo D, Qiu T, Lu Q (2007) Ultrasound‐assisted extraction of ginsenosides in supercritical CO2 reverse microemulsions. J Sci Food Agric 87(3):431–436

    Article  CAS  Google Scholar 

  • Martínez J (2005) Extraction of volatile oils and other compounds with supercritical CO2: development of a scale-up method from the mathematical modeling of the process and evaluation of the obtained extracts. University of Campinas, Campinas

    Google Scholar 

  • Martínez J, Silva LPS (2013) Scale-up of extraction processes. In: Rostagno MA, Prado JM (eds) Natural product extraction: principles and applications. Green chemistry, vol 21, 1st edn., Cambridge: The Royal Society of Chemistry, 363–398

    Google Scholar 

  • Martínez JL, Vance SW (2008) Supercritical extraction plants equipment, process, and costs. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, FL, pp 25–49

    Google Scholar 

  • Martínez J, Rosa PTV, Meireles MAA (2007) Extraction of clove and vetiver oils with supercritical carbon dioxide: modeling and simulation. Open Chem Eng J 1:1–7. doi:10.2174/1874123100701010001

    Article  Google Scholar 

  • Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3(3):S253–S260. doi:10.1016/S1350-4177(96)00034-X

    Article  CAS  Google Scholar 

  • Meireles MAA (2003) Supercritical extraction from solid: process design data (2001–2003). Curr Opin Solid State Mater Sci 7(4–5):321–330. doi:10.1016/j.cossms.2003.10.008

    Article  CAS  Google Scholar 

  • Meireles MAA (2008) Extraction of bioactive compounds from Latin American plants. In: Martinez J (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press – Taylor & Francis Group, Boca Raton, FL, pp 243–274

    Google Scholar 

  • Mezzomo N, Martínez J, Ferreira SRS (2009) Supercritical fluid extraction of peach (Prunus persica) almond oil: kinetics, mathematical modeling and scale-up. J Supercrit Fluids 51(1):10–16. doi:10.1016/j.supflu.2009.07.008

    Article  CAS  Google Scholar 

  • Mezzomo N, Martínez J, Ferreira SRS (2011) Economical viability of SFE from peach almond, spearmint and marigold. J Food Eng 103(4):473–479. doi:10.1016/j.jfoodeng.2010.10.032

    Article  Google Scholar 

  • Mezzomo N, Martínez J, Maraschin M, Ferreira SRS (2013) Pink shrimp (P. brasiliensis and P. paulensis) residue: supercritical fluid extraction of carotenoid fraction. J Supercrit Fluids 74:22–33. doi:10.1016/j.supflu.2012.11.020

    Article  CAS  Google Scholar 

  • Misailidis N, Campbell GM, Du C, Sadhukhan J, Mustafa M, Mateos-Salvador F, Weightman RM (2009) Evaluating the feasibility of commercial arabinoxylan production in the context of a wheat biorefinery principally producing ethanol: Part 2. Process simulation and economic analysis. Chem Eng Res Des 87(9):1239–1250. doi:10.1016/j.cherd.2008.12.028

    Article  CAS  Google Scholar 

  • Moreschi SR, Petenate AJ, Meireles MAA (2004) Hydrolysis of ginger bagasse starch in subcritical water and carbon dioxide. J Agric Food Chem 52(6):1753–1758

    Article  CAS  Google Scholar 

  • Moura LS, Carvalho RN Jr, Stefanini MB, Ming LC, Meireles MAA (2005) Supercritical fluid extraction from fennel (Foeniculum vulgare): global yield, composition and kinetic data. J Supercrit Fluids 35(3):212–219. doi:10.1016/j.supflu.2005.01.006

    Article  CAS  Google Scholar 

  • Navarro-Díaz HJ, Carvalho GH, Leal PF, Prado JM, Meireles MAA (2009) Obtaining of extracts from Origanum vulgare and Cordia verbenacea via supercritical technology and steam distillation: process and economical study. Paper presented at the 9 International Symposium of Supercritical Fluids, Arachon, Bordeaux

    Google Scholar 

  • Paniwnyk L, Cai H, Albu S, Mason TJ, Cole R (2009) The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrason Sonochem 16(2):287–292. doi:10.1016/j.ultsonch.2008.06.007

    Article  CAS  Google Scholar 

  • Papavasileiou V, Koulouris A, Siletti C, Petrides D (2007) Optimize manufacturing of pharmaceutical products with process simulation and production scheduling tools. Chem Eng Res Des 85(7):1086–1097. doi:10.1205/cherd06240

    Article  CAS  Google Scholar 

  • Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov Food Sci Emerg Technol 9(2):147–154

    Article  CAS  Google Scholar 

  • Patist A, Bates D (2011) Industrial applications of high power ultrasonics. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Food engineering. Springer, New York, NY, pp 599–616. doi:10.1007/978-1-4419-7472-3_24

    Chapter  Google Scholar 

  • Pereira CG, Meireles MAA (2007a) Economic analysis of rosemary, fennel and anise essential oils obtained by supercritical fluid extraction. Flav Frag J 22(5):407–413. doi:10.1002/ffj.1813

    Article  Google Scholar 

  • Pereira CG, Meireles MAA (2007b) Evaluation of global yield, composition, antioxidant activity and cost of manufacturing of extracts from lemon verbena (Aloysia triphylla [L’Hérit.] Britton) and mango (Mangifera indica l. leaves). J Food Process Eng 30(2):150–173. doi:10.1111/j.1745-4530.2007.00100.x

    Article  Google Scholar 

  • Pereira C, Meireles MA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3(3):340–372. doi:10.1007/s11947-009-0263-2

    Article  CAS  Google Scholar 

  • Pereira CG, Rosa PT, Meireles MAA (2007) Extraction and isolation of indole alkaloids from Tabernaemontana catharinensis A. DC: technical and economical analysis. J Supercrit Fluids 40(2):232–238

    Article  CAS  Google Scholar 

  • Pereira CG, Gualtieri IP, Maia NB, Meireles MAA (2008) Supercritical extraction to obtain vetiver (Vetiveria zizanioides L. Nash) extracts from roots cultivated hydroponically. J Agric Sci Technol 35(2):6

    Google Scholar 

  • Pereira CG, Prado JM, Meireles MAA (2013) Economic evaluation of natural product extraction processes. In: Rostagno MA, Prado JM (eds) Natural product extraction: principles and applications. Green chemistry, vol 21, 1st edn., Cambridge: The Royal Society of Chemistry (in press)

    Google Scholar 

  • Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Res 39(12):4531–4535

    Article  CAS  Google Scholar 

  • Perrut M, Clavier J, Poletto M, Reverchon E (1997) Mathematical modeling of sunflower seed extraction by supercritical CO2. Ind Eng Chem Res 36(2):430–435

    Article  CAS  Google Scholar 

  • Peters M, Timmerhaus K, West R (2003) Plant design and economics for chemical engineers. McGraw-Hill Education, New York, NY

    Google Scholar 

  • Pingret D, Fabiano-Tixier A-S, Bourvellec CL, Renard CM, Chemat F (2012) Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J Food Eng 111:73

    Article  CAS  Google Scholar 

  • Povh NP, Marques MOM, Meireles MAA (2001) Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita [L.] Rauschert). J Supercrit Fluids 21(3):245–256

    Article  CAS  Google Scholar 

  • Prado IM (2009) Use of simulator in scale up and economic viability study of supercritical fluid extraction from natural sources. University of Campinas, Campinas

    Google Scholar 

  • Prado JM, Meireles MAA (2010) Supercritical fluid extraction of lemon verbena (Aloysia triphylla): kinetics, scale-up and chemical composition. Paper presented at the 12th European Meeting on Supercritical Fluids, Graz, Austria

    Google Scholar 

  • Prado JM, Meireles MAA (2012) Production of valuable compounds by supercritical technology using residues from sugarcane processing. In: Bergeron C, Carrier DJ, Ramaswamy S (eds) Biorefinery co-products: phytochemicals, primary metabolites and value-added biomass processing. Renewable resources, 1st edn. Wiley Online Library, Malaysia, pp 133–151

    Chapter  Google Scholar 

  • Prado IM, Albuquerque CLC, Cavalcanti RN, Meireles MAA (2009a) Use of commercial process simulator to estimate the cost of manufacturing (COM) of carotenoids obtained via supercritical technology from palm and buriti trees. Paper presented at the 9th International Symposium on Supercritical Fluids, Arcachon, France, P20

    Google Scholar 

  • Prado JM, Leal PF, Meireles MAA (2009b) Comparison of manufacturing cost of thyme extract obtained by supercritical fluid extraction and steam distillation. Paper presented at the 9th International Symposium on Supercritical Fluids, Arcachon, France, P19

    Google Scholar 

  • Prado JM, Assis AR, Maróstica-Júnior MR, Meireles MAA (2010) Manufacturing cost of supercritical-extracted oils and carotenoids from Amazonian plants. J Food Process Eng 33(2):348–369

    Article  Google Scholar 

  • Prado JM, Prado GHC, Meireles MAA (2011) Scale-up study of supercritical fluid extraction process for clove and sugarcane residue. J Supercrit Fluids 56(3):231–237. doi:10.1016/j.supflu.2010.10.036

    Article  CAS  Google Scholar 

  • Prado JM, Dalmolin I, Carareto NDD, Basso RC, Meirelles AJA, Vladimir Oliveira J, Batista EAC, Meireles MAA (2012) Supercritical fluid extraction of grape seed: process scale-up, extract chemical composition and economic evaluation. J Food Eng 109(2):249–257. doi:10.1016/j.jfoodeng.2011.10.007

    Article  CAS  Google Scholar 

  • Prado IM, Prado GHC, Prado JM, Meireles MAA (2013) Supercritical CO2 and low pressure solvent extraction of mango (Mangifera indica) leaves: global yield, extraction kinetics, chemical composition and cost of manufacturing. Food Bioprod Process 91:656

    Article  CAS  Google Scholar 

  • Pronyk C, Mazza G (2009) Design and scale-up of pressurized fluid extractors for food and bioproducts. J Food Eng 95(2):215–226

    Article  CAS  Google Scholar 

  • Quispe-Condori S, Foglio MA, Rosa PTV, Meireles MAA (2008) Obtaining β-caryophyllene from Cordia verbenacea de Candolle by supercritical fluid extraction. J Supercrit Fluids 46(1):27–32

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38(2):146–166. doi:10.1016/j.supflu.2006.03.020

    Article  CAS  Google Scholar 

  • Reverchon E, Marrone C (1997) Supercritical extraction of clove bud essential oil: isolation and mathematical modeling. Chem Eng Sci 52(20):3421–3428. doi:10.1016/S0009-2509(97)00172-3

    Article  CAS  Google Scholar 

  • Reverchon E, Marrone C (2001) Modeling and simulation of the supercritical CO2 extraction of vegetable oils. J Supercrit Fluids 19(2):161–175

    Article  CAS  Google Scholar 

  • Riera E, Golás Y, Blanco A, Gallego JA, Blasco M, Mulet A (2004) Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason Sonochem 11(3–4):241–244. doi:10.1016/j.ultsonch.2004.01.019

    Article  CAS  Google Scholar 

  • Riera E, Blanco A, García J, Benedito J, Mulet A, Gallego-Juárez JA, Blasco M (2010) High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Phys Procedia 3(1):141–146. doi:10.1016/j.phpro.2010.01.020

    Article  CAS  Google Scholar 

  • Rodrigues S, Pinto GAS (2007) Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. J Food Eng 80(3):869–872

    Article  CAS  Google Scholar 

  • Rosa PT, Meireles MAA (2005) Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. J Food Eng 67(1):235–240

    Article  Google Scholar 

  • Rouf S, Douglas P, Moo-Young M, Scharer J (2001) Computer simulation for large scale bioprocess design. Biochem Eng J 8(3):229–234

    Article  CAS  Google Scholar 

  • Roy BC, Goto M, Hirose T (1996) Extraction of ginger oil with supercritical carbon dioxide: experiments and modeling. Ind Eng Chem Res 35(2):607–612

    Article  CAS  Google Scholar 

  • Santos DT, Meireles MAA (2011) Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innov Food Sci Emerg Technol 12(3):398–406. doi:10.1016/j.ifset.2011.02.004

    Article  CAS  Google Scholar 

  • Santos DT, Veggi PC, Meireles MAA (2010) Extraction of antioxidant compounds from jabuticaba (Myrciaria cauliflora) skins: yield, composition and economical evaluation. J Food Eng 101(1):23–31. doi:10.1016/j.jfoodeng.2010.06.005

    Article  CAS  Google Scholar 

  • Santos DT, Veggi PC, Meireles MAA (2012) Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J Food Eng 108(3):444–452. doi:10.1016/j.jfoodeng.2011.08.022

    Article  CAS  Google Scholar 

  • Shariaty-Niassar M, Aminzadeh B, Azadi P, Soltanali S (2009) Economic evaluation of herb extraction using supercritical fluid. Chem Ind Chem Eng Quarter 15(3):143

    Article  Google Scholar 

  • Shintaku A (2006) Obtaining extract from the residue of the sugar cane and alcohol industry using supercritical CO2: process parameter and estimative of the cost of manufacturing. University of Campinas, Campinas

    Google Scholar 

  • Shirsath SR, Sonawane SH, Gogate PR (2012) Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chem Eng Process Process Intensif 53:10–23. doi:10.1016/j.cep.2012.01.003

    Article  CAS  Google Scholar 

  • Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331

    Article  CAS  Google Scholar 

  • Sovová H, Kučera J, Jež J (1994) Rate of the vegetable oil extraction with supercritical CO2—II. Extraction of grape oil. Chem Eng Sci 49(3):415–420

    Article  Google Scholar 

  • Takeuchi TM, Meireles MAA (2007) Study of bed geometry influence on the kinetics of supercritical fluid extraction of Achyrocline satureioides. Paper presented at the I Iberoamerican Conference on Supercritical Fluids, Foz do Iguaçu, Brazil, April 10–13

    Google Scholar 

  • Takeuchi TM, Leal PF, Favareto R, Cardozo-Filho L, Corazza ML, Rosa PT, Meireles MAA (2008) Study of the phase equilibrium formed inside the flash tank used at the separation step of a supercritical fluid extraction unit. J Supercrit Fluids 43(3):447–459

    Article  CAS  Google Scholar 

  • Takeuchi TM, Pereira CG, Braga MEM, Maróstica MR Jr, Leal PF, Meireles MAA (2009) Low-pressure solvent extraction (solid-liquid extraction, microwave assisted, and ultrasound assisted) from condimentary plants. In: Meireles MAA (ed) Extracting bioactive compounds for food products: theory and applications. CRC Press/Taylor & Francis, Boca Raton, FL, pp 137–218

    Google Scholar 

  • Toumi A, Jurgens C, Jungo C, Maier BA, Papavasileiou V, Petrides DP (2010) Design and optimization of a large scale biopharmaceutical facility using process simulation and scheduling tools. Pharm Eng 30(2):9

    Google Scholar 

  • Turton R, Bailie WB, Whiting JS, Bhattacharyya D (2003) Analysis, synthesis, and design of chemical processes. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Vázquez MV, Rodríguez MEG (2011) Computer simulation of microbial transglutaminase production from potato wastes. Procedia Food Sci 1:736–741. doi:10.1016/j.profoo.2011.09.111

    Article  CAS  Google Scholar 

  • Veggi PC (2009) Obtaining vegetable extracts by different extraction methods: experimental study and process simulation. University of Campinas, Campinas

    Google Scholar 

  • Veggi PC, Meireles MAA (2010) Economical evaluation of chamomile (Chamomilla recutita [L.] Rauschert) extract obtained via supercritical technology and low pressure solvent extraction. Paper presented at the II Iberoamerican Conference on Supercritical Fluids, Natal, RN

    Google Scholar 

  • Veggi PC, Prado IM, Vaz N, Prado JM, Meireles MAA (2009) Manufacturing cost of extracts from jackfruit (Artocarpus heterophyllus) leaves obtained via supercritical technology and solvent extraction. Paper presented at the 9 International Symposium of Supercritical Fluids, Arachon, Bordeaux

    Google Scholar 

  • Veggi PC, Cavalcanti RN, Meireles MAA (2011) Modifier effects on supercritical fluid extraction (SFE) of some Brazilian plants: antioxidant activity and economical evaluation. Procedia Food Sci 1:1717–1724. doi:10.1016/j.profoo.2011.09.253

    Article  CAS  Google Scholar 

  • Veggi PC, Santos DT, Fabiano-Tixier A-S, Bourvellec CL, Meireles MAA, Chemat F (2013) Ultrasound-assisted extraction of polyphenols from jatoba (Hymenaea courbaril L. var stilbocarpa) bark. Food Public Health 3(3):10

    Article  Google Scholar 

  • Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov Food Sci Emerg Technol 9(2):161–169. doi:10.1016/j.ifset.2007.04.014

    Article  CAS  Google Scholar 

  • Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8(3):303–313, S1350417701000712 [pii]

    Article  CAS  Google Scholar 

  • Virot M, Tomao V, Le Bourvellec C, Renard CM, Chemat F (2010) Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason Sonochem 17(6):1066–1074

    Article  CAS  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312. doi:10.1016/j.tifs.2005.12.004

    Article  CAS  Google Scholar 

  • Wu J, Lin L, Chau FT (2001) Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason Sonochem 8(4):347–352, S1350417701000669 [pii]

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Juliana M. Prado’s present address is Centro de Ciências da Natureza (CCN), Federal University of São Carlos (UFSCar), Rod. Lauri Simões de Barros, km 12, SP-189. 18290-000, Buri, SP, Brazil. And for Dr. Priscilla C. Veggi, Department of Earth and Exact Sciences, Chemical Engineering Sector, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP, Brazil

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angela A. Meireles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prado, J.M., Veggi, P.C., Meireles, M.A.A. (2017). Scale-Up Issues and Cost of Manufacturing Bioactive Compounds by Supercritical Fluid Extraction and Ultrasound Assisted Extraction. In: Barbosa-Cánovas, G., et al. Global Food Security and Wellness. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6496-3_20

Download citation

Publish with us

Policies and ethics