Skip to main content

Analog/RF CMOS

  • Chapter
  • First Online:
Silicon Analog Components
  • 2184 Accesses

Abstract

The trade-offs between parameters are different for digital, analog, and RF CMOS. In particular, there are conflicting requirements on operating voltage level, reduced low-frequency noise, high output resistance, low component mismatch, and high linearity between analog and digital CMOS. This requires modifications to be made to the basic digital structure to satisfy analog circuit needs. In contrast, the characteristics of RF CMOS are essentially the same as those of high-speed digital CMOS so that both designs can be integrated on the same chip with little added complexity. This chapter begins with a brief review of the MOS structure. This lays the groundwork for the discussion of MOSFET characteristics in the sections that follow, with emphasis on key analog parameters. The chapter concludes with a brief discussion of analog CMOS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subscripts s and b will be used throughout the chapter to indicate, respectively, surface and bulk parameters.

  2. 2.

    Unless otherwise stated, E, E F , E i , E C , E V, and E g, are energies expressed in eV; ϕ, ψ, χ, are expressed as potentials in V. Energies and potentials have the same numerical value but different units. Example: kT is expressed in eV and kT/q in V.

  3. 3.

    The values in the plot are extracted from the International technology Roadmap for Semiconductors, ITRS updates (www.itrs.net). The DRAM half-pitch is a metric for “Technology Generation”.

  4. 4.

    LOCOS stands for Local Oxidation of Silicon and is further discussed in Chap. 9.

References

  1. L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., 5 (5), 285-299, 1962.

    Google Scholar 

  2. K. Lehovec, A. Slobodskoy, and J. L. Sprague, “Field effect-capacitance analysis of surface states on silicon,” Physica Status Solidi (b), 3 (3), 447-464, 1963.

    Google Scholar 

  3. A. S. Grove, B. E. Deal, E. H. Snow, and C. T. Sah, “Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures,” Solid-State Electron., 8 (2), 145-163, 1965.

    Google Scholar 

  4. S. M. Sze, Physics of Semiconductor Devices, John Wiley& Sons, p. 850, 1981.

    Google Scholar 

  5. B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Dev., ED-27, 606-608, 1980.

    Google Scholar 

  6. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, John Wiley & Sons, p. 424, 1982.

    Google Scholar 

  7. R. H. Kingston and S. F. Neustadter, “Calculation of the space-charge, electric field, and free carrier concentration at the surface of a semiconductor,” J. Appl. Phys., 26 (6), 718-720, 1955.

    Google Scholar 

  8. C. G. B. Garrett and W. H. Brattain, “Physical theory of semiconductor surfaces,” Phy. Rev., 99, 376, 1955.

    Google Scholar 

  9. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the quantum limit,” Phys. Rev., 163 (3), 816-835, 1967.

    Google Scholar 

  10. M. J. van Dort, P. H. Woerlee and A. J. Walker, “A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electronics, 37 (3), 411-414, 1994.

    Google Scholar 

  11. S. A. Hareland, S. Krishnamurhty, S. Jallepalli, C.-F. Yeap, K. Hasnat, A. F. Tasch, and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFETs,” IEEE Trans. Electron Dev., 43 (1), 90-96, 1996.

    Google Scholar 

  12. C. Y. Hu, S. Barnerjee, K. Sandra, G. G. Streetman, and P. Sivan, “Quantization effects in inversion layers of PMOSFETs on Si(100) substrates,” IEEE Electron Dev. Lett., 17 (6) 276-278, 1996.

    Google Scholar 

  13. A. G. Sabnis and J. T. Clemens, “Characterization of the electron mobility in the inverted < 100 > surface,” IEEE IEDM Tech. Digest, pp. 18-21, 1979.

    Google Scholar 

  14. J. T. Watt and J. D. Plummer, “Universal mobility-field curves for electrons and holes in MOS inversion layers,” VLSI Tech. Digest, 81-82, 1987.

    Google Scholar 

  15. R. Rios, N. D. Arora, and C. L. Huang, “An analytical polysilicon depletion effect model for MOSFETs,” IEEE Electron Dev. Lett., 15 (4), 129-131, 1994.

    Google Scholar 

  16. P. Habăs and S. Selberherr, “Numerical simulation of MOS devices with non-degenerate gate,” ESSDERC, 161-164, 1990.

    Google Scholar 

  17. K. Schuegraf, C. C. King, and C. Hu, “Impact of polysilicon depletion in thin oxide MOS technology,” VLSITSA, 86-90, 1993.

    Google Scholar 

  18. N. D. Arora, R. Rios, and C. L. Huang, “Modeling the polysilicon depletion effect and its impact on submicrometer CMOS circuit performance,” IEEE Trans. Electron Dev., 42 (5), 935-943, 1995.

    Google Scholar 

  19. C. H. Choi, P. R. Chidambaram, R. Khamankar, C. F. Machala, Z. Yu, and R. W. Dutton,” Gate length dependent polysilicon depletion effects,” IEEE Electron Dev. Lett., 23 (4), 224-226, 2002.

    Google Scholar 

  20. A. S. Grove and D. J. Fitzgerald, “Surface effects on pn junctions – Characteristics of surface space-charge regions under non-equilibrium conditions,” Solid-State Electronics, 9 (8), 783-806, 1966.

    Google Scholar 

  21. W. Shockley and W. T. Read, “Statistics of recombination of holes and electrons,” Phys. Rev., 85 (5), 835-842, 1952.

    Google Scholar 

  22. P. Smeys, P.B. Griffin, Z. U. Rek, I. D. Wolf, and K. C. Saraswat, “Influence of process-induced stress on device characteristics and its impact on scaled device performance,” IEEE Trans. Electron Dev., 46 (6) 1245-1252, 1999.

    Google Scholar 

  23. W. Shockley, “Problems related to p-n junctions in silicon,” Solid-State Electronics, 2 (1), 35-67, 1961.

    Google Scholar 

  24. J. F. Verwey, R. P. Kramer, and B. J. de Maagt, “Mean free path of hot electrons at the surface of boron-doped silicon,” J. Appl. Phys., 46 (6), 2612-2619, 1975.

    Google Scholar 

  25. B. El-Kareh, “Effect of surface field on junction avalanche breakdown,” IEDM Tech. Digest., 11-14, 1972.

    Google Scholar 

  26. T. Y. Chan, J. Chen, P. K. Ko, and C. Hu, “The impact of gate-induced drain leakage,” IEEE IEDM, 718-721, 1987.

    Google Scholar 

  27. J. Chen, T. Y. Chan, J. C. Chen, and C. Hu, “Subthreshold drain leakage current in MOSFET,” IEEE Electron Dec. Lett., EDL-8 (11), 515-517, 1987.

    Google Scholar 

  28. M. J. Chen, K. C. Chao, and C. H. Chen, “New observation and the modeling of gate and drain current in off-state P-MOSFETs,” IEEE Trans. Electron Dev., 41 (5), 734-739, 1994.

    Google Scholar 

  29. M. M. Moslehi, C. Y. Fu, and K. C. Saraswat, “Thermal and microwave nitrogen plasma nitridation techniques for ultrathin gate insulators of MOS VLSI,” Proc. VLSI Tech. Digest, 14-15, 1985.

    Google Scholar 

  30. T. Hori, H. Iwasaki, and K. Tsuji, “Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing,” IEEE Trans. Electron Dev., 36 (2), 340-350, 1989.

    Google Scholar 

  31. H. S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, and H. Iwai, “Electrical characteristics of rapid thermal nitrided-oxide gate n- and p-MOSFETs with less than 1 atom% nitrogen concentration,” IEEE Trans Electron Dev., 41 (4), 546-551, 1994.

    Google Scholar 

  32. K. A. Ellis and R. A. Buhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. res. Dev., 413 (3), 287-300, 1999.

    Google Scholar 

  33. F. H. Gaensslen, V. L. Rideout, E. J. Walker, and J. J. Walker, “Very small MOSFETs for low-temperature operation,” IEEE Trans. Electron Dev., ED-24 (3), 218-229, 1977.

    Google Scholar 

  34. O. Leistiko, A. S. Grove, and C. T. Sah, “Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Dev., ED-12, 248-254, 1965.

    Google Scholar 

  35. M. Bacheri and C. Turchetti, “The need for an explicit model describing MOS transistors in moderate inversion,” Electronics Letters, 21 (19), 873-874, 1985.

    Google Scholar 

  36. Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor, Oxford University Press, p. 91, 2011.

    Google Scholar 

  37. M. Miura-Mattausch, H. J. Mattausch, N. D. Arira, and C. Y. Yang, “MOSFET modeling gets physical,” IEEE Circuits and Devices, 17 (6), 29-36, 2001.

    Google Scholar 

  38. Y. Cheng, K, Chen, K. Imai, and C. Hu, “ICM-An analytical inversion charge model for accurate modeling of thin gate oxide MOSFETs,” IEEE SYSPAD, 109-112, 1997.

    Google Scholar 

  39. J. R. Schriefer, “Effective carrier mobility on surface space charge layers,” Phys. Rev. 97, 641-646, 1955.

    Google Scholar 

  40. F. Fang and S. Triebwasser, “Carrier surface scattering in silicon inversion layers,” IBM J. Res. Dev., 8, 410-415, 1964.

    Google Scholar 

  41. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev. B, 163, 816-835, 1967.

    Google Scholar 

  42. F. F. Fang and A. B. Fowler, “Transport properties of electrons in inverted silicon surface,” Phys. Rev., 169, 616-631, 1968.

    Google Scholar 

  43. V. G. K. Reddi, “Majority carrier surface mobilities in thermally oxidized silicon,” IEEE Trans. Electron Devices, ED-15 (3), 151-160, 1968.

    Google Scholar 

  44. C.-T. Sah, T. H. Ning, and L. L. Tschopp, “The scattering of electrons by surface oxide charge and by lattice vibrations,” Surface Science, 32, 561-575, 1972.

    Google Scholar 

  45. T. Nishida and C.-T. Sah, “A physically based mobility model for MOSFET numerical simulations,” IEEE Trans. Electron Dev., 34 (2), 310-320, 1987.

    Google Scholar 

  46. H. Shin, G. M. Yeric, A. F. Tasch, and C. M. Maziar, “Physically based models for effective mobility and local field mobility of electrons in MOS inversion channels,” Solid-State Electron., 34 (6), 545-552, 1991.

    Google Scholar 

  47. S.-i. Tagaki, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in silicon MOSFETs Part I –effect of substrate impurity concentration,” IEEE Trans. Electron Dev., 41 (12), 2357-2362, 1994.

    Google Scholar 

  48. J. R. Hauser, “Extraction of experimental mobility data for MOS devices,” IEEE Trans. Electron Dev., 43 (11), 1981-1988, 1996.

    Google Scholar 

  49. K. Chen, H. C. Wann, J. Dunster, P. K. Ko, and C. Hu, “MOSFET carrier mobility model based on gate oxide thickness, threshold and gate voltage,” Solid-State Electronics, 39 (10), 1515-1518, 1996.

    Google Scholar 

  50. H. K. J. Ihantola and J. L. Moll, “Design theory of a surface field-effect transistor,” Solid-State Electronics, 7 (6) 423, 1964.

    Google Scholar 

  51. C. T. Sah, “Characteristics of the metal-oxide-semiconductor transistors,” IEEE Trans. Electron Dev., ED-11 (7) 324-345, 1964.

    Google Scholar 

  52. G. Baccarani and G. A. Sai-Halasz, “Spreading resistance in submicron MOSFETs,” IEEE Electron Device Lett., 4 (2), 27-29, 1983.

    Google Scholar 

  53. K. K. Ng and W. T. Lynch, “Analysis of the gate-voltage-dependent series resistance of MOSFETs,” IEEE Trans. Electron Dev., 33 (7), 965-972, 1986.

    Google Scholar 

  54. K. K. Ng, R. J. Bayruns, and S. C. Fang, “The spreading resistance of MOSFETs,” IEEE Electron Device Lett., 6 (4), 195-197, 1985.

    Google Scholar 

  55. J. M. Pimbley, “Two-dimensional current flow in the MOSFET source-drain,” IEEE Trans. Electron Dev., ED-33 (7), 986-996, 1986.

    Google Scholar 

  56. B. Iňiguez and T. A. Fjeldly, “Unified substrate current model for MOSFETs,” Solid-State Electronics, 41 (1), 87-94, 1997.

    Google Scholar 

  57. J. H. Huang, G. B. Zhang, Z. H. Liu, J. Duster, S. J. Wann, P. Ko, and C. Hu, “Temperature dependence of MOSFET substrate current,” IEEE Electron Dev. Lett., 14 (5), 268-271, 1993.

    Google Scholar 

  58. M. Nagata, J. Nagai, K. Hijikata, T. Morie, and A. Iwata, “Physical design guides for substrate noise reduction in CMOS digital circuits,” IEEE J. Solid-State Circuits, 36 (3), 539-548, 2001.

    Google Scholar 

  59. M. S. Peng and H. S. Lee, “Study of substrate noise and techniques for minimization,” IEEE J. Solid-State Circuits, 39 (11), 2080-2086, 2004.

    Google Scholar 

  60. T. Blalack and B. A. Wooley, “The effects of switching noise on an oversampling A/D converter,” IEEE Solid-State Circuits Conf. Tech. Digest., 200-201, 367, 1995.

    Google Scholar 

  61. A. Hokazono, S. Balasubramanian, K. Ishimaru, H. Ishiuchi, C. Hu, and T. J. King Liu “Forward body biasing as a bulk-Si CMOS technology scaling strategy,” IEEE Trans. Electron Dev. 55 (10), 2657-2664, 2008.

    Google Scholar 

  62. S. K. Jayapal and Y. Manoli, “Minimizing energy consumption with variable body bias for ultra-low energy LSIs,” VLSI-DAT, 1-4, 2007.

    Google Scholar 

  63. M. R. Wordeman and R. H. Dennard, “Threshold voltage characteristics of depletion-mode MOSFETs,” IEEE Trans. Electron Dev., 28 (9), 1025-1030, 1981.

    Google Scholar 

  64. H. Haddara, T. Elewa, and S. Christoloveanu, “Static and dynamic transconductance model for depletion-mode transistors: A new characterization method for silicon on insulator materials,” IEEE Electron Dev. Lett., 9 (1), 35-37, 1988.

    Google Scholar 

  65. L. D. Yau, “A simple theory to predict the threshold voltage of short-channel IGFETs,” Solid-State Electron., 17 (10), 1059-1063, 1974.

    Google Scholar 

  66. O. Jaentsch, “A geometrical model of the threshold voltage of short and narrow-channel MOSFETs,” Solid-State Electron. 25 (1), 59-61, 1982.

    Google Scholar 

  67. R. R. Troutman, “VLSI limitations from drain-induced barrier lowering”, IEEE Trans. Electron Dev., ED-26 (4), 461-469, 1979.

    Google Scholar 

  68. T. H. Nguyen and J. D., Plummer, “Physical mechanisms responsible for short channel effects in MOS devices,” IEEE IEDM Tech. Digest., 596-599, 1981.

    Google Scholar 

  69. C.-Y. Wu and S.-Y. Yang, “An analytic and accurate model for the threshold voltage of short channel MOSFETs in VLSI,” Solid-State Electronics, 27 (7), 651-658, 1984.

    Google Scholar 

  70. S. C. Jain and P. Balk, “A unified analytical model for drain-induced barrier lowering and drain-induced high electric field in a short-channel MOSFET,” Solid-State Electronics, 30 (5), 503-511, 1987.

    Google Scholar 

  71. P. E. Cottrell and E. M. Buturla, “Steady state analysis of field effect transistors via the finite element method,” IEEE IEDM Tech. Digest., 51-54, 1975.

    Google Scholar 

  72. S. Selberherr, “MINIMOS - A two-dimensional MOS transistor analyzer,“ IEEE Trans. Electron Dev., ED-27 (8), 1440-1560, 1980.

    Google Scholar 

  73. W. P. Noble, “Short channel effects in dual gate field effect transistors,” IEEE IEDM Tech. Digest., 483-486, 1978.

    Google Scholar 

  74. T. Hori and K. Kurimoto “A new half-micron p-channel MOSFET with LATIPs (“Large-Tilt-Angle-Implanted-Punch-Through Stopper”, IEEE IEDM Tech. Digest, 394-397, 1988.

    Google Scholar 

  75. H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yishida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, “Sub-50-nm physical gate length CMOS technology and beyond using steep halo,” IEEE Trans. Electron Dev., 49 (1), 89-95, 2002.

    Google Scholar 

  76. A. Chatterjee, K. Visanth, D. T. Glider, M. Nandakumar, G. Pollack, R. Aggarwal, M. Rodder, and H. Shichijo, “Transistor design issues in integrated analog functions with high performance digital CMOS,” VLSI Tech. Digest, 147-148, 1999.

    Google Scholar 

  77. L. N. Hutter and J. R. Hellums, “Analog CMOS technology, Smicon Japan, Tokyo, 1999.

    Google Scholar 

  78. J. G. Ruch, “Electron dynamics in short channel field-effect transistors,” IEEE Trans. Electron Dev., ED-19 (5), 652-654, 1972.

    Google Scholar 

  79. G. Baccarani and M. R. Wordeman, “An investigation of steady-state velocity overshoot in silicon,” Solid-State Electronics, 28 (4), 407-416, 1985.

    Google Scholar 

  80. G. A. Sai-Halasz, M. R. Wordemann, D. P. Kern, S. Rischton, and E. Ganin, “High transconductance and velocity overshoot in NMOS devices at the 0.1-μm gate-length level,” IEEE Electron Dev. Lett., 9 (9), 464-466, 1988.

    Google Scholar 

  81. S. Y. Chou, D. A. Antoniadis, and H. I. Smith, “Observation of electron velocity overshoot in sub-100-nm-channel MOSFETs in silicon,” IEEE Electron Dev. Lett., 6 (12), 665-667, 1985.

    Google Scholar 

  82. R. Ohba and T. Mizuno, “Nonstationary electron/hole transport in sub-0.1 μm MOS devices: Correlation with mobility and low-power CMOS application,” IEEE Electron Dev., 48 (2), 338-343, 2001.

    Google Scholar 

  83. A. Ochoa, F. W. Sexton, T. F. Wrobel, and G. L. Hash, “Snap-back: a stable regenerative breakdown mode of MOS devices,” IEEE Trans. Nuclear Sci., NS-10 (6) 4127-4130, 1983.

    Google Scholar 

  84. A. Z. H. Wang, C.-H. Tsay, “An on-chip ESD protection circuit with low trigger voltage in BiCMOS technology,” IEEE J. Solid-State Circuits, 36 (1), 40-45, 2001.

    Google Scholar 

  85. M. Nishida and H. Onodera, “An anomalous increase in threshold voltages with shortening the channel lengths for deeply boron-implanted n-channel MOSFETs,” IEEE Trans. Electron Dev., 28 (9), 1101-1103, 1981.

    Google Scholar 

  86. M. Orlowski, C. Mazuré, and F. Lau, “Submicron short channel effects due to gate reoxidation induced lateral interstitial diffusion,” IEEE IEDM Tech. Digest, 632-635, 1987.

    Google Scholar 

  87. C.-Y. Hu and J. M. Sung, “Reverse short-channel effects on threshold voltage in submicron silicide devices,” IEEE Electron Dev. Lett., 10 (10), 446-448, 1989.

    Google Scholar 

  88. H. Brut, A. Juge, and G. Ghbaudo, “Physical model of threshold voltage in silicon MOS transistors including reverse short channel effects,” Electron Lett., 31 (5), 411-412, 1995.

    Google Scholar 

  89. K. Nishi, H. Matsuhashi, T. Ochini, K. Kasai, and T. Nishikawa, “Evidence of channel profile modification due to implantation damage studied by new method, and its implication to reverse short channel effect of nMOSFETs,” IEEE IEDM Tech. Digest, 993-995, 1995.

    Google Scholar 

  90. H. Jacobs, A. v. Schwerin, D. Scharfetter, and F. Lau, “MOSFET reverse short channel effect due to silicon interstitial capture in gate oxide,” IEEE IEDM Tech. Digest, 307-310, 1993.

    Google Scholar 

  91. K. O. Jeppson, “Influence of the channel width on the threshold voltage modulation in M.O.S.F.E.T.S.,” Electronics Lett., 11 (14), 297-299, 1975.

    Google Scholar 

  92. L. A. Akers, “The inverse-narrow-width effect,” IEEE Electron Dev. Lett., 7 (7) 419-421, 1986.

    Google Scholar 

  93. A. Chatterjee, D. Rogers, J. McKee, I. Ali, S. Nag, and I.C. Chen, “A shallow trench isolation using LOCOS edge for preventing corner effects for 0.25/0.18 μm CMOS technologies and beyond,” IEEE IEDM Tech. Digest, 829-832, 1996.

    Google Scholar 

  94. S. Matsuda, T. Sato, H. Yoshimura, Y. Takegawa, A. Sudo, I. Mizushima, Y. Tsunashima, and Y. Toyoshima, “Novel corner rounding process for shallow trench isolation utilizing MSTS (Micro-Structure Transformation of Silicon,” IEEE IEDM Tech. Digest, 137-140, 1998.

    Google Scholar 

  95. C. H. Li, K. C. Tu, H. C. Chu, I. H. Chang, W. R. Liaw, H. F. Lee, W. Y. Lien, M. H. Tsai, W. J. Liang, W. G. Yeh, H. M. Chou, C. Y. Chen, and M. H. Chi, “A robust trench isolation (STI) with SiN pull-back process for advanced DRAM technology,” IEEE/SMI Adv. Semicon. Manuf. Conf., 21-27, 2002.

    Google Scholar 

  96. B. Razavi, R. H. Yan, and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuit and Systems, 41, 750-754, 1994.

    Google Scholar 

  97. M. I. Elmasry, “Capacitance calculation in MOSFET VLSI,” IEEE Electron Dev. Lett., 3 (1), 6-7, 1982.

    Google Scholar 

  98. R. Shrivatsava and K. Fitzpatrick, “A simple model for the overlap capacitance of a VLSI MOS device,” IEEE Trans. Electron Dev., 29 (12), 1870-1875, 1982.

    Google Scholar 

  99. J. Mueller, Thoma, E. Demircan, C. Bermicot, and A. Juge, “Modeling of MOSFET parasitic capacitances and their impact on circuit performance,” Solid State Electronics, 51 (11/12), 1485-1493, 2007.

    Google Scholar 

  100. A. Bansal, B. C. Paul, and K. Roy, “Modeling and optimization of fringe capacitance of nanoscale DGMOS devices,” IEEE Trans. Electron Dev., 52 (2), 256-262, 2005.

    Google Scholar 

  101. J.-R. Kahng, J.-W. Moon, and J.-H. Kim, “C-V extraction method for gate fringe capacitance and gate to source-drain overlap length of LDD MOSFET,” IEEE ICMTS, 59-63, 2001.

    Google Scholar 

  102. N. H. E. West and K Eshrghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Company, p. 81, 1993.

    Google Scholar 

  103. E. K. F. Lee, A. Lam, and T. Li, “A 0.65 V rail-to-rail constant gm opamp for biomedical applications,” IEEE Intn’l Symp. On Circuits and Systems (ISCAS), 2721-2724, 2008.

    Google Scholar 

  104. M.-D. Ker and K.-Chun Hsu, “Native-NMOS-triggered SCR with faster turn-on speed for effective ESD protection in a 0.13-μm CMOS process,” IEEE Trans. Device and Materials Reliability, 5 (3), 543-554, 2005.

    Google Scholar 

  105. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, “A CMOS bandgap reference circuit with sub-1-V operation,” IEEE J. Solid-State Circuits, 34 (5) 670674, 1999.

    Google Scholar 

  106. K. C. Gunsager, C. K. Kim, and J. D. Phillips, “Performance and operation of buried charge coupled devices,” IEEE IEDM Tech. Digest, 21-23, 1973.

    Google Scholar 

  107. Y. Chen, X. Wang, A. J. Mierop, and A. J. P. Theuwissen, “A CMOS image sensor with in-pixel buried-channel source follower and optimized row selector,” IEEE Trans. Electron Dev.. 56 (11), 2390-2396, 2009.

    Google Scholar 

  108. R. Griffith, R. Vyne, R. Dorson, and T. Petty, “A 1 V BiCMOS rail-to-tail amplifier with n-channel depletion-mode input-stage,” IEEE ISSCC, pp. 352-353,384, 1997.

    Google Scholar 

  109. K. Koh, B. J. Hwang, K. H. Kwak, Y. S. Son, J. Y. Lee, J. H. Jang, S. H. Seo, H. S. Kim, D. Park, and K. N. Kim, “Highly manufacturable 100 nm 6T low power SRAM with single poly-Si gate technology,” IEEE VLSI Tech. Systems and Applications, 94-97, 2003.

    Google Scholar 

  110. T. Stockstad and H. Yoshizawa, “A 0.9-V 0.5-μA rail-to-rail CMOS operational amplifier,” IEEE JSSC, 37 (3), 2002.

    Google Scholar 

  111. R. Griffith, R. L. Vyne, R. N. Dotson, and T. Petty, “A 1-V BiCMOS rail-to-rail amplifier with n-channel depletion mode input stage,” IEEE JSSC, 32 (12), 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badih El-Kareh .

Problems

Problems

  1. 1.

    An MOS structure formed on P-type substrate is biased in strong accumulation. Assume that the maximum field in the oxide may not exceed 5.5 × 106 V/cm and estimate the maximum excess holes/cm2 that can be induced in silicon. Assume an oxide thickness of 7.2 nm and find the maximum voltage that may be applied to the gate.

  2. 2.

    For the MOS structure in problem 1, find the surface potential that yields a concentration of holes at the surface of 1020 cm−3 at 25 °C. What is the surface concentration of electrons for this case?

  3. 3.

    An idealized MOS structure is constructed on a P-type substrate of uniform concentration N A = 5 × 1016 cm−3.

    1. (a)

      Assume an oxide thickness t ox = 12.5 nm and 25 °C and find the threshold voltage.

    2. (b)

      While the MOS structure is kept at 25 °C in a dark enclosure, the gate voltage is pulsed from 0 to +5 V and held constant at +5 V. Find the depletion width immediately after the pulse.

    3. (c)

      Estimate the inversion layer concentration, Q n, after the surface fully relaxes to its steady-state condition.

  4. 4.

    Show that for a uniformly doped MOSFET body the body-bias effect can be expressed as

    $$\frac{{{\text{d}}V_{\text{T}} }}{{{\text{d}}V_{\text{B}} }} = \frac{{C_{\text{min} } }}{{C_{\text{max} } - C_{\text{min} } }}$$

    where V B is the source to body voltage.

  5. 5.

    Approximate the field at the silicon surface field and in the oxide for the structure in problem 3. For

    1. (a)

      V G = V T at onset of strong inversion.

    2. (b)

      V G = 5 V, in deep depletion.

    3. (c)

      V G = 5 V in steady-state strong-inversion.

  6. 6.

    The following assumptions are made for simplicity: Long and wide buried-channel PMOS; uniform buried-channel concentration N A = 5 × 1016 cm−3; buried-channel junction depth x jbp = 0.12 μm; N-well concentration at junction N D = 5 × 1016 cm−3; EOT t eq = 12.5 nm; degenerately doped N+-poly gate; temperature 25 °C. Estimate: The threshold voltage and subthreshold slope.

  7. 7.

    An NMOS having an EOT of 13 nm is fabricated on a 2 Ω-cm substrate. The source, drain, and substrate are grounded and the gate biased such that the substrate surface potential is +0.5 V. Assume 25 °C, Q eff = 0 and find the surface concentrations of electrons and holes. For an N+ polysilicon gate, find the corresponding gate voltage.

  8. 8.

    For the structure in problem 6 find the surface potential at onset of strong inversion, the maximum depletion width, the maximum bulk charge density in steady-state strong inversion, the threshold voltage, and the number of electrons per cm2.

  9. 9.

    An NMOS is made on a P-type substrate with N A = 2.5 × 1017 cm−3, inversion t eq = 8.0 nm, and an N+-polysilicon gate. The effective oxide charge is Q eff = + 2×1011 q C/cm2. The effective channel dimensions are L eff = 0.5 μm, W eff = 2 μm. For 25 and 140 °C find:

    1. (a)

      The threshold voltage for V D = 0.1 V.

    2. (b)

      The subthreshold slope in mV/decade.

    3. (c)

      The drain current at (V G − V T) = 3.0 V, V D = 0.1 V and 3.0 V.

    4. (d)

      The transconductance for the voltage conditions in (c).

  10. 10.

    A long- and wide-channel isolated NMOS having a P-well concentration N A = 1.8 × 1017 cm−3, t eq = 13.0 nm in inversion. Assume 25 °C. By how much should the source to P-well junction be reverse biased to obtain an increase in V T of 0.2 V?

  11. 11.

    Assume that the channel length in problem 8. Is L eff = 1 μm and neglect fringe capacitances. Estimate f T at 25 °C for V G − V T = 3.0 V and V D = 3.0 V.

  12. 12.

    A 5 V PMOS is biased at (V G − V T) = −2.5 V. The drain current is measured as 0.251 mA/μm (width) at V D = −3 V and 0.252 mA/μm at V D = −4 V. Find the drain conductance, the output resistance and the Early voltage.

  13. 13.

    The threshold voltage of an enhancement-mode NMOS is 0.6 V. Find the dose of arsenic that must be implanted in silicon under the gate of the NMOS to transform it into a depletion-mode NMOS with V T = −0.8 V. Assume t eq = 13 nm and the implanted arsenic to have a fully ionized impulse profile located at the silicon surface.

  14. 14.

    The gate, source, and drain of a PMOS are degenerately doped and the gate oxide thickness is 12.5 nm. Approximate the field in the oxide in the overlapped drain region for the following cases:

    1. (a)

      The drain is at ground and the gate is P+-poly at 5 V.

    2. (b)

      The drain is at ground and the gate is N+-poly at 5 V.

    3. (c)

      The gate is P+-poly at ground and the drain is at 5 V.

    4. (d)

      The gate is N+-poly at ground and the drain is at 5 V.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Kareh, B., Hutter, L.N. (2015). Analog/RF CMOS. In: Silicon Analog Components. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2751-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2751-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2750-0

  • Online ISBN: 978-1-4939-2751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics