Skip to main content

Genetic Determinants of Familial and Hereditary Prostate Cancer

  • Chapter
  • First Online:
Genitourinary Pathology

Abstract

Prostate cancer can be divided into three groups: hereditary, familial, and sporadic. Positive family history is a strong epidemiological risk factor for prostate cancer. Gene–environment interactions also play a crucial role in cancer development. Hereditary prostate cancer is demonstrated only in 5 % of cases with family history, whereas familial prostate cancer accounts for about 13–25 % of cases. Apart from RNaseL-, ElaC2-, MSR1-, HOXB13- as well as low number of cytosine-adenine-guanine (CAG) repeats in the androgen receptor (AR) gene, there are no other identified high-risk genetic variants which might be considered responsible for hereditary prostate cancer.

An indeterminate number of weak candidate susceptibility loci have been suggested to be involved in hereditary prostate cancer. However, high-risk prostate cancer alleles have a frequency unlikely above 2–3 % of cases, whereas low-risk alleles may have a more frequent impact on sporadic prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti C. Hereditary/familial versus sporadic prostate cancer: few indisputable genetic differences and many similar clinicopathological features. Eur Rev Med Pharmacol Sci. 2010;14(1):31–41.

    CAS  PubMed  Google Scholar 

  2. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.

    Article  CAS  PubMed  Google Scholar 

  3. Page WF, Braun MM, Partin AW, Caporaso N, Walsh P. Heredity and prostate cancer: a study of World War II veteran twins. Prostate. 1997;33(4):240–5.

    Article  CAS  PubMed  Google Scholar 

  4. Kral M, Rosinska V, Student V, Grepl M, Hrabec M, Bouchal J. Genetic determinants of prostate cancer: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(1):3–9.

    Article  PubMed  Google Scholar 

  5. Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, et al. Hereditary prostate cancer: epidemiologic and clinical features. J Urol. 1993;150(3):797–802.

    CAS  PubMed  Google Scholar 

  6. Bruner DW, Moore D, Parlanti A, Dorgan J, Engstrom P. Relative risk of prostate cancer for men with affected relatives: systematic review and meta-analysis. Int J Cancer. 2003;107(5):797–803.

    Article  CAS  PubMed  Google Scholar 

  7. Zeegers MP, Jellema A, Ostrer H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer. 2003;97(8):1894–903.

    Article  PubMed  Google Scholar 

  8. Chen YC, Page JH, Chen R, Giovannucci E. Family history of prostate and breast cancer and the risk of prostate cancer in the PSA era. Prostate. 2008;68(14):1582–91.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mastalski K, Coups EJ, Ruth K, Raysor S, Giri VN. Substantial family history of prostate cancer in black men recruited for prostate cancer screening: results from the prostate cancer risk assessment program. Cancer. 2008;113(9):2559–64.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gronberg H, Damber L, Tavelin B, Damber JE. No difference in survival between sporadic, familial and hereditary prostate cancer. Br J Urol. 1998;82(4):564–7.

    Article  CAS  PubMed  Google Scholar 

  11. Roupret M, Fromont G, Bitker MO, Gattegno B, Vallancien G, Cussenot O. Outcome after radical prostatectomy in young men with or without a family history of prostate cancer. Urology. 2006;67(5):1028–32.

    Article  PubMed  Google Scholar 

  12. Agalliu I, Leanza SM, Smith L, Trent JM, Carpten JD, Bailey-Wilson JE, et al. Contribution of HPC1 (RNASEL) and HPCX variants to prostate cancer in a founder population. Prostate. 2010;70(15):1716–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA, et al. RNASEL Arg462Gln variant is implicated in up to 13 % of prostate cancer cases. Nat Genet. 2002;32(4):581–3.

    Article  CAS  PubMed  Google Scholar 

  14. Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet. 2001;27(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  15. Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL, et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet. 2000;67(4):1014–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang L, McDonnell SK, Elkins DA, Slager SL, Christensen E, Marks AF, et al. Role of HPC2/ELAC2 in hereditary prostate cancer. Cancer Res. 2001;61(17):6494–9.

    CAS  PubMed  Google Scholar 

  17. Maier C, Vesovic Z, Bachmann N, Herkommer K, Braun AK, Surowy HM, et al. Germline mutations of the MSR1 gene in prostate cancer families from Germany. Hum Mutat. 2006;27(1):98–102.

    Article  CAS  PubMed  Google Scholar 

  18. Sun J, Hsu FC, Turner AR, Zheng SL, Chang BL, Liu W, et al. Meta-analysis of association of rare mutations and common sequence variants in the MSR1 gene and prostate cancer risk. Prostate. 2006;66(7):728–37.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SD, Park RY, Kim YR, Kim IJ, Kang TW, Nam KI, et al. HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression. Anat Cell Biol. 2010;43(4):284–93.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366(2):141–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Xu J, Lange EM, Lu L, Zheng SL, Wang Z, Thibodeau SN, et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet. 2013;132(1):5–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Laitinen VH, Wahlfors T, Saaristo L, Rantapero T, Pelttari LM, Kilpivaara O, et al. HOXB13 G84E mutation in Finland; population-based analysis of prostate, breast and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2013;22(3):452–60.

    Article  CAS  PubMed  Google Scholar 

  23. Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet. 1998;20(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lange EM, Chen H, Brierley K, Perrone EE, Bock CH, Gillanders E, et al. Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin Cancer Res. 1999;5(12):4013–20.

    CAS  PubMed  Google Scholar 

  25. Baffoe-Bonnie AB, Smith JR, Stephan DA, Schleutker J, Carpten JD, Kainu T, et al. A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region. Hum Genet. 2005;117(4):307–16.

    Article  CAS  PubMed  Google Scholar 

  26. Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM, et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet. 2000;67(1):82–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wohr G, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet. 1998;62(6):1416–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Maier C, Rosch K, Herkommer K, Bochum S, Cancel-Tassin G, Cussenot O, et al. A candidate gene approach within the susceptibility region PCaP on 1q42.2–43 excludes deleterious mutations of the PCTA-1 gene to be responsible for hereditary prostate cancer. Eur Urol. 2002;42(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  29. Berry R, Schaid DJ, Smith JR, French AJ, Schroeder JJ, McDonnell SK, et al. Linkage analyses at the chromosome 1 loci 1q24–25 (HPC1), 1q42.2–43 (PCAP), and 1p36 (CAPB) in families with hereditary prostate cancer. Am J Hum Genet. 2000;66(2):539–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652–8.

    Article  CAS  PubMed  Google Scholar 

  31. Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A. 2006;103(38):14068–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Cussenot O, Azzouzi AR, Bantsimba-Malanda G, Gaffory C, Mangin P, Cormier L, et al. Effect of genetic variability within 8q24 on aggressiveness patterns at diagnosis and familial status of prostate cancer. Clin Cancer Res. 2008;14(17):5635–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sun J, Lange EM, Isaacs SD, Liu W, Wiley KE, Lange L, et al. Chromosome 8q24 risk variants in hereditary and non-hereditary prostate cancer patients. Prostate. 2008;68(5):489–97.

    Article  CAS  PubMed  Google Scholar 

  34. Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G, et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet. 2009;41(10):1058–60.

    Article  CAS  PubMed  Google Scholar 

  35. Pomerantz MM, Freedman ML. Genetics of prostate cancer risk. Mt Sinai J Med. 2010;77(6):643–54.

    Article  PubMed  Google Scholar 

  36. Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N, et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 2011;102(1):245–52.

    Article  CAS  PubMed  Google Scholar 

  37. Lange EM, Beebe-Dimmer JL, Ray AM, Zuhlke KA, Ellis J, Wang Y, et al. Genome-wide linkage scan for prostate cancer susceptibility from the University of Michigan prostate cancer genetics project: suggestive evidence for linkage at 16q23. Prostate. 2009;69(4):385–91.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl. 2012;14(3):409–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106(10):1697–701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mitra AV, Bancroft EK, Barbachano Y, Page EC, Foster CS, Jameson C, et al. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study. BJU Int. 2011;107(1):28–39.

    Article  PubMed  Google Scholar 

  41. Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet. 1999;64(3):776–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lao-Sirieix P, Caldas C, Fitzgerald RC. Genetic predisposition to gastro-oesophageal cancer. Curr Opin Genet Dev. 2010;20(3):210–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ikonen T, Matikainen M, Mononen N, Hyytinen ER, Helin HJ, Tommola S, et al. Association of E-cadherin germ-line alterations with prostate cancer. Clin Cancer Res. 2001;7(11):3465–71.

    CAS  PubMed  Google Scholar 

  44. Pierce BL, Friedrichsen-Karyadi DM, McIntosh L, Deutsch K, Hood L, Ostrander EA, et al. Genomic scan of 12 hereditary prostate cancer families having an occurrence of pancreas cancer. Prostate. 2007;67(4):410–5.

    Article  PubMed  Google Scholar 

  45. Zuhlke KA, Johnson AM, Okoth LA, Stoffel EM, Robbins CM, Tembe WA, et al. Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Fam Cancer. 2012;11(4):595–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ntais C, Polycarpou A, Ioannidis JP. SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2003;12(7):618–24.

    CAS  PubMed  Google Scholar 

  47. Brooke GN, Bevan CL. The role of androgen receptor mutations in prostate cancer progression. Curr Genomics. 2009;10(1):18–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Cancel-Tassin G, Cussenot O. Prostate cancer genetics. Minerva Urol Nefrol. 2005;57(4):289–300.

    CAS  PubMed  Google Scholar 

  49. Silva Neto B, Koff WJ, Biolchi V, Brenner C, Biolo KD, Spritzer PM, et al. Polymorphic CAG and GGC repeat lengths in the androgen receptor gene and prostate cancer risk: analysis of a Brazilian population. Cancer Invest. 2008;26(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan X, Lu ML, Li T, Balk SP. SRY interacts with and negatively regulates androgen receptor transcriptional activity. J Biol Chem. 2001;276(49):46647–54.

    Article  CAS  PubMed  Google Scholar 

  51. Fromont G, Yacoub M, Valeri A, Mangin P, Vallancien G, Cancel-Tassin G, et al. Differential expression of genes related to androgen and estrogen metabolism in hereditary versus sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1505–9.

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    Article  CAS  PubMed  Google Scholar 

  53. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62.

    Article  CAS  PubMed  Google Scholar 

  54. Georgescu MM. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 2010;1(12):1170–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Govender D, Chetty R. Gene of the month: PTEN. J Clin Pathol. 2012;65(7):601–3.

    Article  CAS  PubMed  Google Scholar 

  56. Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell. 2008;133(3):403–14.

    Article  CAS  PubMed  Google Scholar 

  57. Romano C, Schepis C. PTEN gene: a model for genetic diseases in dermatology. ScientificWorldJournal. 2012;2012:252457.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene. 1998;16(13):1743–8.

    Article  CAS  PubMed  Google Scholar 

  59. Rubin MA, Gerstein A, Reid K, Bostwick DG, Cheng L, Parsons R, et al. 10q23.3 loss of heterozygosity is higher in lymph node-positive (pT2–3,N+) versus lymph node-negative (pT2–3,N0) prostate cancer. Hum Pathol. 2000;31(4):504–8.

    Article  CAS  PubMed  Google Scholar 

  60. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96(4):1563–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten+/- mice. Science. 1999;285(5436):2122–5.

    Article  CAS  PubMed  Google Scholar 

  62. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27(2):222–4.

    Article  CAS  PubMed  Google Scholar 

  63. Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science. 2001; 294(5551):2563–6.

    Article  CAS  PubMed  Google Scholar 

  64. Koivisto PA, Hyytinen ER, Matikainen M, Tammela TL, Ikonen T, Schleutker J. Kruppel-like factor 6 germ-line mutations are infrequent in Finnish hereditary prostate cancer. J Urol. 2004;172(2):506–7.

    Article  PubMed  Google Scholar 

  65. Narla G, Friedman SL, Martignetti JA. Kruppel cripples prostate cancer: KLF6 progress and prospects. Am J Pathol. 2003;162(4):1047–52.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Magi-Galluzzi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magi-Galluzzi, C., Przybycin, C., McKenney, J. (2015). Genetic Determinants of Familial and Hereditary Prostate Cancer. In: Magi-Galluzzi, C., Przybycin, C. (eds) Genitourinary Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2044-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2044-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2043-3

  • Online ISBN: 978-1-4939-2044-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics