Skip to main content

Genetic Basis of Unexplained Male Infertility

  • Chapter
  • First Online:
Unexplained Infertility

Abstract

Approximately 12 % of the subfertile males attending our tertiary center for male reproduction, in which all male partners undergo andrological examination regardless of semen analyses results, are classified as having infertility of unknown origin. In several of these cases, etiologies may be is gene related including chromosomal defects, gene mutations, DNA damage, sperm chromosomal abnormalities, and epigenetic disorders. In this chapter, we review the basic genetic concepts to provide an overview of relevant points to be considered when assessing genetic causes of unexplained male infertility. In addition, we present the genetic conditions that may impair fertility without affecting semen analysis results, and the diagnostic methods to identify these disorders. Finally, we propose a genetic workup plan to better evaluate and counsel males with unexplained infertility (UI), and therefore provide an oriented therapeutic choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. WHO manual for standardised investigation and diagnosis of the infertile couple. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  2. Kamel RM. Management of the infertile couple: an evidence-based protocol. Reprod Biol Endocrinol. 2010;8:21–8.

    Google Scholar 

  3. Right Diagnosis.com [homepage on the internet]. Statistics by country for infertility. Health Grades Inc. [updated: 23rd August 2011; cited 24th December 2011]. Available from: http://www.rightdiagnosis.com/i/infertility/stats-country.htm. Accessed 5 June 2012.

  4. Esteves SC, Miyaoka R. Male infertility—when and how to start the evaluation. In: Rizk B, Aziz N, Agarwal A, Sabanegh E, editors. Male infertility practice. New Delhi: Jaypee Brothers Pvt Ltd; 2013, pp. 33-45.

    Google Scholar 

  5. Vital and health statistics, series 23, no. 26, CDC. http://www.cdc.gov [cited 24th December 2011]. Accessed 5 June 2012.

  6. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79:16–22.

    Google Scholar 

  7. Rybar R, Markova P, Veznik Z, et al. Sperm chromatin integrity in young men with no experiences of infertility and men from idiopathic infertility couples. Andrologia. 2009;41:141–9.

    Google Scholar 

  8. Guzick DS, Overstreet JW, Factor-Litvak P, et al. National cooperative reproductive medicine network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–93.

    Google Scholar 

  9. Aitken RJ, Koopman P, Lewis SE. Seeds of concern. Nature. 2004;432:48–52.

    Google Scholar 

  10. World Health Organization. WHO laboratory manual for the examination and processing of human semen, 5th ed. Geneva: WHO Press; 2010. p. 287.

    Google Scholar 

  11. Sigman M, Lipshultz L, Howard S. Office evaluation of the subfertile male. In: Lipshultz LI, Howards SS, Niederberger CS, editors. Infertility in the male. 4th ed. Cambridge: Cambridge University Press; 2009. pp. 153–76.

    Google Scholar 

  12. Hamada A, Esteves SC, Agarwal A. Genetics and male infertility. In: Dubey AK, editor. Infertility diagnosis, management and IVF, 1st ed. New Delhi, Jaypee-Highlights Medical Publishers Inc; 2012. pp. 113–57.

    Google Scholar 

  13. Thompson MW, McInnes RR, WillardHF. Estrutura e função dos cromossomos e genes. In: Thompson MW, editors. Thompson e Thompson: Genética Médica, Quinta edição. Rio de Janeiro, editora Guanabara Koogan S.A; 1993. pp. 22–38.

    Google Scholar 

  14. Bailey JA, Gu Z, Clark RA, et al. Recent segmental duplications in the human genome. Science. 2002;297:1003–7.

    Google Scholar 

  15. Hargreave TB. Genetic basis of male infertility. Br Med Bull. 2000;56:650–71.

    Google Scholar 

  16. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002; 4 Suppl:s41–9.

    Google Scholar 

  17. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.

    Google Scholar 

  18. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111:483–8.

    Google Scholar 

  19. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61:519–27.

    Google Scholar 

  20. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22:604–10.

    Google Scholar 

  21. Torregrosa N, Domingues-Fandos D, Camejo MI, et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod. 2006;21:2084–9.

    Google Scholar 

  22. Cree LH, Blahorn R, Brewer LR. Single molecule studies of DNA-protamine interactions. Protein Pept Lett. 2011;18:802–10.

    Google Scholar 

  23. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16:30–6.

    Google Scholar 

  24. Dominguez K, Arca CDR, Ward WS. The relationship between chromatin structure and DNA damage in mammalian spermatozoa. In: Zini A, Agarwal A, Editors. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. New York: Springer; 2011. pp. 61–8.

    Google Scholar 

  25. Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl. 2008;31:537–45.

    Google Scholar 

  26. Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.

    Google Scholar 

  27. Arpanahi A, Brinkworth M, Iles D, et al. Endonuclease-sensitive regions of human spermatozoa chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19:1338–49.

    Google Scholar 

  28. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14:734–45.

    Google Scholar 

  29. Sun JG, Jurisicova A, Casper RF. Deletion of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.

    Google Scholar 

  30. Evenson DP, Jost LK, Marshall D, et al. Utility of sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    Google Scholar 

  31. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73:43–50.

    Google Scholar 

  32. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9:331–45.

    Google Scholar 

  33. Bungum M, Humaidan P, Axmon A, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Google Scholar 

  34. Virant-Klun I, Tomazevic T, Meden-Vrtovec H. Sperm single stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI derived embryos. J Assist Reprod Genet. 2002;19:319–28.

    Google Scholar 

  35. Gaspari L, Chang SS, Santella RM, et al. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res. 2003;535:155–60.

    Google Scholar 

  36. Frydman N, Prisant N, Hesters L, et al. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril. 2008;89:92–7.

    Google Scholar 

  37. Aitken RJ, de Iullis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32:46–56.

    Google Scholar 

  38. Dada R, Thilagavathi J, Venkatesh S, et al. Genetic testing in male infertility. Open Reprod Sci J. 2011;3:42–56.

    Google Scholar 

  39. Georgiou I, Syrrou M, Pardalidis N, et al. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J Androl. 2006;8:643–73.

    Google Scholar 

  40. De Braekeeler M, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod. 1991;6:245–50.

    Google Scholar 

  41. Conn CM, Cozzi J, Harper JC, Winston RM, Delhanty JD. Preimplantation genetic diagnosis for couples at high risk of Down syndrome pregnancy owing to parental translocation or mosaicism. J Med Genet. 1999;36:45–50.

    Google Scholar 

  42. Lishko PV, KirichokY. The role of Hv1 and CatSper channels in sperm activation. J Physiol. 2010;588:4667–72.

    Google Scholar 

  43. Carlson AE, Burnett LA, Del Camino D, et al. Pharmacological targeting of native CatSper channels reveals a required role in maintenance of sperm hyperactivation. PLoS ONE. 2009;4:e6844.

    Google Scholar 

  44. Wang H, Liu J, Cho KH, et al. A novel, single, transmembrane protein CATSPERG is associated with CATSPER1 channel protein. Biol Reprod. 2009;81:539–44.

    Google Scholar 

  45. Avenarius MR, Hildebrand MS, Zhang Y, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505–10.

    Google Scholar 

  46. Qi H, Moran MM, Navarro B, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A. 2007;104:1219–23.

    Google Scholar 

  47. Venkatesh S, Deecaraman M, Kumar R, et al. Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutations in male infertility. Indian J Med Res. 2009;129:127–37.

    Google Scholar 

  48. Richter C, Suter M, Walter PB. Mitochondrial free radical damage and DNA repair. Biofactors. 1998;7:207–8.

    Google Scholar 

  49. Wallace DC, Brown MD, Lott MT. Mitochondrial genetics. London: Churchill Livingstone; 1997.

    Google Scholar 

  50. Shamsi MB, Kumar R, Bhatt A, et al. Mitochondrial DNA mutations in etiopathogenesis of male infertility. Indian J Urol. 2008;24:150–4.

    Google Scholar 

  51. Jensen M, Leffers H, Petersen JH, et al. Frequent polymorphism of the mitochondrial DNA polymerase gamma gene ( POLG) in patients with normal spermiograms and unexplained infertility. Hum Reprod. 2004;19:65–70.

    Google Scholar 

  52. Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36–42.

    Google Scholar 

  53. Tease C, Fisher G. The influence of maternal age on radiation-induced chromosome aberrations in mouse oocytes. Mutat Res. 1991;262:57–62.

    Google Scholar 

  54. Aitken RJ, De Iullis GN. Value of DNA integrity assays for fertility evaluation. Soc Reprod Fertil. 2007;65(Suppl):81–92.

    Google Scholar 

  55. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49:1083–8.

    Google Scholar 

  56. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75:674–7.

    Google Scholar 

  57. Potts RJ, Newbury CJ, Smith G, Notarianni LJ, Jefferies TM. Sperm chromatin damage associated with male smoking. Mutat Res. 1999;423:103–11.

    Google Scholar 

  58. Rajpurkar A, Jiang Y, Dhabuwala CB, Dunbar JC, Li H. Cigarette smoking induces apoptosis in rat testis. J Environ Pathol Toxicol Oncol. 2002;21:243–8.

    Google Scholar 

  59. Sepaniak S, Forges T, Gerard H, Foliguet B, Bene MC, Monnier-Barbarino P. The influence of cigarette smoking on human sperm quality and DNA fragmentation. Toxicology. 2006;223:54–60.

    Google Scholar 

  60. Esteves SC, Agarwal A. Novel concepts in male infertility. Int Braz J Urol. 2011;37:5–15.

    Google Scholar 

  61. Host E, Lindenberg S, Kahn JA, Christensen F. DNA strand breaks in human spermatozoa: a possible factor to be considered in couples suffering from unexplained infertility. Obstet Gynecol Scand. 1999;78:622–5.

    Google Scholar 

  62. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60:1069–72.

    Google Scholar 

  63. Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.

    Google Scholar 

  64. Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68:519–24.

    Google Scholar 

  65. Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13:69–75.

    Google Scholar 

  66. Moosani N, Pattinson H, Carter M, et al. Chromosomal analysis of sperm from men with idiopathic infertility using sperm karyotyping and fluorescence in situ hybridization. Fertil Steril. 1995;64:111–8.

    Google Scholar 

  67. Tempest HG, Martin RH. Cytogenetic risks in chromosomally normal infertile men. Curr Opin Obstet Gynecol. 2009;21:223–7.

    Google Scholar 

  68. Bonduelle M, Van Assche E, Jris H, et al. Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum Reprod. 2002;17:2600–14.

    Google Scholar 

  69. Devroey P, Van Steirteghem A. A review of ten years experience of ICSI. Hum Reprod Update. 2004;10:19–28.

    Google Scholar 

  70. Tempest HG, Griffin DK. The relationship between male infertility and increased levels of sperm disomy. Cytogenet Genome Res. 2004;107:83–94.

    Google Scholar 

  71. Benzacken B, Gavelle FM, Martin-Pont B, et al. Familial sperm polyploidy induced by genetic spermatogenesis failure: case report. Hum Reprod. 2001;16:2646–51.

    Google Scholar 

  72. Devillard F, Metzler-Guillemain C, Pelletier R, et al. Polyploidy in large head sperm: FISH study of three cases. Hum Reprod. 2002;17:1292–8.

    Google Scholar 

  73. Lewis-Jones I, Aziz N, Sheshadri S, et al. Sperm chromosomal abnormalities are linked to sperm morphological deformities. Fertil Steril. 2003;79:212–5.

    Google Scholar 

  74. Riggs AD, Martinssen RA, Russo VEA. Introduction. In: Russo VEA, Martienssen A, Riggs AD (eds) Epigenetic mechanism of gene regulation. Cold Spring Harbor: Cold Spring Harbor Press; 1996. pp. 1–4.

    Google Scholar 

  75. Herceg Z, Vaissiere T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6:804–19.

    Google Scholar 

  76. Li ZX, Ma X, Wang ZH, et al. A differentially methylated region of the DAZ1 gene in spermatic and somatic cells. Asian J Androl. 2006;8:61–7.

    Google Scholar 

  77. Sathanathan AH, Ratnasooryia WD, de Silva PK, et al. Characterization of human gamete centrosomes for assisted reproduction. Ital J Anat Embryol. 2001;106:61–73.

    Google Scholar 

  78. Rawe VY, Terada Y, Nakamura S, et al. A pathology of the sperm centriole responsible for defective sperm aster formation, syngamy and cleavage. Hum Reprod. 2002;17:2344–9.

    Google Scholar 

  79. Palermo G, Munne S, Cohen J. The human zygote inherits its mitotic potential from the male gamete. Hum Reprod. 1994;9:1220–5.

    Google Scholar 

  80. Obasaju M, Kadam A, Sultan K, et al. Sperm quality may adversely affect the chromosome constitution of embryos that result from intracystoplasmic sperm injection. Fertil Steril. 1999;72:1113–5.

    Google Scholar 

  81. Emery BR, Carrell DT. The effect of epigenetic sperm abnormalities on early embryogenesis. Asian J Androl. 2006;8:131–42.

    Google Scholar 

  82. Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16:2542–51.

    Google Scholar 

  83. Poplinsky A, Tüttelmann K, Kanber D, Horsthemke B, Gromoll J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl. 2010;33:642–9.

    Google Scholar 

  84. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.

    Google Scholar 

  85. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Google Scholar 

  86. Sofikitis N, Miyagawa I, Yamamoto Y, et al. Micro-and macro-consequences of ooplasmic injections of early haploid male gametes. Hum Reprod Update. 1998;4:197–212.

    Google Scholar 

  87. Kimura Y, Yanagimachi R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development. 1995;121:2397–405.

    Google Scholar 

  88. Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol. 2007;19:266–72.

    Google Scholar 

  89. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13:313–27.

    Google Scholar 

  90. Yu YE, Zhang Y, Unni E, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein-1-deficient mice. Proc Natl Acad Sci U S A. 2000;97:4683–8.

    Google Scholar 

  91. Lee K, Haugen HS, Clegg CH, et al. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci U S A. 1995;92:12451–5.

    Google Scholar 

  92. Cho C, Jung-Ha H, Willis WD, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69:211–7.

    Google Scholar 

  93. Yamauchi Y, Shaman JA, Ward WS. Non-genetic contributions of the sperm nucleus to embryo development. Asian J Androl. 2011;13:31–5.

    Google Scholar 

  94. Nanassy L, Carrell DT. Paternal effects on early embryogenesis. J Exp Clin Assist Reprod. 2008;5:2.

    Google Scholar 

  95. Zalenskaya IA, Zalensky AO. Telomeres in mammalian male germline cells. Int Rev Cytol. 2002;218:37–67.

    Google Scholar 

  96. Hemann MT, Rudolph KL, Strong MA, et al. Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell. 2001;12:2023–30.

    Google Scholar 

  97. Liu L, Blasco M, Trimarchi J, et al. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol. 2002;249:74–84.

    Google Scholar 

  98. Erenpreiss J, Spano M, Erenpreiss J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8:11–29.

    Google Scholar 

  99. Bell JT, Spector TD. A twin approach to unraveling epigenetics. Trends Genet. 2011;27:116–25.

    Google Scholar 

  100. Fernandes JL, Muriel L, Goyanes V, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84:833–42.

    Google Scholar 

  101. Absalan F, Ghannadi A, Kazerooni M, et al. Value of sperm chromatin dispersion test in couples with unexplained recurrent abortion. J Assist Reprod Genet. 2012;29:11–4.

    Google Scholar 

  102. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.

    Google Scholar 

  103. Hansen RS, Laird CD. A new regulatory pathway for fragile syndrome? Nat Med. 2002;8:1204–5.

    Google Scholar 

  104. Edwards RG. Genetics, epigenetics and gene silencing in differentiating mammalian embryos. Reprod Biomed Online. 2006;13:732–53.

    Google Scholar 

  105. Robinson L, Gallos ID, Rajkhowa M, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27: 2908–17.

    Google Scholar 

  106. Grecco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Google Scholar 

  107. Dada R, Shamsi MB, Venkatesh S. Attenuation of oxidative stress & DNA damage in varicocelectomy: implications in infertility management. Indian J Med Res. 2010;132:728–30.

    Google Scholar 

  108. Esteves SC, Oliveira FV, Bertolla RP. Clinical outcome of intracystoplasmic sperm injection in infertile men with treated and untreated clinical varicocele. J Urol. 2010;184:1442–6.

    Google Scholar 

  109. Esteves SC, Hamada A, Kondray V, et al. What every gynecologist should know about male infertility: an update. Arch Gynecol Obstet. 2012;286:217–29.

    Google Scholar 

  110. Ostermeier GC, Dix DJ, Miller D, et al. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.

    Google Scholar 

  111. Garrido N, Martínez-Conejero JA, Jauregui J, et al. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil Steril. 2009;91:1307–10.

    Google Scholar 

  112. Bonache S, Mata A, Ramos MD, Bassas L, Larriba S. Sperm gene expression profile is related to pregnancy rate after insemination and is predictive of low fecundity in normozoospermic men. Hum Reprod. 2012;27:1556–67.

    Google Scholar 

  113. Garrido N, Garcia-Herrero S, Meseguer M. Assessment of sperm using mRNA microarray technology. Fertil Steril. 2013;99: 1008–22.

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Fabiola C. Bento for her help in language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Miyaoka MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miyaoka, R., Esteves, S. (2015). Genetic Basis of Unexplained Male Infertility. In: Schattman, G., Esteves, S., Agarwal, A. (eds) Unexplained Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2140-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2140-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2139-3

  • Online ISBN: 978-1-4939-2140-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics