Skip to main content

Inflammation and Lung Cancer: The Link to Angiogenesis

  • Chapter
  • First Online:
Inflammation and Lung Cancer

Abstract

Emerging studies have begun to strengthen the link between chronic inflammation and cancer. Inflammation is now accepted as an underlying or enabling characteristic that contributes to key hallmarks of cancer, and nonsteroidal anti-inflammatory drugs (NSAID) have shown a reduction in the risk of several cancers. In lung cancer patients, pulmonary disorders, such as chronic obstructive pulmonary disease (COPD) and emphysema, constitute comorbid conditions and comprise an independent risk factor for lung cancer. Despite the clinical association, the mechanistic link between COPD and lung cancer is not completely understood and constitutes an area of intense investigation. Notably, chronic inflammation appears to be a pivotal pathological feature in both COPD and lung cancer. The inflammatory microenvironment encountered in COPD/emphysema may contribute to tumorigenesis via several possible signaling pathways, including angiogenesis. Accumulating evidence suggests that angiogenesis is closely linked to inflammation, with regulators of angiogenesis playing key roles in various inflammatory conditions and vice versa. Inflammatory cells, namely neutrophils, mast cells, monocytes/macrophages, and lymphocytes, play an active role in enhancing tumor angiogenesis by secreting chemokines, inflammatory cytokines, and proteases into the local microenvironment that control endothelial cell (EC) activation by virtue of regulating proliferation, survival and apoptosis, and migration. Therefore, targeting the inflammatory and angiogenic pathways provides unique opportunities for both prevention and treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal C, Somaiah N, Simon G (2012) Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther 13:247–263

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Arenberg DA, Polverini PJ, Kunkel SL, Shanafelt A, Hesselgesser J, Horuk R, Strieter RM (1997) The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J Leukoc Biol 62:554–562

    CAS  PubMed  Google Scholar 

  3. Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86:226–235

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177

    CAS  PubMed  Google Scholar 

  5. Baggiolini M, Clark-Lewis I (1992 Jul 27) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307(1):97–101

    CAS  PubMed  Google Scholar 

  6. Balkwill F (2002 Apr) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13(2):135–141 Review

    CAS  PubMed  Google Scholar 

  7. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    CAS  PubMed  Google Scholar 

  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Beamer CA, Migliaccio CT, Jessop F, Trapkus M, Yuan D, Holian A (2010) Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol 88:547–557

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bergers G, Benjamin LE (2003) Angiogenesis: Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    CAS  PubMed  Google Scholar 

  11. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000 Oct) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Blumenschein GR (2012) Developmental antiangiogenic agents for the treatment of non-small cell lung cancer (NSCLC). Invest New Drugs 30:1802–1811

    CAS  PubMed  Google Scholar 

  13. Blumenschein GR, Kabbinavar F, Menon H, Mok TS, Stephenson J, Beck JT, Lakshmaiah K, Reckamp K, Hei YJ, Kracht K., et al (2011) A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer. Ann Oncol 22:2057–2067

    PubMed  Google Scholar 

  14. Brattström D, Bergqvist M, Hesselius P, Larsson, A, Wagenius, G, Brodin O (2004) Serum VEGF and bFGF adds prognostic information in patients with normal platelet counts when sampled before, during and after treatment for locally advanced non-small cell lung cancer. Lung Cancer 43:55–62

    PubMed  Google Scholar 

  15. Brindle NP, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Carlini MJ, De Lorenzo MS, Puricelli L (2011) Cross-talk between tumor cells and the microenvironment at the metastatic niche. Curr Pharm Biotechnol 12:1900–1908

    CAS  PubMed  Google Scholar 

  17. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    CAS  PubMed  Google Scholar 

  18. Catena R, Bhattacharya N, El Rayes T, Wang S, Choi H, Gao D, Ryu S, Joshi N, Bielenberg D, Lee, S.B., et al (2013) Bone marrow-derived gr1 + cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 3:578–589

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739

    CAS  PubMed  Google Scholar 

  20. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514

    CAS  PubMed  Google Scholar 

  21. Cook-Mills JM, Deem TL (2005) Active participation of endothelial cells in inflammation. J Leukoc Biol 77:487–495

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, Evseenko D, Wang X, Montelatici E, Lazzari L. et al (2013) Perivascular support of human hematopoietic stem/progenitor cells. Blood 121:2891–2901

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003 Mar7;112(5):645–657

    CAS  PubMed  Google Scholar 

  25. Cressey R, Wattananupong O, Lertprasertsuke N, Vinitketkumnuen U (2005) Alteration of protein expression pattern of vascular endothelial growth factor (VEGF) from soluble to cell-associated isoform during tumourigenesis. BMC Cancer 5:128

    PubMed Central  PubMed  Google Scholar 

  26. Germainellato E, Travan L, Ribatti D (2010) Mast cells and basophils: a potential link in promoting angiogenesis during allergic inflammation. Int Arch Allergy Immunol 151:89–97

    Google Scholar 

  27. Daniluk J, Liu Y, Deng D, Chu J, Huang H, Gaiser S, Cruz-Monserrate Z, Wang H, Ji B, Logsdon CD (2012) An NF-κB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest 122:1519–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Das M, Wakelee H (2012) Anti-angiogenic agents in Non-Small-Cell Lung Cancer (NSCLC): a perspective on the MONET1 (Motesanib NSCLC Efficacy and Tolerability) study. J Thorac Dis 4:558–561

    PubMed Central  PubMed  Google Scholar 

  29. De Palma M Venneri MA Roca C Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9:789–795

    CAS  PubMed  Google Scholar 

  30. Del Moral PM Sala FG Tefft D Shi W Keshet E Bellusci S Warburton D (2006) VEGF-A signaling through Flk-1 is a critical facilitator of early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Dev Biol 290:177–188

    CAS  PubMed  Google Scholar 

  31. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, et al (2011) Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147:539–553

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Drazen JM (2005) COX-2 inhibitors-a lesson in unexpected problems. N Engl J Med 352:1131–1132

    CAS  PubMed  Google Scholar 

  33. Dudek AZ, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Invest 23:193–200

    CAS  PubMed  Google Scholar 

  34. Dundar E, Oner U, Peker BC, Metintas M, Isiksoy S, Ak G (2008) The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J Int Med Res 36:88–95

    CAS  PubMed  Google Scholar 

  35. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    CAS  PubMed  Google Scholar 

  36. Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH, Klenotic PA, Cutler A, Asosingh K, Erzurum S, Anand-Apte B (2010) Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. Am J Pathol 176(1):496–503. doi:10.2353/ajpath.2010.080642. Epub 2009 Nov 30. PubMed PMID: 19948826

    Google Scholar 

  37. Edelman MJ, Hodgson L, Wang X, Kratzke RA, Vokes EE (2012). Cyclooxygenase-2 (COX-2) as a predictive marker for the use of COX-2 inhibitors in advanced non-small-cell lung cancer. J Clin Oncol 30:2019–2020

    Google Scholar 

  38. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    CAS  PubMed  Google Scholar 

  39. Ergün, S, Hohn HP, Kilic N, Singer BB, Tilki D (2008) Endothelial and hematopoietic progenitor cells (EPCs and HPCs): hand in hand fate determining partners for cancer cells. Stem Cell Rev 4:169–177

    PubMed  Google Scholar 

  40. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Fagiani E, Lorentz P, Kopfstein L, Christofori G (2011 Sep 1) Angiopoietin-1 and -2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res 71(17):5717–5727

    CAS  PubMed  Google Scholar 

  42. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    CAS  PubMed  Google Scholar 

  43. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400.

    CAS  PubMed  Google Scholar 

  44. Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27:552–558

    CAS  PubMed  Google Scholar 

  45. Folkman J (1975) Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82:96–100

    CAS  PubMed  Google Scholar 

  46. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996 Sep) Activation of vascular endothelial growth factor gene transcription byhypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Franses JW, Edelman ER (2011) The evolution of endothelial regulatory paradigms in cancer biology and vascular repair. Cancer Res 71:7339–7344

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Franses JW, Baker AB, Chitalia VC, Edelman ER (2011). Stromal endothelial cells directly influence cancer progression. Sci Transl Med 3:66ra65

    Google Scholar 

  49. Fullerton JN, O'Brien AJ, Gilroy DW (2013) Pathways mediating resolution of inflammation: when enough is too much. J Pathol 231:8–20

    PubMed  Google Scholar 

  50. Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3

    Google Scholar 

  51. Gao D, Mittal V (2009) The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med 15:333–343

    CAS  PubMed  Google Scholar 

  52. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009). Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17:245–251

    CAS  PubMed  Google Scholar 

  54. Ginzberg HH, Cherapanov V, Dong Q, Cantin A, McCulloch CA, Shannon PT, Downey GP (2001) Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am J Physiol Gastrointest Liver Physiol 281:G705–G717

    CAS  PubMed  Google Scholar 

  55. Giordano RJ, Lahdenranta J, Zhen L, Chukwueke U, Petrache I, Langley RR, Fidler IJ, Pasqualini R, Tuder RM, Arap W (2008) Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J Biol Chem 283:29447–29460

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Greene CM, McElvaney NG (2009) Proteases and antiproteases in chronic neutrophilic lung disease–relevance to drug discovery. Br J Pharmacol 158:1048–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Green LA, Petrusca D, Rajashekhar G, Gianaris T, Schweitzer KS, Wang L, Justice MJ, Petrache I, Clauss M (2012) Cigarette smoke-induced CXCR3 receptor up-regulation mediates endothelial apoptosis. Am J Respir Cell Mol Biol 47:807–814

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    CAS  PubMed  Google Scholar 

  59. Gu FM, Li QL, Gao Q, Jiang JH, Zhu K, Huang XY, Pan JF, Yan J, Hu JH, Wang Z, Dai Z, Fan J, Zhou J (2011) IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 10:150

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Gunawardena KA, Gullstrand H, Perrett J (2013) Pharmacokinetics and safety of AZD9668, an oral neutrophil elastase inhibitor, in healthy volunteers and patients with COPD. Int J Clin Pharmacol Ther 51:288–304

    CAS  PubMed  Google Scholar 

  61. Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21

    CAS  PubMed  Google Scholar 

  62. Hanumegowda C, Farkas L, Kolb M (2012) Angiogenesis in pulmonary fibrosis: too much or not enough? Chest 142:200–207

    CAS  PubMed  Google Scholar 

  63. Herbst RS (2008) Bevacizumab/chemotherapy in non-small-cell lung cancer: looking for a few good men? Clin Lung Cancer 9:75–76

    PubMed  Google Scholar 

  64. Herbst RS, Onn A, Sandler A (2005) Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 23:3243–3256

    CAS  PubMed  Google Scholar 

  65. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    CAS  PubMed  Google Scholar 

  66. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355

    CAS  PubMed  Google Scholar 

  67. Holopainen T, Saharinen P, D'Amico G, Lampinen A, Eklund L, Sormunen R, Anisimov A, Zarkada G, Lohela M, Heloterä H, et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104:461–475

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, L and SR, Marconcini LA, Kliment CR et al (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hu B, Cheng SY (2009 Mar) Angiopoietin-2: development of inhibitors for cancer therapy. Curr Oncol Rep 11(2):111–116.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hu J, Bianchi F, Ferguson M, Cesario A, Margaritora S, Granone P, Goldstraw P, Tetlow M, Ratcliffe C, Nicholson AG et al (2005) Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24:1212–1219

    CAS  PubMed  Google Scholar 

  71. Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O'Toole K, Zabski S, Rudge JS et al (2003) Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A 100:7785–7790

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Imhof BA, Aurrand-Lions M (2006) Angiogenesis and inflammation face off. Nat Med 12:171–172

    CAS  PubMed  Google Scholar 

  73. Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11:457–465

    CAS  PubMed  Google Scholar 

  74. Jackson AL, Zhou B, Kim WY (2010) HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets 14:1047–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    CAS  PubMed  Google Scholar 

  76. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8–29

    PubMed  Google Scholar 

  77. Jing Y, Ma N, Fan T, Wang C, Bu X, Jiang G, Li R, Gao L, Li D, Wu M, Wei L (2011) Tumor necrosis factor-alpha promotes tumor growth by inducing vascular endothelial growth factor. Cancer Invest 29(7):485–493. doi:10.3109/07357907.2011.597812

    CAS  PubMed  Google Scholar 

  78. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117

    CAS  PubMed  Google Scholar 

  79. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    PubMed  Google Scholar 

  80. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436. Review. PubMed PMID: 6724054

    Google Scholar 

  81. Kawamoto H, Minato N (2004) Myeloid cells. Int J Biochem Cell Biol 36:1374–1379

    CAS  PubMed  Google Scholar 

  82. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    CAS  PubMed  Google Scholar 

  83. Keshamouni VG, Arenberg DA, Reddy RC, Newstead MJ, Anthwal S, Standiford TJ (2005) PPAR-gamma activation inhibits angiogenesis by blocking ELR + CXC chemokine production in non-small cell lung cancer. Neoplasia 7:294–301

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    CAS  PubMed  Google Scholar 

  85. Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13:175–181

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Kuo HP, Lee DF, Xia W, Wei Y, Hung MC (2009 Nov 27) TNFalpha induces HIF-1alpha expression through activation of IKKbeta. Biochem Biophys Res Commun 389(4):640–644

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lamagna C, Bergers G (2006) The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol 80:677–681

    CAS  PubMed  Google Scholar 

  88. Lara PN, Douillard JY, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo DS, Fan X et al (2011) Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol 29:2965–2971

    CAS  PubMed  Google Scholar 

  89. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005 May 23) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT, Dubinett SM (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66:208–217

    PubMed Central  PubMed  Google Scholar 

  91. Lee CG, Ma B, Takyar S, Ahangari F, Delacruz C, He CH, Elias JA (2011) Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 8:512–515

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Lee JS, Hirsh V, Park K, Qin S, Blajman CR, Perng RP, Chen YM, Emerson L, Langmuir P, Manegold C (2012) Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol 30:1114–1121

    CAS  PubMed  Google Scholar 

  93. Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-Thrombospondin-1 Axis. Cell 156:440–455

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Leung WK, To KF, Go MY, Chan KK, Chan FK, Ng EK, Chung SC, Sung JJ (2003) Cyclooxygenase-2 upregulates vascular endothelial growth factor expression and angiogenesis in human gastric carcinoma. Int J Oncol 23:1317–1322

    CAS  PubMed  Google Scholar 

  95. Levy BD, Serhan CN (2013) Resolution of acute inflammation in the lung. Annu Rev Physiol 76:467–492

    Google Scholar 

  96. Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    CAS  PubMed  Google Scholar 

  97. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    CAS  PubMed  Google Scholar 

  98. Li J, Perrella MA, Tsai JC, Yet SF, Hsieh CM, Yoshizumi M, Patterson C, Endege WO, Zhou F, Lee ME (1995 Jan 6) Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem 270(1):308–312

    CAS  PubMed  Google Scholar 

  99. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003 Mar 15) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376

    CAS  PubMed  Google Scholar 

  100. Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, Wu CT, Chen HY, Yang SC, Hong TM et al (2013) MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun 4:1877

    PubMed  Google Scholar 

  101. Lingen MW (2001) Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med 125:67–71

    CAS  PubMed  Google Scholar 

  102. Luo H, Chen Z, Jin H, Zhuang M, Wang T, Su C, Lei Y, Zou J, Zhong B (2011) Cyclooxygenase-2 up-regulates vascular endothelial growth factor via a protein kinase C pathway in non-small cell lung cancer. J Exp Clin Cancer Res 30:6. doi:10.1186/1756-9966-30-6. PubMed PMID: 21219643

    Google Scholar 

  103. Maier JAM, Hla T, Maciag T (1990) Cyclooxygenase is an immediate early gene induced by interleukin-1 in human endothelial cells. J Biol Chem 265:10805–10808

    CAS  PubMed  Google Scholar 

  104. Mammoto A, Mammoto T, Kanapathipillai M, Wing Yung C, Jiang E, Jiang A, Lofgren K, Gee EP, Ingber DE (2013) Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nat Commun 4:1759

    PubMed  Google Scholar 

  105. Marek L, Ware KE, Fritzsche A, Hercule P, Helton WR, Smith JE, McDermott LA, Coldren CD, Nemenoff RA, Merrick DT et al (2009) Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol Pharmacol 75:196–207

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526

    CAS  PubMed  Google Scholar 

  107. McClelland MR, Carskadon SL, Zhao L, White ES, Beer DG, Orringer MB, Pickens A, Chang AC, Arenberg DA (2007) Diversity of the angiogenic phenotype in non-small cell lung cancer. Am J Respir Cell Mol Biol 36:343–350

    CAS  PubMed Central  PubMed  Google Scholar 

  108. McCormack VA, Hung RJ, Brenner DR, Bickeböller H, Rosenberger A, Muscat JE, Lazarus P, Tjønneland A, Friis S, Christiani DC et al (2011) Aspirin and NSAID use and lung cancer risk: a pooled analysis in the International Lung Cancer Consortium (ILCCO). Cancer Causes Control 22:1709–1720

    PubMed  Google Scholar 

  109. McDonald DM (2001) Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med 164:S39–S45

    Google Scholar 

  110. McDonald DM, Baluk P (2005) Imaging of angiogenesis in inflamed airways and tumors: newly formed blood vessels are not alike and may be wildly abnormal: Parker B. Francis lecture. Chest 128:602S–608S

    PubMed  Google Scholar 

  111. McKeage MJ, Von Pawel J, Reck M, Jameson MB, Rosenthal MA, Sullivan R, Gibbs D, Mainwaring PN, Serke M, Lafitte JJ., et al (2008) Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer 99:2006–2012

    CAS  PubMed Central  PubMed  Google Scholar 

  112. McKeage MJ, Reck M, Jameson MB, Rosenthal MA, Gibbs D, Mainwaring PN, Freitag L, Sullivan R, Von Pawel J (2009) Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800 mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 65:192–197

    PubMed  Google Scholar 

  113. McLoughlin P, Keane MP (2011) Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 1:1473–1508

    PubMed  Google Scholar 

  114. Minami T, Jiang S, Schadler K, Suehiro J, Osawa T, Oike Y, Miura M, Naito M, Kodama T, Ryeom S (2013) The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases. Cell Rep 4:709–723

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Moscatelli D, Presta M, Rifkin DB (1986a) Purification of a factor from human placenta that stimulates endothelial cell protease production, DNA synthesis and migration. Proc Natl Acad Sci U S A 83:2091–2095

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Muller WA (2011) Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6:323–344

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E (2013) Angiogenic axis angiopoietin-1 and angiopoietin-2/Tie-2 in non-small cell lung cancer: a bronchoalveolar lavage and serum study. Adv Exp Med Biol 788:341–348

    CAS  PubMed  Google Scholar 

  118. Neal JW, Wakelee HA (2013) Aflibercept in lung cancer. Expert Opin Biol Ther 13:115–120

    CAS  PubMed  Google Scholar 

  119. Nikolic I, Plate KH, Schmidt MH (2010) EGFL7 meets miRNA-126: an angiogenesis alliance. J Angiogenes Res 2:9

    PubMed Central  PubMed  Google Scholar 

  120. Offersen BV, Pfeiffer P, Hamilton-Dutoit S, Overgaard J (2001) Patterns of angiogenesis in nonsmall-cell lung carcinoma. Cancer 91:1500–1509

    CAS  PubMed  Google Scholar 

  121. Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99:1501–1506

    CAS  PubMed  Google Scholar 

  122. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    CAS  PubMed  Google Scholar 

  123. Oshika Y, Nakamura M, Tokunaga T, Ozeki Y, Fukushima Y, Hatanaka H, Abe Y, Yamazaki H, Kijima H, Tamaoki N et al (1998) Expression of cell-associated isoform of vascular endothelial growth factor 189 and its prognostic relevance in non-small cell lung cancer. Int J Oncol 12:541–544

    CAS  PubMed  Google Scholar 

  124. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    PubMed Central  PubMed  Google Scholar 

  127. Park JH, Park KJ, Kim YS, Sheen SS, Lee KS, Lee HN, Oh YJ, Hwang SC (2007) Serum angiopoietin-2 as a clinical marker for lung cancer. Chest 132:200–206

    CAS  PubMed  Google Scholar 

  128. Pauling MH, Vu TH (2004) Mechanisms and regulation of lung vascular development. Curr Top Dev Biol 64:73–99

    CAS  PubMed  Google Scholar 

  129. Paz-Ares LG, Biesma B, Heigener D, von Pawel J, Eisen T, Bennouna J, Zhang L, Liao M, Sun Y, Gans S et al (2012) Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lung cancer. J Clin Oncol 30:3084–3092

    CAS  PubMed  Google Scholar 

  130. Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427

    PubMed Central  PubMed  Google Scholar 

  131. Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550

    CAS  PubMed  Google Scholar 

  132. Planchard D (2011) Bevacizumab in non-small-cell lung cancer: a review. Expert Rev Anticancer Ther 11:1163–1179

    CAS  PubMed  Google Scholar 

  133. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    CAS  PubMed  Google Scholar 

  134. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Rahman I (2005) The role of oxidative stress in the pathogenesis of COPD: implications for therapy. Treat Respir Med 4:175–200

    PubMed  Google Scholar 

  136. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234

    CAS  PubMed  Google Scholar 

  137. Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, von Pawel J, Gottfried M, Bondarenko I, Liao M et al (2014) Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol 15:143–155

    CAS  PubMed  Google Scholar 

  138. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A (1997 Mar) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6(3):315–325

    CAS  PubMed  Google Scholar 

  139. Rüegg C (2006) Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol 80:682–684

    PubMed  Google Scholar 

  140. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M (1996 Nov 8) Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 271(45):28220–28228

    CAS  PubMed  Google Scholar 

  141. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    CAS  PubMed  Google Scholar 

  142. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    CAS  PubMed  Google Scholar 

  143. Scagliotti GV, Vynnychenko I, Park K, Ichinose Y, Kubota K, Blackhall F, Pirker R, Galiulin R, Ciuleanu TE, Sydorenko O et al (2012) International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J Clin Oncol 30:2829–2836

    CAS  PubMed  Google Scholar 

  144. Scholz A, Lang V, Henschler R, Czabanka M, Vajkoczy P, Chavakis E, Drynski J, Harter PN, Mittelbronn M, Dumont DJ et al (2011) Angiopoietin-2 promotes myeloid cell infiltration in a βâ-integrin-dependent manner. Blood 118:5050–5059

    CAS  PubMed  Google Scholar 

  145. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998 Jun 29) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Serhan CN (2011) The resolution of inflammation: the devil in the flask and in the details. FASEB J 25:1441–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Shimanuki Y, Takahashi K, Cui R, Hori S, Takahashi F, Miyamoto H, Fukurchi Y (2005) Role of serum vascular endothelial growth factor in the prediction of angiogenesis and prognosis for non-small cell lung cancer. Lung 183:29–42

    CAS  PubMed  Google Scholar 

  148. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta + perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Stefanovic S, Schuetz F, Sohn C, Beckhove P, Domschke C (2013) Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev 32:163–178

    CAS  PubMed  Google Scholar 

  150. Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR (2008) Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc 5:783–791

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Strieter RM, Belperio JA, Burdick MD, Sharma S, Dubinett SM, Keane MP (2004a) CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci 1028:351–360

    CAS  PubMed  Google Scholar 

  152. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004b) CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14:195–200

    CAS  PubMed  Google Scholar 

  153. Sun S, Schiller JH, Spinola M, Minna JD (2007) New molecularly targeted therapies for lung cancer. J Clin Invest 117:2740–2750

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L (2010) miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 391:1483–1489.

    CAS  PubMed  Google Scholar 

  155. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, Blackwell TS, Baron RM et al (2012) MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest 122:1973–1990

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E (1997) Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol 62(3):397–400. PubMed PMID: 9307080

    Google Scholar 

  157. Tan KW, Chong SZ, Wong FH, Evrard M, Tan SM, Keeble J, Kemeny DM, Ng LG, Abastado JP, Angeli V (2013) Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood 122:3666–3677

    CAS  PubMed  Google Scholar 

  158. Vaguliene N, Zemaitis M, Lavinskiene S, Miliauskas S, Sakalauskas R (2013) Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease. BMC Immunol 14:36

    PubMed Central  PubMed  Google Scholar 

  159. van Hinsbergh VW Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212

    PubMed  Google Scholar 

  160. Vandenbroucke RE, Dejonckheere E, Libert C (2011) A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J 38:1200–1214

    CAS  PubMed  Google Scholar 

  161. Wall RJ, Shyr Y, Smalley W (2007) Nonsteroidal anti-inflammatory drugs and lung cancer risk: a population-based case control study. J Thorac Oncol 2:109–114

    PubMed  Google Scholar 

  162. Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, Lévesque JP (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116:375–385

    CAS  PubMed  Google Scholar 

  164. Wragg A, Mellad JA, Beltran LE, Konoplyannikov M, San H, Boozer S, Deans RJ, Mathur A, Lederman RJ, Kovacic JC et al (2008) VEGFR1/CXCR4-positive progenitor cells modulate local inflammation and augment tissue perfusion by a SDF-1-dependent mechanism. J Mol Med (Berl) 86:1221–1232

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, Shaw RJ, Verma IM (2012) Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol 14:257–265

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Yao H, Rahman I (2009) Current concepts on the role of inflammation in COPD and lung cancer. Curr Opin Pharmacol 9:375–383

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Yuan A, Yu CJ, Kuo SH, Chen WJ, Lin FY, Luh KT, Yang PC, Lee YC (2001) Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J Clin Oncol 19:432–441

    CAS  PubMed  Google Scholar 

  168. Yuan A, Lin CY, Chou CH, Shih CM, Chen CY, Cheng HW, Chen YF, Chen JJ, Chen JH, Yang PC et al (2011) Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS One 6:e16062

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Zeiher BG, Matsuoka S., Kawabata K, Repine JE (2002) Neutrophil elastase and acute lung injury: prospects for sivelestat and other neutrophil elastase inhibitors as therapeutics. Crit Care Med 30:S281–S287

    Google Scholar 

  170. Zittermann SI, Issekutz AC (2006a) Basic fibroblast growth factor (bFGF; FGF-2) potentiates leukocyte recruitment to inflammation by enhancing endothelial adhesion molecule expression. Am J Pathol 168:835–846

    Google Scholar 

  171. Zittermann SI, Issekutz AC (2006b) Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation. J Leukoc Biol 80(2):247–57

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partly supported by the Cornell Center on the Microenvironment and Metastasis through Award Number U54CA143876 from the NCI to VM. RC was supported by the National Lung Cancer Partnership (NLCP), and fellowships from the “Government of Navarra” and the “Camara Navarra de Comercio” (Navarra, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

El Rayes, T., Catena, R., Rafii, S., Altorki, N., Mittal, V. (2015). Inflammation and Lung Cancer: The Link to Angiogenesis. In: Dubinett, S. (eds) Inflammation and Lung Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2724-1_5

Download citation

Publish with us

Policies and ethics