Skip to main content

Bcl-2 Protein Interplay on the Outer Mitochondrial Membrane

  • Chapter
  • First Online:
Mitochondria and Cell Death

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Members of the B-cell lymphoma-2 (Bcl-2) protein family control the intrinsic pathway of regulated cell death. Pro-apoptotic and pro-survival proteins of this protein family form a complex regulatory network that mediates a variety of cellular stresses. Activation of either pro-apoptotic Bax or Bak commits the cell to apoptosis by permeabilization of the outer mitochondrial membrane. Despite extensive research on the mechanisms of Bax/Bak activation, insights into the nature of the active forms of Bax or Bak and the processes leading to their activation are incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  CAS  PubMed  Google Scholar 

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoult D, Bartle LM, Skaletskaya A, Poncet D, Zamzami N, Park PU, Sharpe J, Youle RJ, Goldmacher VS (2004) Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 101:7988–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billen LP, Shamas-Din A, Andrews DW (2008) Bid: a Bax-like BH3 protein. Oncogene 27(Suppl 1):S93–S104

    Article  CAS  PubMed  Google Scholar 

  • Bleicken S, Wagner C, GarcĂ­a-SĂ¡ez AJ (2013) Mechanistic differences in the membrane activity of Bax and Bcl-xL correlate with their opposing roles in apoptosis. Biophys J 104:421–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, GarcĂ­a-SĂ¡ez AJ, Bordignon E (2014) Structural model of active Bax at the membrane. Mol Cell 56:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogner C, Leber B, Andrews DW (2010) Apoptosis: embedded in membranes. Curr Opin Cell Biol 22:845–851

    Article  CAS  PubMed  Google Scholar 

  • Bratton SB, Cohen GM (2001) Caspase cascades in chemically-induced apoptosis. Adv Exp Med Biol 500:407–420

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Wei Q, Feng L, Dong G, Tao Y, Mei L, Xie Z-J, Dong Z (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci U S A 104:11649–11654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colell A, Green DR, Ricci J-E (2009) Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 16:1573–1581

    Google Scholar 

  • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4:371–381

    Article  CAS  PubMed  Google Scholar 

  • Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624

    Article  CAS  PubMed  Google Scholar 

  • ClaverĂ­a C, Giovinazzo G, Sierra R, Torres M (2013) Myc-driven endogenous cell competition in the early mammalian embryo. Nature 500:39–44

    Article  PubMed  CAS  Google Scholar 

  • Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ et al (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152:519–531

    Article  CAS  PubMed  Google Scholar 

  • Van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delivani P, Adrain C, Taylor RC, Duriez PJ, Martin SJ (2006) Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 21:761–773

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM (2008) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol Cell 30:369–380

    Article  CAS  PubMed  Google Scholar 

  • Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM (2009) Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Mol Cell 36:696–703

    Article  CAS  PubMed  Google Scholar 

  • Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW (2006) Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 25:2287–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU, Kaufmann T (2013) Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 20:785–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM (2012) Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PLoS One 7:e31510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher JI, Meusburger S, Hawkins CJ, Riglar DT, Lee EF, Fairlie WD, Huang DCS, Adams JM (2008) Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc Natl Acad Sci U S A 105:18081–18087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  • Gahl RF, He Y, Yu S, Tjandra N (2014) Conformational rearrangements in the pro-apoptotic protein, Bax, as it inserts into mitochondria: a cellular death switch. J Biol Chem 289(47):32871–32882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu H-C, Kim H, Cheng EH-Y, Tjandra N et al (2008) BAX activation is initiated at a novel interaction site. Nature 455:1076–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler A, Haun F, Frank DO, Wieland K, Simon MM, Idzko M, Davis RJ, Maurer U, Borner C (2013) Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ 20:1317–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George NM, Evans JJD, Luo X (2007) A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Genes Dev 21:1937–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED et al (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, Shore GC (1998) Regulated targeting of BAX to mitochondria. J Cell Biol 143:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  • Griffiths GJ, Corfe BM, Savory P, Leech S, Esposti MD, Hickman JA, Dive C (2001) Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20:7668–7676

    Article  CAS  PubMed  Google Scholar 

  • Hales KG, Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90:121–129

    Article  CAS  PubMed  Google Scholar 

  • Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DCS, Day CL (2003) The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J 22:1497–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DCS, Day CL (2007) Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ 14:128–136

    Article  CAS  PubMed  Google Scholar 

  • Hoppins S, Edlich F, Cleland MM, Banerjee S, McCaffery JM, Youle RJ, Nunnari J (2011) The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol Cell 41:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783

    Article  CAS  PubMed  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y-I et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  • Jeong S-Y, Gaume B, Lee Y-J, Hsu Y-T, Ryu S-W, Yoon S-H, Youle RJ (2004) Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers. EMBO J 23:2146–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbowski M, Lee Y-J, Gaume B, Jeong S-Y, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbowski M, Norris KL, Cleland MM, Jeong S-Y, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662

    Article  CAS  PubMed  Google Scholar 

  • Ke F, Bouillet P, Kaufmann T, Strasser A, Kerr J, Voss AK (2013) Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis 4:e650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Rafiuddin-Shah M, Tu H-C, Jeffers JR, Zambetti GP, Hsieh JJ-D, Cheng EH-Y (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul M, van Delft MF, Lee EF, Gulbis JM, Fairlie WD, Huang DCS, Colman PM (2007) A structural viral mimic of prosurvival Bcl-2: a pivotal role for sequestering proapoptotic Bax and Bak. Mol Cell 25:933–942

    Article  CAS  PubMed  Google Scholar 

  • Leber B, Lin J, Andrews DW (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshchiner ES, Braun CR, Bird GH, Walensky LD (2013) Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci U S A 110:E986–E995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  • Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    Google Scholar 

  • Llambi F, Moldoveanu T, Tait SWG, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Lucken-Ardjomande S, Martinou JC (2005) Regulation of Bcl-2 proteins and of the permeability of the outer mitochondrial membrane. C R Biol 328:616–631

    Article  CAS  PubMed  Google Scholar 

  • Martinou I, Desagher S, Eskes R, Antonsson B, AndrĂ© E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144:883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minn AJ, VĂ©lez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385:353–357

    Article  CAS  PubMed  Google Scholar 

  • Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR (2013) BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 20:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldoveanu T, Follis AV, Kriwacki RW, Green DR (2014) Many players in BCL-2 family affairs. Trends Biochem Sci 39:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basañez G, Meda P et al (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouli PK, Twig G, Shirihai OS (2009) Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J 96:3509–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL et al (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Zobel K, Fedorova A, Quan C, Yang H, Fairbrother WJ, Huang DCS, Smith BJ, Deshayes K, Czabotar PE (2013) Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol 8:297–302

    Article  CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  PubMed  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  • Owens TW, Valentijn AJ, Upton J-P, Keeble J, Zhang L, Lindsay J, Zouq NK, Gilmore AP (2009) Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ 16:1551–1562

    Article  CAS  PubMed  Google Scholar 

  • Peng R, Tong J-S, Li H, Yue B, Zou F, Yu J, Zhang L (2013) Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Cell Death Differ 20:744–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M (2005) Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol 171:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Tu H-C, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ-D, Cheng EH-Y (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330:1390–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roucou X, Montessuit S, Antonsson B, Martinou J-C (2002) Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem J 368:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ et al (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    Article  CAS  PubMed  Google Scholar 

  • Schellenberg B, Wang P, Keeble JA, Rodriguez-Enriquez R, Walker S, Owens TW, Foster F, Tanianis-Hughes J, Brennan K, Streuli CH et al (2013) Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell 49:959–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler M, Green DR (2005) Transcription, apoptosis and p53: catch-22. Trends Genet 21:182–187

    Article  CAS  PubMed  Google Scholar 

  • Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci 92:7834–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  CAS  PubMed  Google Scholar 

  • Shutt TE, McBride HM (2013) Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response. Biochim Biophys Acta 1833:417–424

    Article  CAS  PubMed  Google Scholar 

  • Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110–156

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  CAS  PubMed  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todt F, Cakir Z, Reichenbach F, Youle RJ, Edlich F (2013) The C-terminal helix of Bcl-x(L) mediates Bax retrotranslocation from the mitochondria. Cell Death Differ 20:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todt F, Cakir Z, Reichenbach F, Emschermann F, Lauterwasser J, Kaiser A, Ichim G, Tait SWG, Frank S, Langer HF, Edlich F (2015) Differential retrotranslocation of mitochondrial Bax and Bak. EMBO J 34:67–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C et al (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–1443

    Article  CAS  PubMed  Google Scholar 

  • Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP (2003) Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162:599–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    Article  CAS  PubMed  Google Scholar 

  • Vogel S, Raulf N, Bregenhorn S, Biniossek ML, Maurer U, Czabotar P, Borner C (2012) Cytosolic Bax: does it require binding proteins to keep its pro-apoptotic activity in check? J Biol Chem 287:9112–9127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal D, Dewson G, Menard M, Frederick P, Iyer S, Bartolo R, Gibson L, Czabotar PE, Smith BJ, Adams JM et al (2014) Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc Natl Acad Sci U S A 111(39):E4076–E4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DCS (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  CAS  PubMed  Google Scholar 

  • Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Edlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edlich, F., Martinou, JC. (2016). Bcl-2 Protein Interplay on the Outer Mitochondrial Membrane. In: Hockenbery, D. (eds) Mitochondria and Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3612-0_4

Download citation

Publish with us

Policies and ethics