Skip to main content

HIV and Ribozymes

  • Chapter
  • First Online:
Gene Therapy for HIV and Chronic Infections

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 848))

Abstract

Ribozymes are structured RNA molecules that act as catalysts in different biological reactions. From simple genome cleaving activities in satellite RNAs to more complex functions in cellular protein synthesis and gene regulation, ribozymes play important roles in all forms of life. Several naturally existing ribozymes have been modified for use as therapeutics in different conditions, with HIV-1 infection being one of the most studied. This chapter summarizes data from different preclinical and clinical studies conducted to evaluate the potential of ribozymes to be used in HIV-1 therapies. The different ribozyme motifs that have been modified, as well as their target sites and expression strategies, are described. RNA conjugations used to enhance the antiviral effect of ribozymes are also presented and the results from clinical trials conducted to date are summarized. Studies on anti-HIV-1 ribozymes have provided valuable information on the optimal expression strategies and clinical protocols for RNA gene therapy and remain competitive candidates for future therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bRN-P:

Bacterial RNase P

CMV:

Cytomegalovirus

DIS:

Dimerization initiation signal

EGS:

External guide strand

HCV:

Hepatitis C virus

HDV:

Hepatitis delta virus

HH:

Hammerhead

HIV:

Human immunodeficiency virus

Hp:

Hairpin

hRN-P:

Human RNase P

HSC:

Hematopoietic stem cell

LTR:

Long terminal repeat

MMLV:

Moloney murine leukemia virus

MSCV:

Mouse stem cell virus

Pol:

Polymerase

pre:

Precursor

RNase P:

Ribonuclease P

RRE:

Rev response element

Rz(s):

Ribozyme(s)

shRNA:

Short hairpin RNA

SLII:

Stem loop II

snoRNA:

Small nucleolar RNA

snRNA:

Small nuclear RNA

SV40:

Simian virus 40

TAR:

Transactivation response

Tk:

Thymidine kinase

U:

Uridine

UTR:

Untranslated region

VA:

Virus associated

References

  1. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31:147–57.

    CAS  PubMed  Google Scholar 

  2. Edgell DR, Chalamcharla VR, Belfort M. Learning to live together: mutualism between self-splicing introns and their hosts. BMC Biol. 2011;9:22.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983;35:849–57.

    CAS  PubMed  Google Scholar 

  4. Esakova O, Krasilnikov AS. Of proteins and RNA: the RNase P/MRP family. RNA. 2010;16:1725–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Cech TR. Structural biology. The ribosome is a ribozyme. Science. 2000;289:878–9.

    CAS  PubMed  Google Scholar 

  6. Ferre-D'Amare AR, Scott WG. Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol. 2010;2:a003574.

    PubMed Central  PubMed  Google Scholar 

  7. Cech TR. Ribozymes, the first 20 years. Biochem Soc Trans. 2002;30:1162–6.

    CAS  PubMed  Google Scholar 

  8. de la Pena M, Garcia-Robles I. Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA. 2010;16:1943–50.

    PubMed Central  PubMed  Google Scholar 

  9. Garcia-Robles I, Sanchez-Navarro J, de la Pena M. Intronic hammerhead ribozymes in mRNA biogenesis. Biol Chem. 2012;393:1317–26.

    CAS  PubMed  Google Scholar 

  10. Webb CH, Riccitelli NJ, Ruminski DJ, Luptak A. Widespread occurrence of self-cleaving ribozymes. Science. 2009;326:953.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Webb CH, Luptak A. HDV-like self-cleaving ribozymes. RNA Biol. 2011;8:719–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Saville BJ, Collins RA. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. 1990;61:685–96.

    CAS  PubMed  Google Scholar 

  13. McCown PJ, Roth A, Breaker RR. An expanded collection and refined consensus model of glmS ribozymes. RNA. 2011;17:728–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Teixeira A, Tahiri-Alaoui A, West S, Thomas B, Ramadass A, Martianov I, Dye M, James W, Proudfoot NJ, Akoulitchev A. Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination. Nature. 2004;432:526–30.

    CAS  PubMed  Google Scholar 

  15. Roth A, Weinberg Z, Chen AG, Kim PB, Ames TD, Breaker RR. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. 2013;10(1):56–60.

    PubMed  Google Scholar 

  16. Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19:60–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Sarver N, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990;247:1222–5.

    CAS  PubMed  Google Scholar 

  18. Ojwang JO, Hampel A, Looney DJ, Wong-Staal F, Rappaport J. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci U S A. 1992;89:10802–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Duarte EA, Leavitt MC, Yamada O, Yu M. Hairpin ribozyme gene therapy for AIDS. Methods Mol Biol. 1997;74:459–68.

    CAS  PubMed  Google Scholar 

  20. Citti L, Rainaldi G. Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther. 2005;5:11–24.

    CAS  PubMed  Google Scholar 

  21. Rossi JJ. Ribozyme therapy for HIV infection. Adv Drug Deliv Rev. 2000;44:71–8.

    CAS  PubMed  Google Scholar 

  22. Bergeron LJ, Perreault JP. Target-dependent on/off switch increases ribozyme fidelity. Nucleic Acids Res. 2005;33:1240–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Bergeron LJ, Reymond C, Perreault JP. Functional characterization of the SOFA delta ribozyme. RNA. 2005;11:1858–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Motard J, Rouxel R, Paun A, von Messling V, Bisaillon M, Perreault JP. A novel ribozyme-based prophylaxis inhibits influenza A virus replication and protects from severe disease. PLoS One. 2011;6:e27327.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Lévesque MV, Lévesque D, Brière FP, Perreault JP. Investigating a new generation of ribozymes in order to target HCV. PLoS One. 2010;5:e9627.

    PubMed Central  PubMed  Google Scholar 

  26. Robichaud GA, Perreault JP, Ouellette RJ. Development of an isoform-specific gene suppression system: the study of the human Pax-5B transcriptional element. Nucleic Acids Res. 2008;36:4609–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Lainé S, Scarborough RJ, Lévesque D, Didierlaurent L, Soye KJ, Mougel M, Perreault JP, Gatignol A. In vitro and in vivo cleavage of HIV-1 RNA by new SOFA-HDV ribozymes and their potential to inhibit viral replication. RNA Biol. 2011;8:343–53.

    PubMed  Google Scholar 

  28. Scarborough RJ, Lévesque MV, Boudrias-Dalle E, Chute IC, Daniels SM, Ouellette RJ, et al. A conserved target site in HIV-1 Gag RNA is accessible to inhibition by both an HDV ribozyme and a short hairpin RNA. Mol Ther Nucleic Acids. 2014;3:e178.

    Google Scholar 

  29. Hnatyszyn H, Spruill G, Young A, Seivright R, Kraus G. Long-term RNase P-mediated inhibition of HIV-1 replication and pathogenesis. Gene Ther. 2001;8:1863–71.

    CAS  PubMed  Google Scholar 

  30. Kraus G, Geffin R, Spruill G, Young AK, Seivright R, Cardona D, Burzawa J, Hnatyszyn HJ. Cross-clade inhibition of HIV-1 replication and cytopathology by using RNase P-associated external guide sequences. Proc Natl Acad Sci U S A. 2002;99:3406–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Jiang X, Sunkara N, Lu S, Liu F. Directing RNase P-mediated cleavage of target mRNAs by engineered external guide sequences in cultured cells. Methods Mol Biol. 2014;1103:45–56.

    PubMed Central  PubMed  Google Scholar 

  32. Zeng W, Chen YC, Bai Y, Trang P, Vu GP, Lu S, Wu J, Liu F. Effective inhibition of human immunodeficiency virus 1 replication by engineered RNase P ribozyme. PLoS One. 2012;7:e51855.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Guo H, Karberg M, Long M, Jones 3rd JP, Sullenger B, Lambowitz AM. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science. 2000;289:452–7.

    CAS  PubMed  Google Scholar 

  34. Nazari R, Joshi S. Exploring the potential of group II introns to inactivate human immunodeficiency virus type 1. J Gen Virol. 2008;89:2605–10.

    CAS  PubMed  Google Scholar 

  35. Wong-Staal F, Poeschla EM, Looney DJ. A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum Gene Ther. 1998;9:2407–25.

    CAS  PubMed  Google Scholar 

  36. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess Jr JW, Swanstrom R, Burch CL, Weeks KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460:711–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Bramlage B, Luzi E, Eckstein F. HIV-1 LTR as a target for synthetic ribozyme-mediated inhibition of gene expression: site selection and inhibition in cell culture. Nucleic Acids Res. 2000;28:4059–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Dropulic B, Jeang KT. Intracellular susceptibility to ribozymes in a tethered substrate-ribozyme provirus model is not predicted by secondary structures of human immunodeficiency virus type 1 RNAs in vitro. Antisense Res Dev. 1994;4:217–21.

    CAS  PubMed  Google Scholar 

  39. Ramezani A, Joshi S. Comparative analysis of five highly conserved target sites within the HIV-1 RNA for their susceptibility to hammerhead ribozyme-mediated cleavage in vitro and in vivo. Antisense Nucleic Acid Drug Dev. 1996;6:229–35.

    CAS  PubMed  Google Scholar 

  40. Michienzi A, Cagnon L, Bahner I, Rossi JJ. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci U S A. 2000;97:8955–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Unwalla HJ, Li H, Li SY, Abad D, Rossi JJ. Use of a U16 snoRNA-containing ribozyme library to identify ribozyme targets in HIV-1. Mol Ther. 2008;16:1113–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Naito Y, Nohtomi K, Onogi T, Uenishi R, Ui-Tei K, Saigo K, Takebe Y. Optimal design and validation of antiviral siRNA for targeting HIV-1. Retrovirology. 2007;4:80.

    PubMed Central  PubMed  Google Scholar 

  43. McIntyre GJ, Groneman JL, Yu YH, Jaramillo A, Shen S, Applegate TL. 96 shRNAs designed for maximal coverage of HIV-1 variants. Retrovirology. 2009;6:55.

    PubMed Central  PubMed  Google Scholar 

  44. ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14:883–92.

    PubMed  Google Scholar 

  45. Sajic R, Lee K, Asai K, Sakac D, Branch DR, Upton C, Cochrane A. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res. 2007;35:247–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Müller-Kuller T, Capalbo G, Klebba C, Engels JW, Klein SA. Identification and characterization of a highly efficient anti-HIV pol hammerhead ribozyme. Oligonucleotides. 2009;19:265–72.

    PubMed  Google Scholar 

  47. Scarborough RJ, Lévesque MV, Perreault JP, Gatignol A. Design and evaluation of clinically relevant SOFA-HDV ribozymes targeting HIV RNA. Methods Mol Biol. 2014;1103:31–43.

    PubMed  Google Scholar 

  48. Waninger S, Kuhen K, Hu X, Chatterton JE, Wong-Staal F, Tang H. Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J Virol. 2004;78:12829–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Hoxie JA, June CH. Novel cell and gene therapies for HIV. Cold Spring Harb Perspect Med. 2012;2(10). pii: a007179.

    Google Scholar 

  50. Gonzalez MA, Serrano F, Llorente M, Abad JL, Garcia-Ortiz MJ, Bernad A. A hammerhead ribozyme targeted to the human chemokine receptor CCR5. Biochem Biophys Res Commun. 1998;251:592–6.

    CAS  PubMed  Google Scholar 

  51. Goila R, Banerjea AC. Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNA-enzyme. FEBS Lett. 1998;436:233–8.

    CAS  PubMed  Google Scholar 

  52. Cagnon L, Rossi JJ. Downregulation of the CCR5 beta-chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Antisense Nucleic Acid Drug Dev. 2000;10:251–61.

    CAS  PubMed  Google Scholar 

  53. Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R. Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Ther. 2000;1:244–54.

    CAS  PubMed  Google Scholar 

  54. Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J, Akkina R, Rossi JJ. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther. 2005;12:900–9.

    CAS  PubMed  Google Scholar 

  55. Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, Yee JK, Rossi J, Zaia J, Akkina R. Safety and efficacy of a lentiviral vector containing three anti-HIV genes – CCR5 ribozyme, tat-rev siRNA, and TAR decoy – in SCID-hu mouse-derived T cells. Mol Ther. 2007;15:1182–8.

    CAS  PubMed  Google Scholar 

  56. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2:36ra43.

    PubMed Central  PubMed  Google Scholar 

  57. Eekels JJ, Berkhout B. Toward a durable treatment of HIV-1 infection using RNA interference. Prog Mol Biol Transl Sci. 2011;102:141–63.

    CAS  PubMed  Google Scholar 

  58. Larsson S, Hotchkiss G, Su J, Kebede T, Andang M, Nyholm T, Johansson B, Sonnerborg A, Vahlne A, Britton S, et al. A novel ribozyme target site located in the HIV-1 nef open reading frame. Virology. 1996;219:161–9.

    CAS  PubMed  Google Scholar 

  59. Hotchkiss G, Maijgren-Steffensson C, Ahrlund-Richter L. Efficacy and mode of action of hammerhead and hairpin ribozymes against various HIV-1 target sites. Mol Ther. 2004;10:172–80.

    CAS  PubMed  Google Scholar 

  60. Weerasinghe M, Liem SE, Asad S, Read SE, Joshi S. Resistance to human immunodeficiency virus type 1 (HIV-1) infection in human CD4+ lymphocyte-derived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme. J Virol. 1991;65:5531–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Gatignol A. Transcription of HIV: Tat and cellular chromatin. Adv Pharmacol. 2007;55:137–59.

    CAS  PubMed  Google Scholar 

  62. Unwalla HJ, Li MJ, Kim JD, Li HT, Ehsani A, Alluin J, Rossi JJ. Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA. Nat Biotechnol. 2004;22:1573–8.

    CAS  PubMed  Google Scholar 

  63. Sanghvi VR, Steel LF. Expression of interfering RNAs from an HIV-1 Tat-inducible chimeric promoter. Virus Res. 2011;155:106–11.

    CAS  PubMed  Google Scholar 

  64. Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002;16:2593–620.

    CAS  PubMed  Google Scholar 

  65. White RJ. Transcription by RNA polymerase III: more complex than we thought. Nat Rev Genet. 2011;12:459–63.

    CAS  PubMed  Google Scholar 

  66. Good PD, Krikos AJ, Li SX, Bertrand E, Lee NS, Giver L, Ellington A, Zaia JA, Rossi JJ, Engelke DR. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther. 1997;4:45–54.

    CAS  PubMed  Google Scholar 

  67. Bertrand E, Castanotto D, Zhou C, Carbonnelle C, Lee NS, Good P, Chatterjee S, Grange T, Pictet R, Kohn D, et al. The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA. 1997;3:75–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Kuwabara T, Warashina M, Koseki S, Sano M, Ohkawa J, Nakayama K, Taira K. Significantly higher activity of a cytoplasmic hammerhead ribozyme than a corresponding nuclear counterpart: engineered tRNAs with an extended 3' end can be exported efficiently and specifically to the cytoplasm in mammalian cells. Nucleic Acids Res. 2001;29:2780–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Strijker R, Fritz DT, Levinson AD. Adenovirus VAI-RNA regulates gene expression by controlling stability of ribosome-bound RNAs. EMBO J. 1989;8:2669–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Svensson C, Akusjarvi G. A novel effect of adenovirus VA RNA1 on cytoplasmic mRNA abundance. Virology. 1990;174:613–7.

    CAS  PubMed  Google Scholar 

  71. Katze MG, DeCorato D, Safer B, Galabru J, Hovanessian AG. Adenovirus VAI RNA complexes with the 68 000 Mr protein kinase to regulate its autophosphorylation and activity. EMBO J. 1987;6:689–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Unwalla HJ, Rossi JJ. Promoting gene therapy: expression systems for transgenes and posttranscriptional gene silencing. Biotechnol Genet Eng Rev. 2006;23:71–91.

    CAS  PubMed  Google Scholar 

  73. Yamada O, Kraus G, Luznik L, Yu M, Wong-Staal F. A chimeric human immunodeficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. J Virol. 1996;70:1596–601.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Puerta-Fernandez E, Barroso-del Jesus A, Romero-Lopez C, Tapia N, Martinez MA, Berzal-Herranz A. Inhibition of HIV-1 replication by RNA targeted against the LTR region. AIDS. 2005;19:863–70.

    CAS  PubMed  Google Scholar 

  75. Puerta-Fernandez E, Barroso-del Jesus A, Romero-Lopez C, Berzal-Herranz A. HIV-1 TAR as anchoring site for optimized catalytic RNAs. Biol Chem. 2003;384:343–50.

    CAS  PubMed  Google Scholar 

  76. Sánchez-Luque FJ, Reyes-Darias JA, Puerta-Fernández E, Berzal-Herranz A. Inhibition of HIV-1 replication and dimerization interference by dual inhibitory RNAs. Molecules. 2010;15:4757–72.

    PubMed  Google Scholar 

  77. Michienzi A, Conti L, Varano B, Prislei S, Gessani S, Bozzoni I. Inhibition of human immunodeficiency virus type 1 replication by nuclear chimeric anti-HIV ribozymes in a human T lymphoblastoid cell line. Hum Gene Ther. 1998;9:621–8.

    CAS  PubMed  Google Scholar 

  78. Kleiman L. tRNA(Lys3): the primer tRNA for reverse transcription in HIV-1. IUBMB Life. 2002;53:107–14.

    CAS  PubMed  Google Scholar 

  79. Westaway SK, Cagnon L, Chang Z, Li S, Li H, Larson GP, Zaia JA, Rossi JJ. Virion encapsidation of tRNA(3Lys)-ribozyme chimeric RNAs inhibits HIV infection. Antisense Nucleic Acid Drug Dev. 1998;8:185–97.

    CAS  PubMed  Google Scholar 

  80. Chang Z, Westaway S, Li S, Zaia JA, Rossi JJ, Scherer LJ. Enhanced expression and HIV-1 inhibition of chimeric tRNA(Lys3)-ribozymes under dual U6 snRNA and tRNA promoters. Mol Ther. 2002;6:481–9.

    CAS  PubMed  Google Scholar 

  81. Buchschacher Jr GL, Wong-Staal F. Approaches to gene therapy for human immunodeficiency virus infection. Hum Gene Ther. 2001;12:1013–9.

    CAS  PubMed  Google Scholar 

  82. Kruger M, Beger C, Wong-Staal F. Use of ribozymes to inhibit gene expression. Methods Enzymol. 1999;306:207–25.

    CAS  PubMed  Google Scholar 

  83. Cooper D, Penny R, Symonds G, Carr A, Gerlach W, Sun LQ, Ely J. A marker study of therapeutically transduced CD4+ peripheral blood lymphocytes in HIV discordant identical twins. Hum Gene Ther. 1999;10:1401–21.

    CAS  PubMed  Google Scholar 

  84. Macpherson JL, Boyd MP, Arndt AJ, Todd AV, Fanning GC, Ely JA, Elliott F, Knop A, Raponi M, Murray J, et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J Gene Med. 2005;7:552–64.

    CAS  PubMed  Google Scholar 

  85. Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol. 2007;25:1444–54.

    CAS  PubMed  Google Scholar 

  86. Michienzi A, Castanotto D, Lee N, Li S, Zaia JA, Rossi JJ. RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci. 2003;1002:63–71.

    CAS  PubMed  Google Scholar 

  87. Amado RG, Mitsuyasu RT, Symonds G, Rosenblatt JD, Zack J, Sun LQ, Miller M, Ely J, Gerlach W. A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum Gene Ther. 1999;10:2255–70.

    CAS  PubMed  Google Scholar 

  88. Amado RG, Mitsuyasu RT, Rosenblatt JD, Ngok FK, Bakker A, Cole S, Chorn N, Lin LS, Bristol G, Boyd MP, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther. 2004;15:251–62.

    CAS  PubMed  Google Scholar 

  89. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, Bloch M, Lalezari J, Becker S, Thornton L, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15:285–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Zeller SJ, Kumar P. RNA-based gene therapy for the treatment and prevention of HIV: from bench to bedside. Yale J Biol Med. 2013;84:301–9.

    Google Scholar 

  91. Mulhbacher J, St-Pierre P, Lafontaine DA. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol. 2010;10:551–6.

    CAS  PubMed  Google Scholar 

  92. Mohit E, Rafati S. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol. 2013;56:599–611.

    CAS  PubMed  Google Scholar 

  93. Nischal H, Sun H, Wang Y, Ford DA, Cao Y, Wei P, Teng BB. Long-term expression of apolipoprotein B mRNA-specific hammerhead ribozyme via scAAV8.2 vector inhibits atherosclerosis in mice. Mol Ther Nucleic Acids. 2013;2:e125.

    PubMed Central  PubMed  Google Scholar 

  94. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol. 2013;36:1–22.

    CAS  PubMed  Google Scholar 

  95. Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD, Swiderski P, Aboellail T, Huang Y, Du Q, et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther. 2011;19:2228–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Zhou J, Neff CP, Swiderski P, Li H, Smith DD, Aboellail T, Remling-Mulder L, Akkina R, Rossi JJ. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther. 2013;21:192–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Zhou J, Shum KT, Burnett JC, Rossi JJ. Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel). 2013;6:85–107.

    CAS  Google Scholar 

  98. Costa PM, Cardoso AL, Mendonca LS, Serani A, Custodia C, Conceicao M, Simoes S, Moreira JN, Pereira de Almeida L, Pedroso de Lima MC. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol Ther Nucleic Acids. 2013;2:e100.

    PubMed Central  PubMed  Google Scholar 

  99. Kim T, Afonin KA, Viard M, Koyfman AY, Sparks S, Heldman E, Grinberg S, Linder C, Blumenthal RP, Shapiro BA. In silico, in vitro, and in vivo studies indicate the potential use of bolaamphiphiles for therapeutic siRNAs delivery. Mol Ther Nucleic Acids. 2013;2:e80.

    PubMed Central  PubMed  Google Scholar 

  100. Yu M, Ojwang J, Yamada O, Hampel A, Rapapport J, Looney D, Wong-Staal F. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993;90:6340–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Yu M, Leavitt MC, Maruyama M, Yamada O, Young D, Ho AD, Wong-Staal F. Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1995;92:699–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Yamada O, Yu M, Yee JK, Kraus G, Looney D, Wong-Staal F. Intracellular immunization of human T cells with a hairpin ribozyme against human immunodeficiency virus type 1. Gene Ther. 1994;1:38–45.

    CAS  PubMed  Google Scholar 

  103. Leavitt MC, Yu M, Yamada O, Kraus G, Looney D, Poeschla E, Wong-Staal F. Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum Gene Ther. 1994;5:1115–20.

    CAS  PubMed  Google Scholar 

  104. Leavitt MC, Yu M, Wong-Staal F, Looney DJ. Ex vivo transduction and expansion of CD4+ lymphocytes from HIV + donors: prelude to a ribozyme gene therapy trial. Gene Ther. 1996;3:599–606.

    CAS  PubMed  Google Scholar 

  105. Gervaix A, Li X, Kraus G, Wong-Staal F. Multigene antiviral vectors inhibit diverse human immunodeficiency virus type 1 clades. J Virol. 1997;71:3048–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Yu M, Poeschla E, Yamada O, Degrandis P, Leavitt MC, Heusch M, Yees JK, Wong-Staal F, Hampel A. In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1. Virology. 1995;206:381–6.

    CAS  PubMed  Google Scholar 

  107. Sun LQ, Wang L, Gerlach WL, Symonds G. Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res. 1995;23:2909–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Sun LQ, Pyati J, Smythe J, Wang L, Macpherson J, Gerlach W, Symonds G. Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proc Natl Acad Sci U S A. 1995;92:7272–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Wang L, Witherington C, King A, Gerlach WL, Carr A, Penny R, Cooper D, Symonds G, Sun LQ. Preclinical characterization of an anti-tat ribozyme for therapeutic application. Hum Gene Ther. 1998;9:1283–91.

    CAS  PubMed  Google Scholar 

  110. Lo KM, Biasolo MA, Dehni G, Palu G, Haseltine WA. Inhibition of replication of HIV-1 by retroviral vectors expressing tat-antisense and anti-tat ribozyme RNA. Virology. 1992;190:176–83.

    CAS  PubMed  Google Scholar 

  111. Zhou C, Bahner IC, Larson GP, Zaia JA, Rossi JJ, Kohn EB. Inhibition of HIV-1 in human T-lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene. 1994;149:33–9.

    CAS  PubMed  Google Scholar 

  112. Zhou C, Bahner I, Rossi JJ, Kohn DB. Expression of hammerhead ribozymes by retroviral vectors to inhibit HIV-1 replication: comparison of RNA levels and viral inhibition. Antisense Nucleic Acid Drug Dev. 1996;6:17–24.

    PubMed  Google Scholar 

  113. Bauer G, Valdez P, Kearns K, Bahner I, Wen SF, Zaia JA, Kohn DB. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood. 1997;89:2259–67.

    CAS  PubMed  Google Scholar 

  114. Yamada O, Kraus G, Leavitt MC, Yu M, Wong-Staal F. Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T cells. Virology. 1994;205:121–6.

    CAS  PubMed  Google Scholar 

  115. Feng Y, Leavitt M, Tritz R, Duarte E, Kang D, Mamounas M, Gilles P, Wong-Staal F, Kennedy S, Merson J, et al. Inhibition of CCR5-dependent HIV-1 infection by hairpin ribozyme gene therapy against CC-chemokine receptor 5. Virology. 2000;276:271–8.

    CAS  PubMed  Google Scholar 

  116. Bai J, Rossi J, Akkina R. Multivalent anti-CCR ribozymes for stem cell-based HIV type 1 gene therapy. AIDS Res Hum Retroviruses. 2001;17:385–99.

    CAS  PubMed  Google Scholar 

  117. Cordelier P, Kulkowsky JW, Ko C, Matskevitch AA, McKee HJ, Rossi JJ, Bouhamdan M, Pomerantz RJ, Kari G, Strayer DS. Protecting from R5-tropic HIV: individual and combined effectiveness of a hammerhead ribozyme and a single-chain Fv antibody that targets CCR5. Gene Ther. 2004;11:1627–37.

    CAS  PubMed  Google Scholar 

  118. Nazari R, Ma XZ, Joshi S. Inhibition of human immunodeficiency virus-1 entry using vectors expressing a multimeric hammerhead ribozyme targeting the CCR5 mRNA. J Gen Virol. 2008;89:2252–61.

    CAS  PubMed  Google Scholar 

  119. Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Lévesque MV, Perreault JP. Target-induced SOFA-HDV ribozyme. Methods Mol Biol. 2012;848:369–84.

    PubMed  Google Scholar 

  121. Hannon GJ, Chubb A, Maroney PA, Hannon G, Altman S, Nilsen TW. Multiple cis-acting elements are required for RNA polymerase III transcription of the gene encoding H1 RNA, the RNA component of human RNase P. J Biol Chem. 1991;266:22796–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Samantha Burugu and Aïcha Daher (Lady Davis Institute and McGill University) for review of the manuscript. The work done in our laboratory was supported by the Canadian Institutes of Health Research (CIHR) grants [HOP93434 and DCB120266 to A.G.] and by a Banting and Best Canada Graduate Scholarship [CGD-96479 to R.J.S.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Gatignol Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Scarborough, R.J., Gatignol, A. (2015). HIV and Ribozymes. In: Berkhout, B., Ertl, H., Weinberg, M. (eds) Gene Therapy for HIV and Chronic Infections. Advances in Experimental Medicine and Biology(), vol 848. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2432-5_5

Download citation

Publish with us

Policies and ethics