Skip to main content

Polarimetric Properties of Flux Ropes and Sheared Arcades in Coronal Prominence Cavities

  • Chapter
Coronal Magnetometry

Abstract

The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a better understanding of how they form and why they erupt.

Coronal Magnetometry

Guest Editors: S. Tomczyk, J. Zhang, and T.S. Bastian

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antiochos, S.K., Dahlburg, R.B., Klimchuk, J.A.: 1994, The magnetic field of solar prominences. Astrophys. J. Lett. 420, L41 – L44. doi:10.1086/187158.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485 – 493. doi:10.1086/306563.

    Article  ADS  Google Scholar 

  • Arnaud, J., Newkirk, G. Jr.: 1987, Mean properties of the polarization of the Fe XIII 10747 Å coronal emission line. Astron. Astrophys. 178, 263 – 268.

    ADS  Google Scholar 

  • Aschwanden, M.J., Newmark, J.S., Delaboudinière, J.-P., Neupert, W.M., Klimchuk, J.A., Gary, G.A., Portier-Fozzani, F., Zucker, A.: 1999, Three-dimensional stereoscopic analysis of solar active region loops. I. SOHO/EIT observations at temperatures of (1.0–1.5)×106 K. Astrophys. J. 515, 842 – 867. doi:10.1086/307036.

    Article  ADS  Google Scholar 

  • Baķ-Stȩślicka, U., Gibson, S.E., Fan, Y.E., Bethge, C.W., Forland, B., Rachmeler, L.A.: 2013, The magnetic structure of solar prominence cavities: new observable. Astrophys. J. Lett. 770, L28. doi:10.1088/2041-8205/770/2/L28.

    Article  ADS  Google Scholar 

  • Bastian, T.S.: 2005, The frequency agile solar radiotelescope. In: Gary, D.E., Keller, C.U. (eds.) Solar and Space Weather Radiophysics, Astrophys Space Sci. Lib. 314, 47 – 69. doi:10.1007/1-4020-2814-8_3.

    Google Scholar 

  • Casini, R.: 2002, The Hanle effect of the two-level atom in the weak-field approximation. Astrophys. J. 568, 1056 – 1065. doi:10.1086/338986.

    Article  ADS  Google Scholar 

  • Casini, R., Judge, P.G.: 1999, Spectral lines for polarization measurements of the coronal magnetic field. II. Consistent treatment of the Stokes vector for magnetic-dipole transitions. Astrophys. J. 522, 524 – 539. doi:10.1086/307629.

    Article  ADS  Google Scholar 

  • Charvin, P.: 1965, Étude de la polarisation des raies interdites de la couronne solaire. Application au cas de la raie verte λ 5303. Ann. Astrophys. 28, 877.

    ADS  Google Scholar 

  • Dove, J.B., Gibson, S.E., Rachmeler, L.A., Tomczyk, S., Judge, P.: 2011, A ring of polarized light: evidence for twisted coronal magnetism in cavities. Astrophys. J. Lett. 731, L1. doi:10.1088/2041-8205/731/1/L1.

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2006, On the nature of the X-ray bright core in a stable filament channel. Astrophys. J. Lett. 641, L149 – L152. doi:10.1086/504107.

    Article  ADS  Google Scholar 

  • Fuller, J., Gibson, S.E.: 2009, A survey of coronal cavity density profiles. Astrophys. J. 700, 1205 – 1215. doi:10.1088/0004-637X/700/2/1205.

    Article  ADS  Google Scholar 

  • Gelfreikh, G.B.: 1994, Radio measurements of coronal magnetic fields. In: Rusin, V., Heinzel, P., Vial, J.-C. (eds.) Solar Coronal Structures, IAU Coll. 144, VEDA Slovak Acad. Sciences, 21 – 28.

    Google Scholar 

  • Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., del Zanna, G., Bromage, B.: 1999, Solar minimum streamer densities and temperatures using whole sun month coordinated data sets. J. Geophys. Res. 104, 9691 – 9700. doi:10.1029/98JA02681.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590 – 605. doi:10.1086/500446.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Kucera, T.A., Rastawicki, D., Dove, J., de Toma, G., Hao, J., Hill, S., Hudson, H.S., Marqué, C., McIntosh, P.S., Rachmeler, L., Reeves, K.K., Schmieder, B., Schmit, D.J., Seaton, D.B., Sterling, A.C., Tripathi, D., Williams, D.R., Zhang, M.: 2010, Three-dimensional morphology of a coronal prominence cavity. Astrophys. J. 724, 1133 – 1146. doi:10.1088/0004-637X/724/2/1133.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Low, B.C.: 1998, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys. J. 493, 460. doi:10.1086/305107.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Low, B.C.: 2000, Three-dimensional and twisted: an MHD interpretation of on-disk observational characteristics of coronal mass ejections. J. Geophys. Res. 105, 18187 – 18202. doi:10.1029/1999JA000317.

    Article  ADS  Google Scholar 

  • Grebinskij, A., Bogod, V., Gelfreikh, G., Urpo, S., Pohjolainen, S., Shibasaki, K.: 2000, Microwave tomography of solar magnetic fields. Astron. Astrophys. Suppl. 144, 169 – 180. doi:10.1051/aas:2000202.

    Article  ADS  Google Scholar 

  • Harvey, J.W.: 1969, Magnetic fields associated with solar active-region prominences. PhD thesis, University of Colorado at Boulder.

    Google Scholar 

  • Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., Anzer, U., Molodij, G., Berlicki, A., DeLuca, E.E., Golub, L., Watanabe, T., Berger, T.: 2008, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J. 686, 1383 – 1396. doi:10.1086/591018.

    Article  ADS  Google Scholar 

  • House, L.L.: 1977, Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. I – Fe XIII. Astrophys. J. 214, 632 – 652. doi:10.1086/155289.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Acton, L.W., Harvey, K.L., McKenzie, D.E.: 1999, A stable filament cavity with a hot core. Astrophys. J. Lett. 513, L83 – L86. doi:10.1086/311892.

    Article  ADS  Google Scholar 

  • Jensen, E.A.: 2007, High frequency Faraday rotation observations of the solar corona. PhD thesis, University of California, Los Angeles.

    Google Scholar 

  • Judge, P.G.: 2007, Spectral lines for polarization measurements of the coronal magnetic field. V. Information content of magnetic dipole lines. Astrophys. J. 662, 677 – 690. doi:10.1086/515433.

    Article  ADS  Google Scholar 

  • Judge, P.G., Casini, R.: 2001, A synthesis code for forbidden coronal lines. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation CS-236, Astron. Soc. Pacific, 503.

    Google Scholar 

  • Judge, P.G., Low, B.C., Casini, R.: 2006, Spectral lines for polarization measurements of the coronal magnetic field. IV. Stokes signals in current-carrying fields. Astrophys. J. 651, 1229 – 1237. doi:10.1086/507982.

    Article  ADS  Google Scholar 

  • Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. doi:10.1088/0004-637X/760/1/81.

    Article  ADS  Google Scholar 

  • Karpen, J.T., Antiochos, S.K., Hohensee, M., Klimchuk, J.A., MacNeice, P.J.: 2001, Are magnetic dips necessary for prominence formation? Astrophys. J. Lett. 553, L85 – L88. doi:10.1086/320497.

    Article  ADS  Google Scholar 

  • Kramar, M., Inhester, B.: 2007, Inversion of coronal Zeeman and Hanle observations to reconstruct the coronal magnetic field. Mem. Soc. Astron. Ital. 78, 120.

    ADS  Google Scholar 

  • Kramar, M., Inhester, B., Solanki, S.K.: 2006, Vector tomography for the coronal magnetic field. I. Longitudinal Zeeman effect measurements. Astron. Astrophys. 456, 665 – 673. doi:10.1051/0004-6361:20064865.

    Article  ADS  Google Scholar 

  • Lin, H., Kuhn, J.R., Coulter, R.: 2004, Coronal magnetic field measurements. Astrophys. J. Lett. 613, L177 – L180. doi:10.1086/425217.

    Article  ADS  Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83 – L86. doi:10.1086/312900.

    Article  ADS  Google Scholar 

  • Liu, Y., Lin, H.: 2008, Observational test of coronal magnetic field models. I. Comparison with potential field model. Astrophys. J. 680, 1496 – 1507. doi:10.1086/588645.

    Article  ADS  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818 – 836. doi:10.1086/175572.

    Article  ADS  Google Scholar 

  • Luna, M., Karpen, J.T., DeVore, C.R.: 2012, Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746, 30. doi:10.1088/0004-637X/746/1/30.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333 – 399. doi:10.1007/s11214-010-9628-0.

    Article  ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: I. Evolution of morphological features of the eruption. Solar Phys. 225, 337 – 353. doi:10.1007/s11207-004-3748-1.

    Article  ADS  Google Scholar 

  • Patzold, M., Bird, M.K., Volland, H., Levy, G.S., Seidel, B.L., Stelzried, C.T.: 1987, The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Solar Phys. 109, 91 – 105. doi:10.1007/BF00167401.

    Article  ADS  Google Scholar 

  • Querfeld, C.W.: 1977, A near-infrared coronal emission-line polarimeter. In: Azzam, R.M.A., Coffeen, D.L. (eds.) Optical Polarimetry: Instrumentation and Applications, Proc. SPIE 112, 200 – 208.

    Chapter  Google Scholar 

  • Rachmeler, L.A., Casini, R., Gibson, S.E.: 2012, Interpreting coronal polarization observations. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona. CS-463, Astron. Soc. Pac., 227.

    Google Scholar 

  • Reeves, K.K., Gibson, S.E., Kucera, T.A., Hudson, H.S., Kano, R.: 2012, Thermal properties of a solar coronal cavity observed with the X-ray telescope on Hinode. Astrophys. J. 746, 146. doi:10.1088/0004-637X/746/2/146.

    Article  ADS  Google Scholar 

  • Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. doi:10.1051/0004-6361/201117381.

    Article  ADS  Google Scholar 

  • Schmit, D.J., Gibson, S.E.: 2011, Forward modeling cavity density: a multi-instrument diagnostic. Astrophys. J. 733, 1. doi:10.1088/0004-637X/733/1/1.

    Article  ADS  Google Scholar 

  • Tomczyk, S., Card, G.L., Darnell, T., Elmore, D.F., Lull, R., Nelson, P.G., Streander, K.V., Burkepile, J., Casini, R., Judge, P.G.: 2008, An instrument to measure coronal emission line polarization. Solar Phys. 247, 411 – 428. doi:10.1007/s11207-007-9103-6.

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J.: 2001, Atomic polarization and the Hanle effect. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation CS-236, Astron. Soc. Pac., 161.

    Google Scholar 

  • van Vleck, J.H.: 1925, On the quantum theory of the polarization of resonance radiation in magnetic fields. Proc. Natl. Acad. Sci. USA 11, 612 – 618. doi:10.1073/pnas.11.10.612.

    Article  ADS  MATH  Google Scholar 

  • White, S.M., Kundu, M.R.: 1997, Radio observations of gyroresonance emission from coronal magnetic fields. Solar Phys. 174, 31 – 52. doi:10.1023/A:1004975528106.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Rachmeler, L.A., Gibson, S.E., Dove, J.B., DeVore, C.R., Fan, Y. (2013). Polarimetric Properties of Flux Ropes and Sheared Arcades in Coronal Prominence Cavities. In: Tomczyk, S., Zhang, J., Bastian, T. (eds) Coronal Magnetometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2038-9_10

Download citation

Publish with us

Policies and ethics