Skip to main content

Mismatch and Noise

  • Chapter
  • First Online:
Silicon Analog Components
  • 1826 Accesses

Abstract

Component mismatch limits the precision of analog circuits, such as converters and current mirrors, and noise ultimately sets a lower limit on signals that can be detected and processed. Both mismatch and noise can have a large impact on the precision of analog and mixed-signal circuits. The first part of this chapter discusses random and systematic mismatch in passive and active components, mismatch characterization, and process and design methods to reduce mismatch. The second part describes the different noise mechanisms, focusing on low-frequency noise and methods to reduce it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-B. Shyu, G. C. Temes, and F. Krummenacher, “Random error effects in matched MOS capacitors and current sources,” IEEE J. Solid-State Circuits, SC-17, 1070-1076, 1982, and SC-19 (6), 948-955, 1984.

    Google Scholar 

  2. K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, SC-21 (6), 1057-1066, 1986.

    Google Scholar 

  3. A. Hastings, The Art of Analog Layout, 254-300, Prentice Hall, 2001.

    Google Scholar 

  4. M. J. M. Pelgrom, A. C. J., Duinmaijer, and A. P. G., Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, 24 (5), 1433-1440, 1989.

    Google Scholar 

  5. P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE J. Solid-State Circuits, 40 (6), 1212-1224, 2005.

    Google Scholar 

  6. M. J. M. Pelgrom, H. P. Tuinhout, and M. Vertregt, “Transistor matching in analog CMOS applications,” IEEE IEDM Tech. Digest 915-918, 1998.

    Google Scholar 

  7. M. Steyaert, J. Bastos, R. Roovers, P. Kinget, W. Sansen, B. Graindourze, A. Pergoot, and Er. Janssens, “Threshold voltage mismatch in shortchannel MOS transistors,” Electronics Lett., 30 (18), 1546-1547, 1994.

    Google Scholar 

  8. S. J. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS Transistor Mismatch,” IEEE J. Solid-State Circuits, 33 (1), 147-150, 1998.

    Google Scholar 

  9. G. Baccarani, M. Severi, and G. Soncini, “A new method for the determination of the interface-state density in the presence of statistical fluctuation of the surface potential,” Applied Phys. Lett., 23 (5), 265-267, 1973.

    Google Scholar 

  10. R. Castagne and A. Vapaille, “Apparent interface state density introduced by the spatial fluctuations of surface potential in an M.O.S. structure,” Electronics Lett., 6 (22), 691-693, 1970.

    Google Scholar 

  11. R. W. Keyes, “Physical limits in digital electronics,” Proc. IEEE, 740-768, 1975.

    Google Scholar 

  12. B. Hoeneisen and C. A. Mead, “Fundamental limitations in microelectronics – I. MOS technology,” Solids-State Electron., 15 (7), 819-829, 1972.

    Google Scholar 

  13. K. Takeuchi, T. Tatsumi, and A. Furukawa, “Channel engineering for the reduction of random-dopant-placement-induced threshold voltage fluctuation,” IEEE IEDM Tech. Digest, 841-844, 1997.

    Google Scholar 

  14. P. A. Stolk and D. B. M. Klaassen, “The effect of statistical dopant fluctuations on MOS device performance,” IEEE IEDM Tech. Digest, 627-630, 1996.

    Google Scholar 

  15. T. Mizuno, J.-I. Okamura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs,” IEEE Trans. Electron. Dev., 41 (11), 2216-2221, 1994.

    Google Scholar 

  16. A. Asenov and S. Saini, “Polysilicon gate enhancement of the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxide,” IEEE Trans. Electron Dev., 47 (4), 805-812, 2000.

    Google Scholar 

  17. J. A. Croon, H. P. Tuinhout, R. Difrenza, J. Knol, A. J. Moonen, S. Decoutere, H. E. Maes, and W. Sansen, “A comparison of extraction techniques for threshold voltage mismatch,” IEEE ICMTS Tech. Digest, 225-240, 2002.

    Google Scholar 

  18. H. P. Tuinhout, A. H. Montree, and P. A. Stolk, “Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors,” IEEE IEDM Tech. Digest, 631-634, 1997.

    Google Scholar 

  19. R. Difrenza, J. C. Vildeuil, P. Llinares, and G. Ghibaudo, “Impact of grain number fluctuations in the MOS transistor gate on matching performance,” IEEE ICMTS Tech. Digest, 244-249, 2003.

    Google Scholar 

  20. H. Ryssel, H. Iberl, M. Bleier, G. Prine, K. Haberger, and H. Kranz, “Arsenic-Implanted Polysilicon Layers,” Appl. Phys., 24 (3), 197-200, 1981.

    Google Scholar 

  21. B. Swaminathan, K. C. Saraswat, and R. W.. Dutton, “Diffusion of arsenic in polycrystalline silicon,” Appl. Phys. Lett., 40 (9), 795-798, 1982.

    Google Scholar 

  22. M. Arienzo, Y. Komem, and A. E. Michel, “Diffusion of arsenic in bilayer polycrystalline silicon films,” J. Appl. Phys., 55 (2) 365-369, 1984.

    Google Scholar 

  23. H. Schaber, R. v. Criegern, and I. Weitzel, “Analysis of polycrystalline diffusion source by secondary ion mass spectroscopy,” J. Appl. Phys., 58 (11), 4036-4042, 1985.

    Google Scholar 

  24. J. M. C. Stork, M. Arienzo, and C. Y. Wong, “Correlation between the diffusive and electrical barrier properties of the interface in polysilicon contacted n+-p junctions,” IEEE Trans. Electron Dev., 32 (9), 1766-1770, 1985.

    Google Scholar 

  25. J. L. Hoyt, E. F. Crabbé, R. F. W. Pease, J. F. Gibbons, and A. F. Marshall, “Lateral uniformity of n +/p junctions formed by arsenic diffusion from epitaxially aligned polycrystalline silicon on silicon”, J. Electrochem. Soc., 135 (7), 1773-1779, 1988.

    Google Scholar 

  26. S. Nédèle, D. Mathiot, and M. Gaunneau, “Diffusion of boron on polycrystalline silicon,” ESSDERC Tech. Digest, 153-156, 1996.

    Google Scholar 

  27. A. Wang and K. C. Saraswat, “A strategy for modeling of variations due to grain size in polycrystalline thin-film transistors,” IEEE Trans. Electron Dev., 47 (5), 1035-1043, 2000.

    Google Scholar 

  28. J. T. Horstmann, U. Hilleringmann, and K. F. Goser, “Matching analysis of deposition defined 50-nm MOSFETs,” IEEE Trans. Electron Dev., 45 (1), 299-306, 1998.

    Google Scholar 

  29. T. Tanaka, T. Ususki, T. Futatsugi, Y. Momiyama, and T. Sugii, “Vth fluctuation induced by statistical variation of pocket dopant profile,” IEEE IEDM Tech. Digest, 271-274, 2000.

    Google Scholar 

  30. U. Schaper and J. Enfield, “Matching model for planar bulk transistors with halo implantation,” IEEE Electron Dev. Lett., 32 (7), 589-591, 2011.

    Google Scholar 

  31. J. A. Croon, E. Augendre, S. Decoutere, W. Sanden, and H. E. Maes, “Influence of doping profile and halo implantation on the threshold voltage mismatch of a 0.13 μm CMOS technology,” ESSDERC, 579-582, 2002.

    Google Scholar 

  32. K. Rochereau, R. Difrenza, J. McGinley, O. Noblanc, C. Julien, S. Parihar, and P. Llinares, “Impact of pocket implant on MOSFET mismatch for advanced CMOS technology,” IEEE ICMTS, 123-126, 2004.

    Google Scholar 

  33. C. M. Mezzomo, A. Bajolet, A. Cathignol, and G. Ghibaudo, “Drain current variability in 45 nm heavily pocket-implanted bulk MOSFET,” ESSDERC, 122-125, 2010.

    Google Scholar 

  34. S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, and K. Ronse, “Metrology method for the correlation of line edge roughness for different resists before and after etch,” Microelectronics Eng., 57-58, 665-672, 2001.

    Google Scholar 

  35. S. Xiong and J. Bokor, “A simulation study of gate line edge roughness effects on doping profiles of short-channel MOSFET devices,” IEEE Trans. Electron Dev., 51 (2), 228-232, 2004.

    Google Scholar 

  36. L. H. A. Leunissen, M. Ercken, G. P. Patsis, “Determining the impact of statistical fluctuations on resist line edge roughness,” Microelectronic Eng., 78–79, 2–10, 2005.

    Google Scholar 

  37. C. H. Diaz, H.-J. Tao, Y.-C. Ku, A. Yen, and K. Young, “An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling,” IEEE Electron Dev. Lett., 22 (6), 287-289, 2001.

    Google Scholar 

  38. T. Linton, M. Chandhok, B. J. Rice, and C. Schrom, “Determination of the line edge roughness specification for 34 nm devices,” IEEE IEDM Tech. Digest, 303-306, 2002.

    Google Scholar 

  39. J. A. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W, Sansen, and H. E. Maes, “Line edge roughness: Characterization, modeling and impact on device behavior,” IEEE IEDM Tech. Digest, 307-310, 2002.

    Google Scholar 

  40. G. Declerck, “A look into the future of nanoelectronics,” Symp. VLSI Tech. Digest, 6-10, 2005.

    Google Scholar 

  41. M. Steyart, J. Bastos, R. Roovers, P. Kinget, W. Samsen, B. Graindourze, A. Pergoot, and Er. Janssens, “Threshold voltage mismatch in short-channel MOS transistors,” Electronic Lett., 30 (18), 146-148, 1994.

    Google Scholar 

  42. R. W. Keyes, “High-mobility FET in strained silicon,” IEEE Trans. Electron Dev., ED-33 (6), 853, 1986.

    Google Scholar 

  43. K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si N-MOSFETs,” IEEE Trans. Electron Dev., 47 (7), 1406-1415, 2000.

    Google Scholar 

  44. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buchler, R. Chau, S. Cea, T. Ghani, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyire, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L.. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Masry, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Dev., 51 (11), 1790-1796, 2004.

    Google Scholar 

  45. G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS drive current reduction by transistor layout and trench induced stress,” IEEE IEDM Tech. Digest, 827-830, 1999.

    Google Scholar 

  46. P. G. Drennan, M. L. Kniffin, and D. R. Locascio, “Implications of proximity effects for analog designs,” Custom Integrated Circuits Conference (CICC), 169-176, 2006.

    Google Scholar 

  47. K.W. Su, Y.M. Sheu, C.K. Lin, S.J. Yang, W.J. Liang, X. Xi, C.S. Chiang, J. K. Her, Y. T. Chia, C. H. Diaz, and C. Hu, “A scaleable model for STI mechanical stress effect on layout dependence of MOS electrical characteristics,” Custom Integrated Circuits Conference (CICC), 245-248, 2003.

    Google Scholar 

  48. R. A. Bianchi, G. Bouche, O. Roux-dit-Buisson, “Accurate modeling of trench isolation induced mechanical stress effects on MOSFET electrical parameters,” IEEE IEDM Tech. Digest, 117-120, 2002.

    Google Scholar 

  49. N. Wils, H. P. Tuinhout, and M. Meijer, “Characterization of STI edge effects on CMOS variability,” IEEE Trans. Semiconductor Manufacturing, 22 (1), 59-65, 2009.

    Google Scholar 

  50. T. B. Hook, J. Brown, P. Cottrell, E. Adler, D. Hoyniak, J. Johnson, and R. Mann, “Lateral ion implant straggle and mask proximity effect”, IEEE Trans Electron Dev., 50 (9), 1946-1951, 2003.

    Google Scholar 

  51. T. Kanamoto, Y. Ogasahara, K. Natsume, K. Yamaguchi, H. Amishiro, T. Watanabe, and M. Hashimoto, “Impact of well edge proximity effect on timing,” Device Research Conf., 115-118, 2007.

    Google Scholar 

  52. Y. M. Sheu, K. W. Su, S. J. Yang, H. T. Chen, C. C. Wang, M. J. Chen, and S. Liu, “Modeling well edge proximity effect on highly-scaled MOSFETs,” IEEE Custom Integrated Circuits Conf. , 831-834, 2005.

    Google Scholar 

  53. J. Watts, K. W. Su, and M. Basel, “Netlisting and modeling well-proximity effects,” IEEE Trans. Electron Dev., 53 (9), 2179-2196, 2006.

    Google Scholar 

  54. A. R. Brown, G. Roy, and A. Asenov, “Poly-Si-gate-related variability in decananometer MOSFETs with conventional architecture,” IEEE Trans. Electron Dev., 54 (11) 3036-3063, 2007.

    Google Scholar 

  55. H. Tuinhout, M. Pelgrom, R. Penning de Vries, and M. Vertregt, “Effects of metal coverage on MOSFET matching,” IEEE IEDM Tech. Digest, 735-738, 1997.

    Google Scholar 

  56. X. Wu, J. Trogolo, F. Inoue, Z. Chen, P. Jones-Williams, I. Khan, and P. Madhani, “Impact of sinter process and metal coverage on transistor mismatching and parameter variations in analog CMOS technology” IEEE ICMTS Tech Digest, 69-73, 2007.

    Google Scholar 

  57. P. G. Drennan, C. C. McAndrew, and J. Bates, “A comprehensive vertical BJT mismatch model,” IEEE BCTM Tech. Digest., 83-86, 1998.

    Google Scholar 

  58. H. P. Tuinhout, “Improving BiCMOS technologies using BJT parametric mismatch characterization, ”IEEE BCTM Tech. Digest, 163-170, 2003.

    Google Scholar 

  59. P. G. Drennan, C. C. McAndrew,, J. Bates, and D. Schroder, “Rapid evaluation of the root causes of BJT mismatch,” IEEE BCTM Tech. Digest, 122-127, 2000.

    Google Scholar 

  60. C. McAndrew, J. Bates, T. T. Ida, and P. Drennan, “Efficient statistical BJT modeling, why β is more than IC/IB,” IEEE BCTM Tech. Digest, 28-31, 1997.

    Google Scholar 

  61. S. Bordez, S. Danaie, R. Difrenza, J.-C. Vildeuil, and G. Morin, “Study of bipolar matching at high current level with various test configurations leading to a new model approach,” IEEE BCTM Tech. Digest, 62-65, 2005.

    Google Scholar 

  62. P. G. Drennan, “Diffused resistor mismatch modeling and characterization,” IEEE BCTM Tech. Digest, 27-30, 1999.

    Google Scholar 

  63. F. Larsen, M. Ismail, and C. Abel, “A versatile structure for on-chip extraction of resistance matching properties,” IEEE Trans. Semiconductor Manufacturing, 9 (2), 281-285, 1996.

    Google Scholar 

  64. R. Thewes, R. Brederlow, C. Dahl, U. Kollmer, C. G. Linnenbank, B. Holzapfl, J. Becker, J. Kissing, S. Kessel, and W. Weber, “Explanation and quantitative model for the matching behavior of poly-silicon resistors,” IEEE IEDM Tech Digest., 771-774, 1998.

    Google Scholar 

  65. H. Thibieroz, P. Shaner, and Z. C. Butler, “Mismatch and flicker noise characterization of tantalum nitride thin film resistors for wireless applications,” IEEE ICMTS Tech Digest, 207-212, 2001.

    Google Scholar 

  66. U. Grünebaum, J. Oehm, and K. Schumacher, “Mismatch modeling and simulation – a comprehensive approach,” Analog Integrated Circuits and Signal Processing, Kluwer Academic Publishers, 29, 165-171, 2001.

    Google Scholar 

  67. H. Iwai and S. Kohyama, “On-chip capacitance measurement circuits in VLSI structures,” IEEE Trans. Electron Dev., ED-29 (10), 1622-1626, 1982.

    Google Scholar 

  68. B. Eitan, “Channel-length measurement technique based on a floating-gate device,” IEEE Electron Dev. Lett., 9 (7), 340-342, 1988.

    Google Scholar 

  69. C. Kortekaas, “On-chip quasi-static floating-gate capacitance measurement method,” IEEE ICMTS Tech. Digest, 109-113, 1990.

    Google Scholar 

  70. H. P. Tuinhout, H. Elzinga, J. T. Brugman, and F. Postma, “Accurate capacitor matching measurements using floating gate test structures,” IEEE ICMTS Tech. Digest, 133-137, 1995.

    Google Scholar 

  71. H. P. Tuinhout, H. Elzinga, J. T. Brugman, and F. Postma, “The floating gate measurement technique for characterization of capacitor matching,” IEEE Trans. Semicon. Manuf. 9 (1), 2-8, 1996.

    Google Scholar 

  72. J. Hunter, P. Gudem, and S. Winters, “A differential floating gate capacitance mismatch measurement technique,” IEEE ICMTS Tech. Digest 142-147, 2000.

    Google Scholar 

  73. W. Tian, J. Trogolo, R. Todd, and L. Hutter, “Gate oxide leakage and floating gate capacitor matching test,” IEEE ICMTS Tech. Digest, 19-22, 2007.

    Google Scholar 

  74. A. van der Ziel, Noise in Solid State Devices and Circuits, John Wiley & Sons, 1986.

    Google Scholar 

  75. M. von Haartman and M. Östling, Low-Frequency Noise in Advanced NOS Devices, Springer, 2007.

    Google Scholar 

  76. A. L. McWhorter, “1/f noise and germanium surface properties,” in Semiconductor Surface Physics, R. H. Kingston, Editor, University of Pennsylvania Press, 207-228, 1957.

    Google Scholar 

  77. F. N. Hooge, “1/f noise,” Physica, 83B, 14-23, 1976.

    Google Scholar 

  78. H. Nyquist. Thermal Agitation of Electric Charge in Conductors. Phys. Rev., 32 (1), 110-113, 1928.

    Google Scholar 

  79. J. B. Johnson. Thermal Agitation of Electricity in Conductors. Phys. Rev., 32 (1), 97-109, 1928.

    Google Scholar 

  80. W. Schottky, “Ueber spontane Stromschwankungen in vershiedenen Elektrizitaetsleitern,” (On the spontaneous current fluctuations in different conductors,” Annalen der Physik, 57, 541-567, (1918).

    Google Scholar 

  81. M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise,” Advances in Physics, 38 (4), 367-468, 1989.

    Google Scholar 

  82. K. Kandiah and F. B. Whiting, “Low frequency noise in junction field-effect transistors,” Solid-State Electronics, 31 (8), 1079-1088, 1978.

    Google Scholar 

  83. R. C. Jaeger and A. J. Brodersen, “Low frequency noise sources, in bipolar junction transistors,” IEEE Trans. Electron Dev., ED-17 (2), 128-134, 1970.

    Google Scholar 

  84. M. J. Kirton, M. J. Uren, and S. Collins, “Individual interface states and their implication for low-frequency noise in MOSFETs,” Appl. Surf. Science, 30 (1-4), 148-152, 1987.

    Google Scholar 

  85. C. Surya and T. Y.Hsiang, “Surface mobility fluctuations in metal-oxide-semiconductor field-effect transistors,” Phys. Rev. B., 35 (12), 6343-6347, 1987.

    Google Scholar 

  86. K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph noise of deep-submicrometer MOSFETs,” IEEE Electron Dev. Lett., 11 (2), 90-92, 1990.

    Google Scholar 

  87. K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, “Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise,” Phys. Rev. Lett., 52 (3), 228-231, 1984.

    Google Scholar 

  88. M. J. Uren, D. J. Day, and M. J. Kirton, “1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., 47 (11), 1195-1197, 1985.

    Google Scholar 

  89. Y. F. Lim, Y. Z. Xiong, N. Singh, R. Yang, Y. Jiang, D. S. H. Chan, W. Y. Loh, L. K. Bera, G. Q. Lo, N. Balasubramanian, and D. -L. Kwong, “Random telegraph signal noise in gate-all-around Si-FinFET with ultra-narrow body,” IEEE Trans. Electron Dev., 77 (9), 765-768, 2006.

    Google Scholar 

  90. S.-R. Li, W. McMahon, Y.-L. R. Lu, and Y.-H. Lee, “RTS noise characterization in flash cells,“ IEEE Electron Dev. Lett., 29 (1), 106-108, 2008.

    Google Scholar 

  91. C. M. Compagnoni, R. Gusmeroli, A. S. Spinelli, and A. Visconti, “RTN VT instability from the stationary trap-filling condition : An analytical spectroscopic investigation,” IEEE Trans. Electron Dev., 55 (2), 655-661, 2008.

    Google Scholar 

  92. R. H. Howard, W. J. Skocpol, L. D. Jackel, P. M. Mankiewich, L. A. Fetter, D. M. Tennant, R. Epworth, and K. S. Ralls, “Single electron switching events in nanometer-scale Si MOSFETs,” IEEE Trans. Electron Dev., ED-32 (9), 1669-1674, 1985.

    Google Scholar 

  93. S. Machlup, “Noise in semiconductors: spectrum of a two-parameter random signal,” J. Appl. Phys., 25, 241-243, 1954.

    Google Scholar 

  94. J. L. Plumb and E. R. Chenette, “Flicker noise in transistors,” IEEE Trans. Electron Dev., 10 (5), 304-308, 1963.

    Google Scholar 

  95. O. Roux dit Buisson and G. Moria, “Flicker noise characteristics of polysilicon resistors in submicron BiCMOS technologies,” IEEE ICMTS Tech. Digest, 49-51, 1997.

    Google Scholar 

  96. E. Zhao, R. Krithivasan, A. K. Sutton, Z. Jin, J. D. Cressler, B. El-Kareh, S. Balster, and H. Yasuda, “An investigation of low-frequency noise in complementary SiGe HBTs,” IEEE Trans. Electron Dev., 53 (2), 329-338, 2006.

    Google Scholar 

  97. F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., 44, 479-531, 1981.

    Google Scholar 

  98. P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys., 53, 497-516, 1981.

    Google Scholar 

  99. Klaassen, F.M., “Characterization of low 1/f noise in MOS transistors’, IEEE Trans. Electron Dev., ED-18 (10), pp. 887–891, 1971.

    Google Scholar 

  100. G. Ghibaudo, O, Roux, C.N. Duc, F. Balestra, and J. Brini, “Improved analysis of low frequency noise in field-effect MOS transistors’, Phys. Status Solidi (a), 124-128,. 571–581, 1991.

    Google Scholar 

  101. K. K. Hung, P. K. Ko, C. C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors”, IEEE Trans. Electron Dev., 37, (3), 654–665, 1990.

    Google Scholar 

  102. S. Christensson, I. Lundstrom, and C. Svensson, “Low frequency noise in m.o.s. transistor. Pt. I—Theory, Pt. II—Experiments”, Solid-State Electronics, 11, 797-820, 1968.

    Google Scholar 

  103. C. T. Sah and F. H. Hielscher,:”Evidence of the surface origin of the 1//noise”, Phys. Rev. Lett., 17, 956-, 1966.

    Google Scholar 

  104. K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, “Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise,” Phys. Rev. Lett., 52 (3), 228-231, 1984.

    Google Scholar 

  105. T. Boutchacha, G. Ghibaudo, and B. Belmekki, “Study of low frequency noise in the 0.18 μm silicon CMOS transistors,” IEEE ICMTS Tech. Digest, 84–88, 2004.

    Google Scholar 

  106. M. Valenza, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez and D. Rigaud, “Overview of the impact of downscaling technology on 1/f noise in p-MOSFETs to 90 nm,” IEEE Proc. Circuits, Devices, and Systems, 151 (2), 102-110, 2004.

    Google Scholar 

  107. J. Chang, A. A. Abidi, and C. R. Viswanathan, “Flicker noise in CMOS transistors from subthreshold to strong inversion,” IEEE Trans. Electron Dev., 41 (11), 1965-1971, 1994.

    Google Scholar 

  108. B. El-Kareh and J. H. Kim, “Low-frequency noise in precision analog components,” Korean Conference on Semiconductors (KCS), Seoul, Korea, May 2012.

    Google Scholar 

  109. R. Brederlow, W. Weber, R. Jurk, C. Dahl, S. Kessle, J. Holz, W. Sauer, P. Klein, B. Lemaire, D. Schmitt-Landsieldel, and R. Thewes, “Influence of fluorinated gate oxides on the low frequency noise of MOS transistors under analog operation,” ESSDERC, 472-475, 1998.

    Google Scholar 

  110. M. M. Nelson, K. Yokoyama, M. Thomason, G. Scott, and B. Greenwood, “Efficacy of fluorine doping at various stages on noise reduction,” IEEE Worshop on Microelectr. and Electron Dev. (WMED), 17-20, 2005.

    Google Scholar 

  111. T. P. Ma, “Metal-oxide-semiconductor gate oxide reliability and the role of fluorine,” J. Vac. Sci. Tech., A-10, 705-712, 1992.

    Google Scholar 

  112. A. Balasinski, M. H. Tsai, L. Vishnuhotta, T. P. Ma, H. H. Tseng, and P. J. Tobin, “Interface properties in fluorinated (100) and (111) Si/SiO2 MOSFETs,” Microelectr. Eng., 22, 97-100, 1993.

    Google Scholar 

  113. P. Wright and K. C. Saraswat, “The effect of fluorine in silicon dioxide gate dielectrics,” IEEE Trans. Electron Dev., 36 (5), 879-889, 1989.

    Google Scholar 

  114. J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hyden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The effects of boron penetration on p+ polysilicon gated PMOS devices,” IEEE Trans. Electron Dev., 37 (8), 1842-1850, 1990.

    Google Scholar 

  115. J. J. Sung and C. Y. Lu, “A comprehensive study on p + polysilicon-gate MOSFET’s instability with fluorine incorporation,” IEEE Trans. Electron Dev., 37 (11), 2312-2320, 1990.

    Google Scholar 

  116. M. Cao, P. V. Voorde, M. Cox, and W. Greene, “Boron diffusion and penetration in ultrathin oxide with poly-Si gate,” IEEE Electron Dev. Lett., 19 (8), 291-293, 1998.

    Google Scholar 

  117. K. A. Ellis and R. A. Buhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. Res. Dev. 43 (3), 287-300, 1999.

    Google Scholar 

  118. M. Marin, J. C. Vildeuil, B. Tavel, B. Duriez, F. Arnaud, P. Stolk, and M. Woo,” Can 1/f noise in MOSFETs be reduced by gate oxide and channel optimization?,” Proc. Intnl. Conf. Noise and Fluctuations -ICNF, 195-198, 2005.

    Google Scholar 

  119. K.W. Chew, K.S. Yeo, and S.-F. Chu, “Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep submicron NMOS transistors,” IEE Proc.-Circuits Devices Syst., 151 (5), 415-421, 2004.

    Google Scholar 

  120. P. Morfouli, G. Ghibaudo, T. Ouisse, E. Vogel, W. Hill, V. Misra, P. McLarty, and J. J. Wortman, “Low-frequency noise characterization of n- and p-MOSFET’s with ultrathin oxynitride gate films,” IEEE Trans. Electron Dev., 17 (8), 395-397, 1996.

    Google Scholar 

  121. R. Jayaraman and G. C. Sodini, “1/f noise interpretation of the effect of gate oxide nitridation and reoxidation in dielectric traps”, IEEE Trans. Electron Devices, 37, (1), 305–309, 1990.

    Google Scholar 

  122. G. Lucovsky, “Ultrathin nitrided gate dielectrics: Plasma processing, chemical characterization, performance, and reliability,” IBM J. Res. Dev., 43 (3), 301-326, 1999.

    Google Scholar 

  123. M. Da Rold, E. Smoen, S. Mertens, M. Schaekers, G, Badenes, and S. Decoutere, “Impact of gate oxide nitridation process on 1/f noise in 0.18 mm CMOS,” Microelectron. Reliab., 41, 1933-1938, 2001.

    Google Scholar 

  124. R. V. Wang, Y. H. Lee, Y. L. R. Lu, W. McMahon, S. Hu, A. Ghetti, “Shallow Trench Isolation Edge Effect on Random Telegraph Signal Noise and Implications for Flash Memory,” IEEE Trans. Electron Dev., 56 (9), 2107-2113 , 2009.

    Google Scholar 

  125. C. Y. Chan, Y. S. Lin, Y. C. Huang, S. S. H. Hsu, and Y. Z. Juang, “Impact of STI effect on flicker noise in 0.13 mm nMOSFETs,” IEEE Trans Elecron Dev., 54 (12) m 3383-3392, 2007.

    Google Scholar 

  126. P. Srinivasan, W. Xiong, and S. Zhao, “Low-frequency noise in integrated N-well resistors,” IEEE Electron DEv.Lett., 31 (12) , 1476-1478, 2010.

    Google Scholar 

  127. F. N. Hooge, T. G. M. Kleinpenning, and L. K. J.Vandamme, “Experimental studies on l/f noise,” Reports on Progress in Physics, 44,(5), 479-532, 1981.

    Google Scholar 

  128. F. N. Hooge,”1/f noise is no surface effect”, Phys. Lett. A 29, 141-141, 1969.

    Google Scholar 

  129. L. K. Vandamme and H. H. Casier, “The 1/f noise versus sheet resistance in poly-Si is similar to poly-SiGe resistors and Au-layers,” ESSDERC, 365-368, 2004.

    Google Scholar 

  130. K. M. Chen, G.W. Huang, J. F. Kuan, H.. J. Huang, C. Y. Chang, and T. H. Yang, “Low Frequency Noise in Boron Doped Poly-SiGe Resistors,” MTT-S, 405-408, 2002.

    Google Scholar 

  131. R. Brederlow, W. Weber, C. Dahl, D. Schmitt-Landsiedel, and R. Thewes,”Low-Frequency Noise of Integrated Poly-SiliconResistors,” IEEE Trans. Electron Dev., 48 (6), 1180-1187, 2001.

    Google Scholar 

  132. M. Da Rold, S. Van Huylenbroek, B. Knuts, E. Simoen, and S. Decoutere, “On the basic correlation between polysilicon resistor linearity, matching and 1/f noise,” ESSDERC, 448-651, 1999.

    Google Scholar 

  133. H. Thibieroz, P. Shaner, and Z. C.elik Butler, “Mismatch and flicker Noise characterization of tantalum nitride thin film resistors for wireless applications,” IEEE ICMTS Tech. Digest, 287-212, 2001.

    Google Scholar 

  134. G. Niu, “Noise in SiGe HBT RF technology: Physics, modeling, and circuit implications,” Proc. IEEE, 93 (9), 1583-1597, 2005.

    Google Scholar 

  135. “Integration of a Complementary-SiGe BiCMOS Process for High-Speed Analog Application”, Silicon Heterostructure Handbook, John Cressler, Editor, CRC Press, July 2005.

    Google Scholar 

  136. B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C Dirnecker, P. Foglietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekofer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J. W. Weijtmans, and C. Willis, “.A 5 V complementary-SiGe BiCMOS technology for high-speed precision analog circuits,” IEEE Proc. BCTM, 211-214, 2003.

    Google Scholar 

  137. W. E. Zhao, A. K. Sutton, B. M. Haugerud, J. D. Cressler, P. W. Marshall, R. A. Reed, S. G. Balster, H. Yasuda, and B. El-Kareh “The Effect of Radiation on 1/f Noise in Complementary (NPN + PNP) HBTs”, IEEE Trans. Nuclear Science, 51 (6), 3243-3249, 2004.

    Google Scholar 

  138. P. T. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, 330-332, 2001.

    Google Scholar 

  139. R. J. Baker, CMOS Circuit Design, Layout, and Simulations, John Wiley & Sons, IEEE press, 613-616, 2010.

    Google Scholar 

  140. B. Wang, J. M. Hellums, and C. G. Sodini, “MOSFET thermal noise modeling for analog integrated circuits,” IEEE JSSC, 29 (7), 833-835, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badih El-Kareh .

Problems

Problems

The temperature is 300 K unless otherwise stated.

  1. 1.

    An NMOS pair exhibits a standard deviation of threshold voltage mismatch, \(\sigma_{{\Delta V_{\text{T}} }} ,\) of 10 mV. Scattering of phosphorus during implantation causes the effective doping concentration in the channel of one NMOS to increase by 1010 cm−2 while the other NMOS remains unaffected. Assume a long and wide channel and an equivalent oxide thickness of 12.5 nm and sketch the distribution of a large number of mismatch measurements.

  2. 2.

    The figure below shows two N-well resistors that are identically constructed in a P-substrate, except for a degenerately doped poly conductor crossing one of the resistors. Assume a uniform N-well phosphorus concentration of 5 × 1016 cm−3, a uniform P-substrate boron concentration of 5 × 1014 cm−3, and disregard edge effects. Estimate the systematic mismatch between the two resistors (Fig. P2).

    Fig. P2
    figure 32

    N-well resistor matching problem 5.2

  3. 3.

    Two identical MOSFETs are connected with first metal and operated in the linear mode. The metal line connecting the common source to ground is 50-μm long and 10-μm wide, and the metal lines connecting the MOSFET drains are 50-μm long and 20-μm wide on one MOSFET and 50-μm long and 0.25-μm wide on the other. Describe qualitatively how this design would affect mismatch.

  4. 4.

    Consider the array of polysilicon resistors of a uniform sheet resistance 250 Ω/□ in Fig. P4. The resistor-body length body is L = 10 μm and its drawn width and space, respectively, W = 0.5 μm and S = 0.5 μm. The measured resistance is 6250 Ω at each end of the array and 5000 Ω at the array center. Assume the difference to be solely due to a linear gradient in over-etch, and

    1. (a)

      Find the etch-bias per resistor edge.

    2. (b)

      Plot the systematic mismatch as a function of distance between array center and array edge.

    Fig. P4
    figure 33

    Polysilicon resistor matching problem 5.4

  5. 5.

    Calculate the shot noise in a diode current of 1.5 mA in a bandwidth of 1 MHz.

  6. 6.

    The power spectral density of the noise voltage is measured as 2.5 × 10−16 V2/Hz for a bandwidth of 1 MHz. Find the root-mean-square of the noise voltage.

  7. 7.

    A polysilicon resistor has a resistance of 250 Ω, what is the PSD of the thermal noise voltage 300 K?

  8. 8.

    The resistor in Problem 5.6 shows a flicker noise PSD of 3.2 × 10−19 A2/Hz. Find the root-mean-square of current noise in the bandwidth 10 Hz–1 kHz.

  9. 9.

    The flicker noise is measured on an NMOSFET as \(S_{{I_{\text{D}} }}\) = 5 × 10−17 A2/Hz at 100 Hz, V G − V T = 2.5 V, and I D = 5 mA. The channel length and width are, respectively, 0.6 and 10 μm. For an equivalent oxide thickness t eq = 12.5 nm, estimate the effective oxide trap density and the input-referred voltage noise.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Kareh, B., Hutter, L.N. (2015). Mismatch and Noise. In: Silicon Analog Components. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2751-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2751-7_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2750-0

  • Online ISBN: 978-1-4939-2751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics