Skip to main content

Idiopathic Infertility: Survival and Function of Sperm in the Female Reproductive Tract

  • Chapter
  • First Online:
Unexplained Infertility

Abstract

Fertilization is undoubtedly one of the most complex and tightly regulated biological events in life. Understanding both the cellular and molecular mechanisms that underlie successful fertilization has great implications toward the etiology of human infertility, and grasping the role and function of spermatozoa in this regard may present a potential in the field of idiopathic male infertility.

Spermatozoa are deposited in the female reproductive tract during intercourse, where they have to gain both motility and fertilizing ability in a foreign and hostile environment. The spermatozoon’s ability to fertilize an oocyte is gained through a series of events, including capacitation and the acrosome reaction, which are initiated at very strategically specific points in the female reproductive tract, to ensure that fertilizing capability is maintained until the oocyte can be reached. The journey to the oocyte is an arduous one, and the spermatozoa must complete it independently and with very limited resources, as they are not directly connected to the blood supply of the female.

In the female reproductive tract, spermatozoa encounter obstacles at practically every point they reach. However, evolution has provided the physiologically superior spermatozoa with the means to overcome these challenges. In the vagina, spermatozoa must face gravity, an acidic environment, as well as an influx of female immune cells, all of which is overcome by the coagulation of the seminal plasma in the anterior vaginal regions close to the cervical opening. Entrance to the cervix can only be gained around the time of ovulation, but once inside, the mature and vigorously motile spermatozoa are favored and protected from microbes in the deep cervical channels, as they make their way to the uterine cavity. In the uterus, spermatozoa are swept toward the fallopian tubes mainly by smooth muscle contractions of the uterine wall. The fallopian tubes provide a safe haven for spermatozoa, due to the absence of female immune cells and the existence of a functional sperm reservoir intended to maintain spermatozoa in a fertile state until the oocyte can be reached and fertilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson L. Spermatogenesis and aging in the human. J Androl. 1986;7(6):331–51.

    CAS  PubMed  Google Scholar 

  2. Cobb M. Heredity before genetics: a history. Nat Rev Genet. 2006;7(12). doi:10.1038/nrg1948.

    Google Scholar 

  3. Hall JE. Reproductive and hormonal functions of the male (and function of the pineal gland). In: Textbook of medical physiology. 12th ed. Philadelphia: Saunders Elsevier; 2011. p. 973–986.

    Google Scholar 

  4. Owen DH, Katz DF. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl. 2005;26(4). doi:10.2164/jandrol.04104.

    Google Scholar 

  5. Mandal A, Bhattacharyya AK. Differences in osmolality, pH, buffering capacity, superoxide dismutase and maintenance of sperm motility in human ejaculates according to the degree of coagulation. Int J Androl.1987b;11:45–51.

    Article  Google Scholar 

  6. Velazquez A, Pedron N, Delgado NM, Rosado A. Osmolality and conductance of normal and abnormal human seminal plasma. Int J Fertil. 1977;22:92–7.

    CAS  PubMed  Google Scholar 

  7. Encyclopædia Britannica. Ejaculation. http://www.britannica.com/EBchecked/topic/181568/ejaculation. Accessed 13 Dec 2012.

  8. Carpino A, Siciliano L. Unaltered protein pattern/genital tract secretion marker levels in seminal plasma of highly viscous human ejaculates. Arch Androl. 1998;41:31–5.

    Article  CAS  PubMed  Google Scholar 

  9. Canale D, Bartelloni M, Negroni A, Meschini P, Izzo PL, Bianchi B, Menchini-Fabris GF. Zinc in human semen. Int J Androl. 1986;9(6). doi:10.1111/j.1365-2605.1986.tb00909.x.

    Google Scholar 

  10. Fong JC, Lin CH, Wei YH, Ho LT, Hong CY. Calcium buffering capacity of human seminal plasma: the role of EGTA in stimulating sperm motility. Chin J Physiol. 1986;29:7–12.

    CAS  PubMed  Google Scholar 

  11. Magnus O, Abyholm T, Kofstad J, Purvis K. Ionized calcium in human male and female reproductive fluids: relationships to sperm motility. Hum Reprod. 1990;5:94–98.

    CAS  PubMed  Google Scholar 

  12. Sorensen MB, Bergdahl IA, Hjollund NHI, Bonde JPE, Stoltenberg M, Ernst E. Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol Hum Reprod. 1999;5:331–7.

    Article  CAS  PubMed  Google Scholar 

  13. Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63(6). (PubMed PMID:7750580).

    Google Scholar 

  14. Sirigu P, Turno F, Usai E, Perra MT. Histochemical study of the human bulbourethral (Cowper’s) glands. Andrologia. 1993;25(5). doi:10.1111/j.1439-0272.1993.tb02728.x.

    Google Scholar 

  15. World Health Organization. WHO laboratory manual for the examination and processing of human semen, 6th ed. Geneva: World Health Organization; 2010.

    Google Scholar 

  16. Fraser LR. Sperm capacitation and the acrosome reaction. Hum. Reprod. 1998;13(suppl 1): 9–19. doi:10.1093/humrep/13.suppl_1.9 (1998).

    Article  PubMed  Google Scholar 

  17. McPartlin LA. Taking a molecular approach to a clinical problem: sperm capacitation as the missing link for successful in vitro fertilization in the horse [Doctoral dissertation]. Cornell University; 2010.

    Google Scholar 

  18. Early, R. Male reproductive system. In: Online Learning Package. University of the West of England. http://www.google.co.za/url20early&source=web&cd=1&cad=rja&ved=0CDAQFjAA&url=http%3A%2F%2Fhsc.uwe.ac.uk%2Fnet%2Fstudent%2FData%2FSites%2F1%2FGalleryImages%2Fwelcome%2Fmale%2520repro.docx&ei=F07hUIuPJ8iShgeNn4HABw&usg=AFQjCNGujRRqwIsW6_RCiuFAYNQgruEW7A&bvm=bv.1355534169,d.ZG4. Accessed 13 Dec 2012.

    Google Scholar 

  19. Langlais J, Kan FWK, Granger L, Raymond L, Bleau G, Roberts KD. Identification of sterol acceptors that stimulate cholesterol efflux from human spermatozoa during in vitro capacitation. Gamete Res. 2005;20(2). doi:10.1002/mrd.1120200209.

    Google Scholar 

  20. Varner DD, Bowen JA, Johnson, L. Effect of heparin on capacitation/acrosome reaction of equine sperm. Syst Biol Reprod Med [Internet]. 1993;31(3):199–207. http://informahealthcare.com/doi/abs/10.3109/01485019308988400. Accessed 13 Dec 2012.

    Article  CAS  Google Scholar 

  21. Lane ME, Therien I, Moreau R, Manjunath P. Heparin and high-density lipoprotein mediate bovine sperm capacitation by different mechanisms. Biol Reprod. 1999;60(1). doi:10.1095/biolreprod60.1.169.

    Google Scholar 

  22. Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod. 1995;53(6). doi:10.1095/biolreprod53.6.1280.

    Google Scholar 

  23. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6). doi:10.1093/humupd/dmn029.

    Google Scholar 

  24. Mazzilli F, Rossi T, Delfino M, Dondero F, Makler A. A new objective method for scoring human sperm hyperactivation based on head axis angle deviation. Int J Androl. 2001;24(4). doi:10.1046/j.1365-2605.2001.00271.x.

    Google Scholar 

  25. Baltz JM, Katz DF, Cone RA. Mechanics of sperm-egg interaction at the zona pellucida. Biophys J. 1988;54(4). doi:10.1016/S0006-3495(88)83000-5.

    Google Scholar 

  26. Conner SJ, Lefievre L, Hughes DC, Barratt CLR. Cracking the egg: increased complexity in the zona pellucida. Hum. Reprod. 2005;20(5). doi:10.1093/humrep/deh835.

    Google Scholar 

  27. Patrat C, Serres C, Jouannet P. The acrosome reaction in human spermatozoa. Biol Cell. 2000;92(3-4). doi:10.1016/S0248-4900(00) 01072-8.

    Google Scholar 

  28. Brucker C, Lipford GB. The human sperm acrosome reaction: physiology and regulatory mechanisms. an update. Hum Reprod [Internet]. 1994;1(1):51–62. http://humupd.oxfordjournals.org/content/1/1/51.short. Accessed 13 Dec 2012.

    Article  Google Scholar 

  29. Kim NH, Funahashi H, Abeydeera LR, Moon SJ, Prather RS, Day BN. Effects of oviductal fluid on sperm penetration and cortical granule exocytosis during fertilization of pig oocytes in vitro. J Rreprod Fertil. 1996;107(1). doi:10.1530/jrf.0.1070079.

    Google Scholar 

  30. Miki K, Roldan ERS, Gomendio M. Energy metabolism and sperm function. In: Spermatology. Proceedings of the 10th International Symposium on Spermatology; 2006;17–22; El Escorial, Madrid, Spain. Nottingham University Press; 2007. p. 309–25.

    Google Scholar 

  31. Storey BT. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol. 2008;52(5):427.

    Article  CAS  PubMed  Google Scholar 

  32. Hawk HW. Sperm survival and transport in the female reproductive tract. J Dairy Sci. 1983;66(12). doi:10.3168/jds.S0022-0302(83)82138-9.

    Google Scholar 

  33. Curtis P, Lindsay P, Jackson AE, Shaw RW. Adverse effects on sperm movement characteristics in women with minimal and mild endometriosis. Int J Obstet Gynaecol. 1993;100(2). doi:10.1111/j.1471-0528.1993.tb15215.x165-169.

    Google Scholar 

  34. Ishijima S, Baba SA, Mohri H, Suarez SS. Quantitative analysis of flagellar movement in hyperactivated and acrosome-reacted golden hamster spermatozoa. Mol Reprod Dev. 2002;61(3). doi:10.1002/mrd.10017.

    Google Scholar 

  35. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1). doi:10.1093/humupd/dmi047.

    Google Scholar 

  36. Thompson LA, Barratt CLR, Bolton AE, Cooke ID. The leukocytic reaction of the human uterine cervix. Am J Reprod Immunol. 1992;28(2). (PubMed PMID: 1285856).

    Google Scholar 

  37. UZ Leuven Fertility Clinic. Fertility in men. www.uzleuven.be/node/17230. Accessed 13 Dec 2012.

  38. Yanagimachi R, Chang MC. Fertilization of hamster eggs in vitro. Nature. 1963;200:281–2. doi:10.1038/200281b0.

    Article  CAS  PubMed  Google Scholar 

  39. Ahlgren M. Sperm transport to and survival in the human fallopian tube. Gynecol Invest [Internet]. 1975;6(3–4):206–214. http://content.karger.com/ProdukteDB/produkte.asp?Doi=301517. Accessed 13 Dec 2013.

    Article  CAS  Google Scholar 

  40. Mortimer, D, Leslie, EE, Kelly, RW, Templeton, AA. Morphological selection of human spermatozoa in vivo and in vitro. J Reprod Fertil. 1982;64(2):391–9.

    Article  CAS  PubMed  Google Scholar 

  41. Twigg, J, Irvine, DS, Houston, P, Fulton, N, Michael, L, Aitken, RJ. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod. 1998;4(5), 439–45.

    Article  CAS  PubMed  Google Scholar 

  42. Ellington, JE, Evenson, DP, Wright Jr, RW, Jones, AE, Schneider, CS, Hiss, GA, et al. Higher-quality human sperm in a sample selectively attach to oviduct (fallopian tube) epithelial cells in vitro. Fertil Steril. 1999;71(5):924–9.

    Article  CAS  PubMed  Google Scholar 

  43. Sanders, D, Warner, P, Bäckström, T, Bancroft, J. Mood, sexuality, hormones and the menstrual cycle. I. changes in mood and physical state: description of subjects and method. Psychosom Med. 1983;45(6), 487–501.

    Article  CAS  PubMed  Google Scholar 

  44. Austin CR. Fate of spermatozoa in the uterus of the mouse and rat. J Endocrinol 1957;14,335–42.

    Article  CAS  PubMed  Google Scholar 

  45. Witkin SS, Chaudhry A. Relationship between circulating antisperm antibodies in women and autoantibodies on the ejaculated sperm of their partners. Am J Obstet Gynecol. 1989;161:900–3.

    Article  CAS  PubMed  Google Scholar 

  46. Ingerslev HJ, Moller NP, Jager S, Kremer J. Immunoglobulin class of sperm antibodies in cervical mucus from infertile women. Am J Reprod Immunol. 1982;2:296–300.

    Article  CAS  PubMed  Google Scholar 

  47. Kremer J, Jager S. The significance of antisperm antibodies for spermcervical mucus interaction. Hum Reprod. 1992;7:781–4.

    CAS  PubMed  Google Scholar 

  48. Witkin SS, Vogel-Roccuzzo R, David SS, Berkeley A, Goldstein M, Graf M. Heterogeneity of antigenic determinants on human spermatozoa: relevance to antisperm antibody testing in infertile couples. Am J Obstet Gynecol. 1988;159:1228–31.

    Article  CAS  PubMed  Google Scholar 

  49. Blum, M, Pery, J, Blum, I. Antisperm antibodies in young oral contraceptive users. Adv Contracept. 1989;5(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  50. Witkin SS. Production of interferon gamma by lymphocytes exposed to antibody-coated spermatozoa: a mechanism for sperm antibody production in females. Fertil Steril. 1988;50:498–502.

    CAS  PubMed  Google Scholar 

  51. Witkin SS. Production of interferon gamma by lymphocytes exposed to antibody-coated spermatozoa: a mechanism for sperm antibody production in females. Fertil Steril. 1988;50:498–502.

    CAS  PubMed  Google Scholar 

  52. Fordney-Settlage D. A review of cervical mucus and sperm interactions in humans. Int J Fertil. 1981;26(3). (PubMed PMID: 6118336).

    Google Scholar 

  53. Hafez ES. In vivo and in vitro sperm penetration in cervical mucus. Acta Eur Fertil. 1979 10(2). (Pubmed PMID: 397707).

    Google Scholar 

  54. Spehr, M, Gisselmann, G, Poplawski, A, Riffell, JA, Wetzel, CH, Zimmer, RK, et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003;299(5615):2054–58.

    Article  CAS  PubMed  Google Scholar 

  55. Shekarriz M, Thomas AJ, Agarwal A. Incidence and level of seminal reactive oxygen species in normal men. Urology. 1995;45(1). doi:10.1016/S0090-4295(95)97088-6.

    Google Scholar 

  56. Laessle, RG, Tuschi, RJ, Schweiger, U, Pirke, KM. Mood changes and physical complaints during the normal menstrual cycle in healthy young women. Psychoneuroendocrinology 1990;15(2):131–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle van der Linde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van der Linde, M., du Plessis, S. (2015). Idiopathic Infertility: Survival and Function of Sperm in the Female Reproductive Tract. In: Schattman, G., Esteves, S., Agarwal, A. (eds) Unexplained Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2140-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2140-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2139-3

  • Online ISBN: 978-1-4939-2140-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics