Skip to main content

Ischemia–Reperfusion Injury in Reconstructive Transplantation: An Undefined Conundrum

  • Chapter
  • First Online:
The Science of Reconstructive Transplantation

Abstract

Ischemia–reperfusion injury (IRI), a major complication of organ transplantation, tissue resection, and hemorrhagic shock, is a dynamic process that involves two interrelated phases of local ischemic insult and inflammation-mediated reperfusion injury. This chapter highlights recent mechanistic insights into innate–adaptive immune cross talk and cell activation cascades leading to inflammation-mediated damage in IR-stressed tissues, and considers their pathophysiological relevance in the emerging field of vascularized composite allotransplantation (VCA). The interlocked molecular signaling pathways in histologically divergent cell types, the IRI kinetics, and positive versus negative regulatory loops at the innate–adaptive immune interface are discussed. Current gaps in our knowledge and mechanistic aspects necessitating basic and translational research are stressed. Improved appreciation of cellular and molecular events, which trigger and sustain local inflammation responses in experimental models, are fundamental to developing innovative strategies for treating VCAs suffering from IR-inflammation/dysfunction following prolonged periods of ex vivo storage. Achieving these goals should pave the road to improving the clinical outcomes and possibly achieving the ultimate goal of imposing operational immune tolerance in transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diaz-Siso JR, Bueno EM, Sisk GC, Marty FM, Pomahac B, Tullius SG. Vascularized composite tissue allotransplantation–state of the art. Clin Transplant. 2013;27:330–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Caterson EJ, Lopez J, Medina M, Pomahac B, Tullius SG. Ischemia-reperfusion injury in vascularized composite allotransplantation. J Craniofac Surg. 2013;24:51–6.

    Article  PubMed  Google Scholar 

  3. Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2011;17:1391–401.

    Article  CAS  PubMed  Google Scholar 

  4. Zhai Y, Busuttil RW, Kupiec-Weglinski JW. New insights into mechanisms of innate–adaptive immune-mediated tissue inflammation. Am J Transplant. 2011;11:1563–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zhai Y, Petrowsky H, Hong, JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation–from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10:79–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Murphy SP, Porrett PM, Turka LA. Innate immunity in transplant tolerance and rejection. Immunol Rev. 2011;241(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  7. Wang WZ, Baynosa RC, Zamboni WA. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plast Reconstr Surg. 2011;128(6):685e–92e.

    Article  PubMed  Google Scholar 

  8. Ikeda T, Yanaga K, Kishikawa K, Kakizoe S, Shimada M, Sugimachi K. Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats. Hepatology. 1992;16:454–61.

    Article  CAS  PubMed  Google Scholar 

  9. Fondevila C, Busuttil RW, Kupiec-Weglinski JW. Hepatic ischemia/reperfusion injury–a fresh look. Exp Mol Pathol. 2003;74:86–93.

    Article  CAS  PubMed  Google Scholar 

  10. Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology. 2000;32:169–73.

    Article  CAS  PubMed  Google Scholar 

  11. Shimizu F, Okamoto O, Katagiri K, Fujiwara S, Wei FC. Prolonged ischemia increases severity of rejection in skin flap allotransplantation in rats. Microsurgery. 2010;30:132–7.

    PubMed  Google Scholar 

  12. Pradka SP, Ong YS, Zhang Y, Davis SJ, Baccarani A, Messmer C, et al. Increased signs of acute rejection with ischemic time in a rat musculocutaneous allotransplant model. Transplant Proc. 2009;41:531–6.

    Article  CAS  PubMed  Google Scholar 

  13. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  CAS  PubMed  Google Scholar 

  14. Land WG. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation. 2005;79:505–14.

    Article  PubMed  Google Scholar 

  15. Beg AA. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol. 2002;23:509–12.

    Article  CAS  PubMed  Google Scholar 

  16. Fox-Marsh A, Harrison LC. Emerging evidence that molecules expressed by mammalian tissue grafts are recognized by the innate immune system. J Leukoc Biol. 2002;71:401–9.

    CAS  PubMed  Google Scholar 

  17. Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev. 2005;204:27–42.

    Article  CAS  PubMed  Google Scholar 

  18. Srikrishna G, Freeze HH. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia. 2009;11:615–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1–20.

    Article  CAS  PubMed  Google Scholar 

  20. Takeuchi O, Akira, S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  CAS  PubMed  Google Scholar 

  21. Poltorak A, He X, Smirnova I, Liu MY, Van HC, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Google Scholar 

  22. Robson MG. Toll-like receptors and renal disease. Nephron Exp Nephrol. 2009;113:e1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock. 2009;32:4–16.

    Article  CAS  PubMed  Google Scholar 

  24. Sobek V, Birkner N, Falk I, Wurch A, Kirschning CJ, Wagner H, et al. Direct toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther. 2004;6:R433–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14:2592–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2010;164:558–61.

    Article  Google Scholar 

  27. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276:10229–33.

    Article  CAS  PubMed  Google Scholar 

  28. Zhai Y, Shen XD, O’Connell R, Gao F, Lassman C, Busuttil RW, et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol. 2004;173:7115–9.

    Article  CAS  PubMed  Google Scholar 

  29. Wu HS, Zhang JX, Wang L, Tian Y, Wang H, Rotstein O. Toll-like receptor 4 involvement in hepatic ischemia/reperfusion injury in mice. Hepatobiliary Pancreat Dis Int. 2004;3:250–3.

    CAS  PubMed  Google Scholar 

  30. Tsung A, Hoffman RA, Izuishi K, Critchlow ND, Nakao A, Chan MH, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol. 2005;175:7661–8.

    Article  CAS  PubMed  Google Scholar 

  31. Shen XD, Ke B, Zhai Y, Gao F, Tsuchihashi S, Lassman CR, et al. Absence of toll-like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion injury in a murine liver transplantation model. Liver Transpl. 2007;13:1435–43.

    Article  PubMed  Google Scholar 

  32. Ellett JD, Evans ZP, Atkinson C, Schmidt MG, Schnellmann RG, Chavin KD. Toll-like receptor 4 is a key mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transpl. 2009;15:1101–9.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hui W, Jinxiang Z, Heshui W, Zhuoya L, Qichang Z. Bone marrow and non-bone marrow TLR4 regulates hepatic ischemia/reperfusion injury. Biochem Biophys Res Commun. 2009;389:328–32.

    Article  PubMed  Google Scholar 

  34. Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest. 2005;115:2894–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation. 2010; 121:80–90.

    Article  CAS  PubMed  Google Scholar 

  36. Farrar CA, Keogh B, McCormackW, O’Shaughnessy A, Parker, A, Reilly M, et al. Inhibition of TLR2 promotes graft function in a murine model of renal transplant ischemia-reperfusion injury. FASEB J. 2012;26:799–807.

    Article  CAS  PubMed  Google Scholar 

  37. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest. 2007;117:2847–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pulskens WP, Teske GJ, Butter LM, Roelofs JJ, van der Poll T, Florquin S, et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One. 2008;3(10):e3596. doi: 10.1371.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kaczorowski DJ, Nakao A, Vallabhaneni R, Mollen KP, Sugimoto R, Kohmoto J, et al. Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation. 2009;87:1455–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shigeoka AA, Holscher TD, King AJ, Hall FW, Kiosses WB, Tobias PS, et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol. 2007;178:6252–8.

    Article  CAS  PubMed  Google Scholar 

  41. Broad A, Kirby JA, Jones DE. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology. 2007;120:103–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009;30:475–87.

    Article  CAS  PubMed  Google Scholar 

  43. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ren F, Duan Z, Cheng Q, Shen X, Gao F, Bai L, et al. Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism. Hepatology. 2011;54:687–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med. 2007;204:2913–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, DeMatteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury. Hepatology. 2010;51:621–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 2011; 54:999–1008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med. 2008;205:2609–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010;330:362–6.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu P, Duan L, Chen J, Xiong A, Xu Q, Zhang H, et al. Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice. Hum Gene Ther. 2011;22:853–64

    Article  CAS  PubMed  Google Scholar 

  51. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7:31–40.

    Article  CAS  PubMed  Google Scholar 

  52. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S, et al. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol. 2011;187:4890–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kamo N, Ke B, Ghaffari AA, Busuttil RW, Cheng G, Kupiec-Weglinski JW. ASC/Caspase-1/IL-1b signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology. 2013;58:351–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kanneganti TD, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27:549–59.

    Article  CAS  PubMed  Google Scholar 

  56. Kato A, Okaya T, Lentsch AB. Endogenous IL-13 protects hepatocytes and vascular endothelial cells during ischemia/reperfusion injury. Hepatology. 2003;37:304–12.

    Article  CAS  PubMed  Google Scholar 

  57. Kato A, Yoshidome H, Edwards MJ, Lentsch AB. Reduced hepatic ischemia/reperfusion injury by IL-4: potential anti-inflammatory role of STAT6. Inflamm Res. 2000;49:275–9.

    Article  CAS  PubMed  Google Scholar 

  58. Yoshidome H, Kato A, Miyazaki M, Edwards MJ, Lentsch AB. IL-13 activates STAT6 and inhibits liver injury induced by ischemia/reperfusion. Am J Pathol. 1999;155:1059–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ji H, Shen X, Gao F, Ke B, Freitas MC, Uchida Y, et al. Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology. 2010;52:1380–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhai Y, Shen XD, Gao F, Zhao A, Freitas MC, Lassman C, et al. CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology. 2008;47:207–14.

    Article  CAS  PubMed  Google Scholar 

  61. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10:170–81.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Majlessi L, Deriaud E, Leclerc C, Lo-Man R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity. 2009;31:761–71.

    Article  CAS  PubMed  Google Scholar 

  63. Bamboat ZM, Ocuin LM, Balachandran VP, Obaid H, Plitas G, DeMatteo RP. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J Clin Invest. 2010;120:559–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Tsung A, Zheng N, Jeyabalan G, Izuishi K, Klune JR, Geller DA, et al. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol. 2007;81:119–28.

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation. 1993;55:1265–72.

    Article  CAS  PubMed  Google Scholar 

  66. Zwacka RM, Zhang Y, Halldorson J, Schlossberg H, Dudus L, Engelhardt JF. CD4( + ) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J Clin Invest. 1997;100:279–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Rabb H, Daniels F, O’Donnell M, Haq M, Saba SR, Keane W, et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol. 2000;279:F525–31.

    Google Scholar 

  68. Shen XD, Ke B, Zhai Y, Amersi F, Gao F, Anselmo DM, et al. CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection. Transplantation. 2002;74:315–9.

    Article  CAS  PubMed  Google Scholar 

  69. Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O’Donnell MP, et al. Identification of the CD4( + ) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest. 2001;108:1283–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Takada M, Chandraker A, Nadeau KC, Sayegh MH, Tilney NL. The role of the B7 costimulatory pathway in experimental cold ischemia/reperfusion injury. J Clin Invest. 1997;100:1199–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Shen XD, Ke B, Zhai Y, Gao F, Anselmo D, Lassman CR, et al. Stat4 and Stat6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 disruption-mediated cytoprotection. Hepatology. 2003;37:296–303.

    Article  CAS  PubMed  Google Scholar 

  72. Kono H, Fujii H, Ogiku M, Hosomura N, Amemiya H, Tsuchiya M, et al. Role of IL-17A in neutrophil recruitment and hepatic injury after warm ischemia-reperfusion mice. J Immunol. 2011;187:4818–25.

    Article  CAS  PubMed  Google Scholar 

  73. Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol. 2010;32:17–31.

    Article  CAS  PubMed  Google Scholar 

  74. Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest. 2008;118:597–607.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum. 2005;52:1037–46.

    Article  CAS  PubMed  Google Scholar 

  76. Wolk K, Witte E, Hoffmann U, Doecke WD, Endesfelder S, Asadullah K, et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn’s disease. J Immunol. 2007;178:5973–81.

    Article  CAS  PubMed  Google Scholar 

  77. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med. 2008;14:275–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive Interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008;29:947–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin-22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 2004;39:1332–42.

    Article  CAS  PubMed  Google Scholar 

  80. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. IL-22 but not IL-17 provides protection to hepatocytes during acute liver inflammation. Immunity. 2007;27:647–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Zhai Y, Qiao B, Gao F, Shen X, Vardanian A, Busuttil RW, et al. Type I, but not Type II, Interferon is critical in liver injury induced after ischemia and reperfusion. Hepatology. 2008;47:199–206.

    Article  CAS  PubMed  Google Scholar 

  82. Wolk K, Sabat R. Interleukin 22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev. 2006;17:367–80.

    Article  CAS  PubMed  Google Scholar 

  83. Chestovich PJ, Uchida Y, Chang W, Ajalat M, Lassman C, Sabat R, et al. Interleukin-22: implications for liver ischemia-reperfusion injury. Transplantation. 2012;93:485–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Kuchroo VK, Meyers JH, Umetsu DT, DeKruyff RH. TIM family of genes in immunity and tolerance. Adv Immunol. 2006;91:227–49.

    Article  CAS  PubMed  Google Scholar 

  85. Uchida Y, Ke B, Freitas MC, Ji H, Zhao D, Benjamin ER, et al. The emerging role of T cell immunoglobulin mucin-1 in the mechanism of liver ischemia and reperfusion injury in the mouse. Hepatology. 2010;51:1363–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Rong S, Park JK, Kirsch T, Yagita H, Akiba H, Boenisch O, et al. The TIM-1:TIM-4 pathway enhances renal ischemia-reperfusion injury. J Am Soc Nephro. 2011;22:484–95.

    Article  CAS  Google Scholar 

  87. Uchida Y, Ke B, Freitas MC, Yagita H, Akiba H, Busuttil RW, et al. T-cell immunoglobulin mucin-3 determines severity of liver ischemia/reperfusion injury in mice in a TLR4-dependent manner. Gastroenterology. 2010;139:2195–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Ji H, Shen X, Gao F, Ke B, Freitas MC, Uchida Y, et al. Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology. 2010;52:1380–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Ueki S, Castellaneta A, Yoshida O, Ozaki K, Zhang M, Kimura S, et al. Hepatic B7 Homolog 1 expression is essential for controlling cold ischemia/reperfusion injury after mouse liver transplantation. Hepatology. 2011;54:216–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Shen X, Wang Y, Gao F, Ren F, Busuttil RW, Kupiec-Weglinski JW, et al. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology. 2009;50:1537–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med. 2006;203:2639–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Arrenberg P, Maricic I, Kumar V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology. 2011;140:646–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Beldi G, Banz Y, Kroemer A, Sun X, Wu Y, Graubardt N, et al. Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice. Hepatology. 2010;51:1702–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36:873–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Seré K, Baek JH, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity. 2012; 37:905–16.

    Article  PubMed  Google Scholar 

  96. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37:1050–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Shklovskaya E, O’Sullivan BJ, Ng LG, Roediger B, Thomas R, Weninger W, et al. Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A. 2011;108:18049–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Gomez de Agüero M, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8( + ) T cells and activating Foxp3( + ) regulatory T cells. J Clin Invest. 2012;122:1700–11.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy W. Kupiec-Weglinski MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kupiec-Weglinski, J., Azari, K. (2015). Ischemia–Reperfusion Injury in Reconstructive Transplantation: An Undefined Conundrum. In: Brandacher, G. (eds) The Science of Reconstructive Transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2071-6_22

Download citation

Publish with us

Policies and ethics