Skip to main content

Effect of Hydrolytic Degradation on the In Vivo Properties of Monoclonal Antibodies

  • Chapter
Biobetters

Abstract

Monoclonal antibodies (mAbs) are increasingly used to treat diseases such as cancers, autoimmune disorders and inflammatory diseases. They are, however, highly susceptible to chemical modifications that can affect their potency and predispose patients to adverse immunogenic responses. This chapter presents the common routes of hydrolytic degradation of mAbs, their effects on in vivo performance, and the various strategies used to overcome these effects in developing “biobetter” antibody products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChR:

Acetylcholine receptors

ADCC:

Antibody-dependent cellular cytotoxicity

CDC:

Complement-dependent cytotoxicity

CDR:

Complementarity-determining region

CH:

Constant heavy chain

CL:

Constant light chain

DKP:

Diketopiperazine

EndoF1-3:

Endo-β-N-acetylgluccosaminidases

ER:

Endoplasmic reticulum

Fab:

Antigen binding fragment

Fc:

Fragment crystallizable

GSH:

Glutathione

Ig:

Immunoglobulin

mAbs:

Monoclonal antibodies

MBL:

Mannan binding lectin

MG:

Myasthenia gravis

MR:

Mannose receptor

PDI:

Protein disulfide isomerase

PML:

Progressive multifocal leucoencephalopathy

scFv:

Single chain fragment variable

SLE:

Systemic lupus erythematosus

SpA:

Staphylococcal protein A

SpG:

Streptococcal protein G

VH:

Variable heavy chain

VL:

Variable light chain

References

  • Allhorn M, Olin AI, Nimmerjahn F, Collin M (2008a) Human IgG/Fc gamma R interactions are modulated by streptococcal IgG glycan hydrolysis. PLoS One 3:e1413

    PubMed Central  PubMed  Google Scholar 

  • Allhorn M, Olsen A, Collin M (2008b) Endos from streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity. BMC Microbiol 8:3

    PubMed Central  PubMed  Google Scholar 

  • Alpers DH (1969) Separation and isolation of rat and human intestinal beta-galactosidases. J Biol Chem 244:1238–1246

    CAS  PubMed  Google Scholar 

  • Andya JD, Hsu CC, Shire SJ (2003) Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci 5:E10

    PubMed  Google Scholar 

  • Angal S, King DJ, Bodmer MW, Turner A, Lawson AD, Roberts G, Pedley B, Adair JR (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108

    CAS  PubMed  Google Scholar 

  • Aronson NN, Kuranda MJ (1989) Lysosomal degradation of Asn-linked glycoproteins. FASEB J 3:2615–2622

    CAS  PubMed  Google Scholar 

  • Asp NG, Dahlqvist A (1972) Human small intestine -galactosidases: specific assay of three different enzymes. Anal Biochem 47:527–538

    CAS  PubMed  Google Scholar 

  • Aswad DW (ed) (1994) Deamidation and isoaspartate formation in peptides and proteins. CRC, Ann Arbor

    Google Scholar 

  • Aswad DW, Paranandi MV, Schurter BT (2000) Isoaspartate in peptides and proteins: formation, significance, and analysis. J Pharm Biomed Anal 21:1129–1136

    CAS  PubMed  Google Scholar 

  • Baert F, Noman M, Vermeire S, Van Assche G, D’Haens G, Carbonez A, Rutgeerts P (2003) Influence of Immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348:601–608

    CAS  PubMed  Google Scholar 

  • Bartelds GM, Wijbrandts CA, Nurmohamed MT, Stapel S, Lems WF, Aarden L, Dijkmans BA, Tak PP, Wolbink GJ (2007) Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann Rheum Dis 66:921–926

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartelds GM, Krieckaert CL, Nurmohamed MT, Van Schouwenburg PA, Lems WF, Twisk JW, Dijkmans BA, Aarden L, Wolbink GJ (2011) Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305:1460–1468

    CAS  PubMed  Google Scholar 

  • Bazin-Redureau MI, Renard CB, Scherrmann JM (1997) Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab′)2 and Fab after intravenous administration in the rat. J Pharm Pharmacol 49:277–281

    CAS  PubMed  Google Scholar 

  • Beck A (2011) Biosimilar, biobetter and next generation therapeutic antibodies. MAbs 3:107–110

    PubMed  Google Scholar 

  • Beck A, Cochet O, Wurch T (2010) Glycofi’s technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov 5:95–111

    CAS  PubMed  Google Scholar 

  • Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21:2153–2163

    CAS  PubMed  Google Scholar 

  • Brassart D, Baussant T, Wieruszeski JM, Strecker G, Montreuil J, Michalski JC (1987) Catabolism of N-glycosylprotein glycans - evidence for a degradation pathway of sialylglyco-asparagines resulting from the combined action of the lysosomal aspartylglucosaminidase and endo-N-acetyl-beta-D-glucosaminidase – a 400-mhz H-1-NMR study. Eur J Biochem 169:131–136

    CAS  PubMed  Google Scholar 

  • Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ (2001) Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res 18:1345–1353

    CAS  PubMed  Google Scholar 

  • Brennan TV, Clarke S (1993) Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: effects of the solvent dielectric. Protein Sci 2:331–338

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brennan TV, Clarke S (1994) The effects of sequence and solution environment. In: Aswad DW (ed) Deamidation and isoaspartate formation in pepties and proteins. CRC, Ann Arbor

    Google Scholar 

  • Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, Luongo JL, Oberholtzer A, Knight DM, Jordan RE (2009) Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci U S A 106:17864–17869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buchegger F, Haskell CM, Schreyer M, Scazziga BR, Randin S, Carrel S, Mach JP (1983) Radiolabeled fragments of monoclonal antibodies against carcinoembryonic antigen for localization of human colon carcinoma grafted into nude mice. J Exp Med 158:413–427

    CAS  PubMed  Google Scholar 

  • Burnaugh AM, Frantz LJ, King SJ (2008) Growth of streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 190:221–230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burton DR, Wilson IA (2007) Immunology. Square-dancing antibodies. Science 317:1507–1508

    CAS  PubMed  Google Scholar 

  • Cacia J, Keck R, Presta LG, Frenz J (1996) Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35:1897–1903

    CAS  PubMed  Google Scholar 

  • Capasso S, Salvadori S (1999) Effect of the three-dimensional structure on the deamidation reaction of ribonuclease A. J Pept Res 54:377–382

    CAS  PubMed  Google Scholar 

  • Chang LL, Shepherd D, Sun J, Tang XC, Pikal MJ (2005) Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: implications for the mechanism of protein stabilization in the solid state. J Pharm Sci 94:1445–1455

    CAS  PubMed  Google Scholar 

  • Chelius D, Rehder DS, Bondarenko PV (2005) Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin G antibodies. Anal Chem 77:6004–6011

    CAS  PubMed  Google Scholar 

  • Clarke S (1999) A protein carboxyl methyltransferase that recognizes age-damaged peptides and proteins and participates in their repair. In: Cheng X, Blumenthal RM (eds) S-adenosylmethionine-dependent methyltransferases: structures and functions. World Scientific, Singapore, pp 123–148

    Google Scholar 

  • Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10:307–377

    CAS  PubMed  Google Scholar 

  • Cleland JL, Lam X, Kendrick B, Yang J, Yang TH, Overcashier D, Brooks D, Hsu C, Carpenter JF (2001) A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci 90:310–321

    CAS  PubMed  Google Scholar 

  • Cohen SL, Price C, Vlasak J (2007) Beta-elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc 129:6976–6977

    CAS  PubMed  Google Scholar 

  • Collin M, Fischetti VA (2004) A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B. J Biol Chem 279:26802

    CAS  Google Scholar 

  • Collin M, Olsen A (2001a) Effect of SpeB and EndoS from streptococcus pyogenes on human immunoglobulins. Infect Immun 69:7187–7189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collin M, Olsen A (2001b) Endos, a novel secreted protein from streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collin M, Olsen A (2003) Extracellular enzymes with immunomodulating activities: variations on a theme in streptococcus pyogenes. Infect Immun 71:2983–2992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collin M, Shannon O, Bjorck L (2008) IgG glycan hydrolysis by a bacterial enzyme as a therapy against autoimmune conditions. Proc Natl Acad Sci U S A 105:4265–4270

    PubMed Central  PubMed  Google Scholar 

  • Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’haens G, Diamond RH, Broussard DL, Tang KL, Van Der Woude CJ, Rutgeerts P, SONIC Study Group (2010) Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med 362:1383–1395

    CAS  PubMed  Google Scholar 

  • Cordoba AJ, Shyong BJ, Breen D, Harris RJ (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci 818:115–121

    CAS  PubMed  Google Scholar 

  • Correia IR (2010) Stability of IgG isotypes in serum. MAbs 2:221–232

    PubMed Central  PubMed  Google Scholar 

  • Costantino HR, Schwendeman SP, Langer R, Klibanov AM (1998) Deterioration of lyophilized pharmaceutical proteins. Biochemistry (Mosc) 63:357–363

    CAS  Google Scholar 

  • Daugherty AL, Mrsny RJ (2006) Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 58:686–706

    CAS  PubMed  Google Scholar 

  • Demeule B, Shire SJ, Liu J (2009) A therapeutic antibody and its antigen form different complexes in serum than in phosphate-buffered saline: a study by analytical ultracentrifugation. Anal Biochem 388:279–287

    CAS  PubMed  Google Scholar 

  • Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, Plant M, Henkle B, Li Y, Deechongkit S, Varnum B, Wypych J, Balland A, Bondarenko PV (2008) Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem 283:16206–16215

    PubMed Central  CAS  PubMed  Google Scholar 

  • Distler JJ, Jourdian GW (1973) The purification and properties of beta-galactosidase from bovine testes. J Biol Chem 248:6772–6780

    CAS  PubMed  Google Scholar 

  • Doyle HA, Zhou J, Wolff MJ, Harvey BP, Roman RM, Gee RJ, Koski RA, Mamula MJ (2006) Isoaspartyl post-translational modification triggers anti-tumor T and B lymphocyte immunity. J Biol Chem 281:32676–32683

    CAS  PubMed  Google Scholar 

  • Elder JH, Alexander S (1982) Endo-beta-N-acetylglucosaminidase F: endoglycosidase from flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc Natl Acad Sci U S A 79:4540–4544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ellerson JR, Yasmeen D, Painter RH, Dorrington KJ (1976) Structure and function of immunoglobulin domains. III. Isolation and characterization of a fragment corresponding to the Cgamma2 homology region of human immunoglobin G1. J Immunol 116:510–517

    CAS  PubMed  Google Scholar 

  • Ewert S, Honegger A, Pluckthun A (2003) Structure-based improvement of the biophysical properties of immunoglobulin VH domains with a generalizable approach. Biochemistry 42:1517–1528

    CAS  PubMed  Google Scholar 

  • Filpula D (2007) Antibody engineering and modification technologies. Biomol Eng 24:201–215

    CAS  PubMed  Google Scholar 

  • Fisher KJ, Aronson NN (1992) Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N-acetylchitobiase. J Biol Chem 267:19607–19616

    CAS  PubMed  Google Scholar 

  • Garbe J, Collin M (2012) Bacterial hydrolysis of host glycoproteins - powerful protein modification and efficient nutrient acquisition. J Innate Immun 4:121–131

    CAS  PubMed  Google Scholar 

  • Garcês S, Demengeot J, Benito-Garcia E (2013) The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis 72:1947–1955

    PubMed  Google Scholar 

  • Gaza-Bulseco G, Liu H (2008) Fragmentation of a recombinant monoclonal antibody at various PH. Pharm Res 25:1881–1890

    CAS  PubMed  Google Scholar 

  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–794

    CAS  PubMed  Google Scholar 

  • Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 251:8–28

    CAS  PubMed  Google Scholar 

  • Goolcharran C, Borchardt RT (1998) Kinetics of diketopiperazine formation using model peptides. J Pharm Sci 87:283–288

    CAS  PubMed  Google Scholar 

  • Gu S, Wen D, Weinreb PH, Sun Y, Zhang L, Foley SF, Kshirsagar R, Evans D, Mi S, Meier W, Pepinsky RB (2010) Characterization of trisulfide modification in antibodies. Anal Biochem 400:89–98

    CAS  PubMed  Google Scholar 

  • Hambly DM, Banks DD, Scavezze JL, Siska CC, Gadgil HS (2009) Detection and quantitation of IgG 1 hinge aspartate isomerization: a rapid degradation in stressed stability studies. Anal Chem 81:7454–7459

    CAS  PubMed  Google Scholar 

  • Harris RJ (2005) Heterogeneity of recombinant antibodies: linking structure to function. Dev Biol (Basel) 122:117–127

    CAS  Google Scholar 

  • Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752:233–245

    CAS  PubMed  Google Scholar 

  • Herlyn D, Powe J, Alavi A, Mattis JA, Herlyn M, Ernst C, Vaum R, Koprowski H (1983) Radioimmunodetection of human tumor xenografts by monoclonal antibodies. Cancer Res 43:2731–2735

    CAS  PubMed  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    CAS  PubMed  Google Scholar 

  • Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77:1432–1439

    CAS  PubMed  Google Scholar 

  • Huhn C, Selman MH, Ruhaak LR, Deelder AM, Wuhrer M (2009) IgG glycosylation analysis. Proteomics 9:882–913

    CAS  PubMed  Google Scholar 

  • Hussack G, Hirama T, Ding W, Mackenzie R, Tanha J (2011) Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One 6:E28218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K (2011) Engineering the variable region of therapeutic IgG antibodies. MAbs 3:243–252

    PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Ito T, Endo R, Nakagawa K, Sawa E, Wakamatsu K (2010) Influence of PH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biol Pharm Bull 33:1413–1417

    CAS  PubMed  Google Scholar 

  • Jung ST, Kang TH, Kelton W, Georgiou G (2011) Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 22:858–867

    CAS  PubMed  Google Scholar 

  • Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, Totpal K, Kelley RF, Sliwkowski MX (2010) Superior in vivo efficacy of afucosylated trastuzumab in the treatment of Her2-amplified breast cancer. Cancer Res 70:4481–4489

    CAS  PubMed  Google Scholar 

  • Kamerzell TJ, Li M, Arora S, Ji JA, Wang YJ (2010) The relative rate of immunoglobulin gamma 1 fragmentation. J Pharm Sci 100(4):1341–1349

    PubMed  Google Scholar 

  • Karamanos Y (1997) Endo-N-acetyl-beta-D-glucosaminidases and their potential substrates: structure/function relationships. Res Microbiol 148:661–671

    CAS  PubMed  Google Scholar 

  • Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S, Schandene L, Crenier L, De Block C, Seigneurin JM, De Pauw P, Pierard D, Weets I, Rebello P, Bird P, Berrie E, Frewin M, Waldmann H, Bach JF, Pipeleers D, Chatenoud L (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608

    CAS  PubMed  Google Scholar 

  • Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P (2010) Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs 2:613–624

    PubMed Central  PubMed  Google Scholar 

  • Kim DY, Kandalaft H, Ding W, Ryan S, Van Faassen H, Hirama T, Foote SJ, Mackenzie R, Tanha J (2012) Disulfide linkage engineering for improving biophysical properties of human VH domains. Protein Eng Des Sel 25:581–589

    CAS  PubMed  Google Scholar 

  • Kimura Y, Hess D, Sturm A (1999) The N-glycans of jack bean alpha-mannosidase. Structure, topology and function. Eur J Biochem 264:168–175

    CAS  PubMed  Google Scholar 

  • Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev Camb Philos Soc 28:416–436

    CAS  Google Scholar 

  • Kosky AA, Razzaq UO, Treuheit MJ, Brems DN (1999) The effects of alpha-helix on the stability of Asn residues: deamidation rates in peptides of varying helicity. Protein Sci 8:2519–2523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989

    CAS  PubMed  Google Scholar 

  • Kravchuk ZI, Vlasov AP, Liakhnovich GV, Martsev SP (1994) A stable conformer of IgG, prepared by an acidic influence: study by calorimetry, binding of the C1q complement component, and monospecific anti-IgG. Biokhimiia 59:1458–1477

    CAS  PubMed  Google Scholar 

  • Kroon DJ, Baldwin-Ferro A, Lalan P (1992) Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res 9:1386–1393

    CAS  PubMed  Google Scholar 

  • Kuranda MJ, Aronson NN (1986) A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in Rat-liver. J Biol Chem 261:5803–5809

    CAS  PubMed  Google Scholar 

  • Labrijn AF, Buijsse AO, Van Den Bremer ET, Verwilligen AY, Bleeker WK, Thorpe SJ, Killestein J, Polman CH, Aalberse RC, Schuurman J, Van De Winkel JG, Parren PW (2009) Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 27:767–771

    CAS  PubMed  Google Scholar 

  • Labrijn AF, Rispens T, Meesters J, Rose RJ, Den Bleker TH, Loverix S, Van Den Bremer ET, Neijssen J, Vink T, Lasters I, Aalberse RC, Heck AJ, Van De Winkel JG, Schuurman J, Parren PW (2011) Species-specific determinants in the IgG CH3 domain enable Fab-arm exchange by affecting the noncovalent CH3-CH3 interaction strength. J Immunol 187:3238–3246

    CAS  PubMed  Google Scholar 

  • Li YT (1967) Studies on the glycosidases in jack bean meal. I. Isolation and properties of alpha-mannosidase. J Biol Chem 242:5474–5480

    CAS  PubMed  Google Scholar 

  • Li YT, Li SC (1968) Studies on the glycosidases in jack bean meal. II. Sepation of various glycosidases by isoelectric focusing. J Biol Chem 243:3994–3996

    CAS  PubMed  Google Scholar 

  • Li L, Kalaga R, Paul S (2000) Proteolytic components of serum IgG preparations. Clin Exp Immunol 120:261–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Borchardt RT, Topp EM, Vandervelde D, Schowen RL (2003) Racemization of an asparagine residue during peptide deamidation. J Am Chem Soc 125:11486–11487

    CAS  PubMed  Google Scholar 

  • Liu H, Gaza-Bulseco G, Sun J (2006) Characterization of the stability of a fully human monoclonal IgG after prolonged incubation at elevated temperature. J Chromatogr B Analyt Technol Biomed Life Sci 837:35–43

    CAS  PubMed  Google Scholar 

  • Liu YD, Chen X, Enk JZ, Plant M, Dillon TM, Flynn GC (2008) Human IgG2 antibody disulfide rearrangement in vivo. J Biol Chem 283:29266–29272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu YD, Van Enk JZ, Flynn GC (2009) Human antibody Fc deamidation in vivo. Biologicals 37:313–322

    CAS  PubMed  Google Scholar 

  • Liu H, Zhong S, Chumsae C, Radziejewski C, Hsieh CM (2011) Effect of the light chain C-terminal serine residue on disulfide bond susceptibility of human immunoglobulin G1lambda. Anal Biochem 408:277–283

    CAS  PubMed  Google Scholar 

  • Lood C, Allhorn M, Lood R, Gullstrand B, Olin AI, Ronnblom L, Truedsson L, Collin M, Bengtsson AA (2012) IgG glycan hydrolysis by endoglycosidase S diminishes the proinflammatory properties of immune complexes from patients with systemic lupus erythematosus: a possible new treatment? Arthritis Rheum 64:2698–2706

    CAS  PubMed  Google Scholar 

  • Lowenson JD, Clarke S (1992) Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem 267:5985–5995

    CAS  PubMed  Google Scholar 

  • Maley F, Trimble RB, Tarentino AL, Plummer TH (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    CAS  PubMed  Google Scholar 

  • Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ, Blier PR (1999) Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem 274:22321–22327

    CAS  PubMed  Google Scholar 

  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    PubMed  Google Scholar 

  • Mather SJ, Durbin H, Taylor-Papadimitriou J (1987) Identification of immunoreactive monoclonal antibody fragments for improved immunoscintigraphy. J Immunol Methods 96:255–264

    CAS  PubMed  Google Scholar 

  • Mccarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    CAS  PubMed  Google Scholar 

  • Mccarter JD, Burgoyne DL, Miao SC, Zhang SQ, Callahan JW, Withers SG (1997) Identification of Glu-268 as the catalytic nucleophile of human lysosomal beta-galactosidase precursor by mass spectrometry. J Biol Chem 272:396–400

    CAS  PubMed  Google Scholar 

  • Mechref Y, Muzikar J, Novotny MV (2005) Comprehensive assessment of N-glycans derived from a murine monoclonal antibody: a case for multimethodological approach. Electrophoresis 26:2034–2046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer JD, Nayar R, Manning MC (2009) Impact of bulking agents on the stability of a lyophilized monoclonal antibody. Eur J Pharm Sci 38:29–38

    CAS  PubMed  Google Scholar 

  • Milenic DE, Esteban JM, Colcher D (1989) Comparison of methods for the generation of immunoreactive fragments of a monoclonal antibody (B72.3) reactive with human carcinomas. J Immunol Methods 120:71–83

    CAS  PubMed  Google Scholar 

  • Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37:697–706

    CAS  PubMed  Google Scholar 

  • Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276:45539–45547

    CAS  PubMed  Google Scholar 

  • Mueller M, Loh MQ, Tee DH, Yang Y, Jungbauer A (2013) Liquid formulations for long-term storage of monoclonal IgGs. Appl Biochem Biotechnol 169:1431–1448

    CAS  PubMed  Google Scholar 

  • Muramatsu T, Koide N, Maeyama K (1978) Further-studies on “endo-beta-N-acetylglucosaminidase-D”. J Biochem 83:363–370

    CAS  PubMed  Google Scholar 

  • Muramatsu H, Tachikui H, Ushida H, Song X, Qiu Y, Yamamoto S, Muramatsu T (2001) Molecular cloning and expression of endo-beta-N-acetylglucosaminidase D, which acts on the core structure of complex type asparagine-linked oligosaccharides. J Biochem 129:923–928

    CAS  PubMed  Google Scholar 

  • Nakano K, Ishiguro T, Konishi H, Tanaka M, Sugimoto M, Sugo I, Igawa T, Tsunoda H, Kinoshita Y, Habu K, Orita T, Tsuchiya M, Hattori K, Yamada-Okabe H (2010) Generation of a humanized anti-glypican 3 antibody by CDR grafting and stability optimization. Anticancer Drugs 21:907–916

    CAS  PubMed  Google Scholar 

  • Omtvedt LA, Royle L, Husby G, Sletten K, Radcliffe CA, Harvey DJ, Dwek RA, Rudd PA (2006) Glycan analysis of monoclonal antibodies secreted in deposition disorders indicates that subsets of plasma cells differentially process IgG glycans. Arthritis Rheum 54:3433–3440

    CAS  PubMed  Google Scholar 

  • Ouellette D, Alessandri L, Chin A, Grinnell C, Tarcsa E, Radziejewski C, Correia I (2010) Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the VH domain of an immunoglobulin G1 molecule. Anal Biochem 397:37–47

    CAS  PubMed  Google Scholar 

  • Pace AL, Wong RL, Zhang YT, Kao YH, Wang YJ (2013) Asparagine deamidation dependence on buffer type, PH, and temperature. J Pharm Sci 102:1712–1723

    CAS  PubMed  Google Scholar 

  • Park SH, Ryu DD (1995) Protein disulfide isomerase reaction kinetics in endoplasmic reticulum for monoclonal antibody refolding and assembly. Ann N Y Acad Sci 750:291–299

    CAS  PubMed  Google Scholar 

  • Peters SJ, Smales CM, Henry AJ, Stephens PE, West S, Humphreys DP (2012) Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability. J Biol Chem 287:24525–24533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plummer TH Jr, Tarentino AL (1991) Purification of the oligosaccharide-cleaving enzymes of flavobacterium meningosepticum. Glycobiology 1:257–263

    CAS  PubMed  Google Scholar 

  • Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20:460–470

    CAS  PubMed  Google Scholar 

  • Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou QW (2007) Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem 364:8–18

    CAS  PubMed  Google Scholar 

  • Raju TS, Scallon B (2007) Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 23:964–971

    CAS  PubMed  Google Scholar 

  • Rao PE, Kroon DJ (1993) Orthoclone OKT3. Chemical mechanisms and functional effects of degradation of a therapeutic monoclonal antibody. Pharm Biotechnol 5:135–158

    CAS  PubMed  Google Scholar 

  • Roberts G, Tarelli E, Homer KA, Philpott-Howard J, Beighton D (2000) Production of an endo-beta-N-acetylglucosaminidase activity mediates growth of enterococcus faecalis on a high-mannose-type glycoprotein. J Bacteriol 182:882–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson NE, Robinson AB (2004) Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Althouse Press, Cave Junction, Or

    Google Scholar 

  • Rodrigues ML, Snedecor B, Chen C, Wong WL, Garg S, Blank GS, Maneval D, Carter P (1993) Engineering Fab′ fragments for efficient F(ab)2 formation in Escherichia coli and for improved in vivo stability. J Immunol 151:6954–6961

    CAS  PubMed  Google Scholar 

  • Rothlisberger D, Honegger A, Pluckthun A (2005) Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 347:773–789

    PubMed  Google Scholar 

  • Shire SJ, Gombotz W, Bechtold-Peters K, Andya J (eds) (2010) Current trends in monoclonal antibody and manufacturing. Springer, New York

    Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 90:1171–1202

    CAS  Google Scholar 

  • Sjogren J, Okumura CYM, Collin M, Nizet V, Hollands A (2011) Study of the IgG endoglycosidase EndoS in group a streptococcal phagocyte resistance and virulence. BMC Microbiol 11:120

    PubMed Central  PubMed  Google Scholar 

  • Smith TW, Lloyd BL, Spicer N, Haber E (1979) Immunogenicity and kinetics of distribution and elimination of sheep digoxin-specific IgG and Fab fragments in the rabbit and baboon. Clin Exp Immunol 36:384–396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder GH, Cennerazzo MJ, Karalis AJ, Field D (1981) Electrostatic influence of local cysteine environments on disulfide exchange kinetics. Biochemistry 20:6509–6519

    CAS  PubMed  Google Scholar 

  • Stein RL (1993) Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Adv Protein Chem 44:1–24

    CAS  PubMed  Google Scholar 

  • Stotz CE, Borchardt RT, Middaugh CR, Siahaan TJ, Vander Velde D, Topp EM (2004) Secondary structure of a dynamic type I’beta-hairpin peptide. J Pept Res 63:371–382

    CAS  PubMed  Google Scholar 

  • Summa D, Spiga O, Bernini A, Venditti V, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Niccolai N, Di Simplicio P (2007) Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model. Proteins 69:369–378

    CAS  PubMed  Google Scholar 

  • Suppavorasatit I, Cadwallader KR (2012) Effect of enzymatic deamidation of soy protein by protein-glutaminase on the flavor-binding properties of the protein under aqueous conditions. J Agric Food Chem 60:7817–7823

    CAS  PubMed  Google Scholar 

  • Szajewski RP, Whitesides GM (1980) Rate constants and equilibrium-constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc 102:2011–2026

    CAS  Google Scholar 

  • Tarentino AL, Plummer TH (1994) Enzymatic deglycosylation of asparagine-linked glycans – purification, properties, and specificity of oligosaccharide-cleaving enzymes from flavobacterium-meningosepticum. Methods Enzymol 230:44–57

    CAS  PubMed  Google Scholar 

  • Tarentino AL, Gomez CM, Plummer TH (1985) Deglycosylation of asparagine-linked glycans by peptide - N-glycosidase-F. Biochemistry 24:4665–4671

    CAS  PubMed  Google Scholar 

  • Taylor NR, Vonitzstein M (1994) Molecular modeling studies on ligand-binding to sialidase from influenza-virus and the mechanism of catalysis. J Med Chem 37:616–624

    CAS  PubMed  Google Scholar 

  • Tous GI, Wei Z, Feng J, Bilbulian S, Bowen S, Smith J, Strouse R, Mcgeehan P, Casas-Finet J, Schenerman MA (2005) Characterization of a novel modification to monoclonal antibodies: thioether cross-link of heavy and light chains. Anal Chem 77:2675–2682

    CAS  PubMed  Google Scholar 

  • Tretter V, Altmann F, Marz L (1991) Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase-F cannot release glycans with fucose attached alpha-1-]3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem 199:647–652

    CAS  PubMed  Google Scholar 

  • Trimble RB, Tarentino AL (1991) Identification of distinct endoglycosidase (endo) activities in flavobacterium-meningosepticum - endo-F1, endo-F2, and endo-F3 - endo-F1 and endo-H hydrolyze only high mannose and hybrid glycans. J Biol Chem 266:1646–1651

    CAS  PubMed  Google Scholar 

  • Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 10:614–625

    PubMed Central  CAS  PubMed  Google Scholar 

  • Usami A, Ohtsu A, Takahama S, Fujii T (1996) The effect of PH, hydrogen peroxide and temperature on the stability of human monoclonal antibody. J Pharm Biomed Anal 14:1133–1140

    CAS  PubMed  Google Scholar 

  • Van Der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, Den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, Van De Winkel JG, Aalberse RC, Parren PW (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557

    PubMed  Google Scholar 

  • Vasella A, Davies GJ, Bohm M (2002) Glycosidase mechanisms. Curr Opin Chem Biol 6:619–629

    CAS  PubMed  Google Scholar 

  • Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaia N, Ionescu R, Beck A (2009) Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem 392:145–154

    CAS  PubMed  Google Scholar 

  • Voorter CE, De Haard-Hoekman WA, Van Den Oetelaar PJ, Bloemendal H, De Jong WW (1988) Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate. J Biol Chem 263:19020–19023

    CAS  PubMed  Google Scholar 

  • Waddling CA, Plummer TH, Tarentino AL, Van Roey P (2000) Structural basis for the substrate specificity of endo-beta-N-acetylglucosaminidase F-3. Biochemistry 39:7878–7885

    CAS  PubMed  Google Scholar 

  • Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang YJ, Shire SJ, Liu JL (2007) Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry 46:1534–1544

    CAS  PubMed  Google Scholar 

  • Wang L, Amphlett G, Lambert JM, Blattler W, Zhang W (2005) Structural characterization of a recombinant monoclonal antibody by electrospray time-of-flight mass spectrometry. Pharm Res 22:1338–1349

    CAS  PubMed  Google Scholar 

  • Wiita AP, Ainavarapu SR, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A 103:7222–7227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wozniak-Knopp G, Ruker F (2012) A C-terminal interdomain disulfide bond significantly stabilizes the Fc fragment of IgG. Arch Biochem Biophys 526:181–187

    CAS  PubMed  Google Scholar 

  • Wozniak-Knopp G, Stadlmann J, Ruker F (2012) Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds. PLoS One 7:E30083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A (2008) Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 283:16194–16205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang T, Lundell E, Sun Z, Liu H (2007) Structural effect of a recombinant monoclonal antibody on hinge region peptide bond hydrolysis. J Chromatogr B Analyt Technol Biomed Life Sci 858:254–262

    CAS  PubMed  Google Scholar 

  • Yan B, Boyd D, Kaschak T, Tsukuda J, Shen A, Lin Y, Chung S, Gupta P, Kamath A, Wong A, Vernes JM, Meng GY, Totpal K, Schaefer G, Jiang G, Nogal B, Emery C, Vanderlaan M, Carter P, Harris R, Amanullah A (2012) Engineering upper hinge improves stability and effector function of a human IgG1. J Biol Chem 287:5891–5897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yong YH, Yamaguchi S, Matsumura Y (2006) Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of wheat gluten. J Agric Food Chem 54:6034–6040

    CAS  PubMed  Google Scholar 

  • Yoo EM, Wims LA, Chan LA, Morrison SL (2003) Human IgG2 can form covalent dimers. J Immunol 170:3134–3138

    CAS  PubMed  Google Scholar 

  • Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18

    CAS  PubMed  Google Scholar 

  • Zhang SQ, Mccarter JD, Okamuraoho Y, Yaghi F, Hinek A, Withers SG, Callahan JW (1994) Kinetic mechanism and characterization of human beta-galactosidase precursor secreted by permanently transfected Chinese-hamster ovary cells. Biochem J 304:281–288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Yip H, Katta V (2011) Identification of isomerization and racemization of aspartate in the Asp-Asp motifs of a therapeutic protein. Anal Biochem 410:234–243

    CAS  PubMed  Google Scholar 

  • Zhang T, Zhang J, Hewitt D, Tran B, Gao X, Qiu ZJ, Tejada M, Gazzano-Santoro H, Kao YH (2012) Identification and characterization of buried unpaired cysteines in a recombinant monoclonal IgG1 antibody. Anal Chem 84:7112–7123

    CAS  PubMed  Google Scholar 

  • Zhang Q, Schenauer MR, Mccarter JD, Flynn GC (2013) IgG1 thioether bond formation in vivo. J Biol Chem 288:16371–16382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng JY, Janis LJ (2006) Influence of PH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int J Pharm 308:46–51

    CAS  PubMed  Google Scholar 

  • Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3:568–576

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Topp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Moorthy, B.S. et al. (2015). Effect of Hydrolytic Degradation on the In Vivo Properties of Monoclonal Antibodies. In: Rosenberg, A., Demeule, B. (eds) Biobetters. AAPS Advances in the Pharmaceutical Sciences Series, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2543-8_8

Download citation

Publish with us

Policies and ethics