Skip to main content

Direct Reprogramming of Somatic Cells into Induced Neuronal Cells: Where We Are and Where We Want to Go

  • Chapter
  • First Online:
Neural Stem Cells in Development, Adulthood and Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1203 Accesses

Abstract

Direct reprogramming of somatic cells has emerged as a novel strategy to generate neurons, including those of human origin. The method provides enormous potential for studying the mechanisms directing neuronal differentiation, the modeling of neurodegenerative diseases, and the development of potential novel approaches for brain repair. In this chapter, we briefly trace the history of reprogramming, as well as the strategies employed to date for converting different types of somatic cells, including fibroblasts, hepatocytes, astrocytes, and pericytes into induced neuronal cells of different subtype identity. Reprogramming involves particular emphasis on transcriptional and posttranscriptional mechanisms, which include an arsenal of transcription factors, including among others the pro-neural genes Ascl1 and Neurog2, noncoding RNAs such as miRNA 124 and miRNA 9/9*, and epigenetic modifiers such as the brahma-associated factors (BAF) complex summarized in Fig. 1. Finally, we discuss upcoming challenges to further improve this technology and the promises it holds for our understanding and treatment of currently incurable diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addis, R. C., Hsu, F. C., Wright, R. L., Dichter, M. A., Coulter, D. A., & Gearhart, J. D. (2011). Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PloS One, 6(12), e28719. doi:10.1371/journal.pone.0028719.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso, M., Lepousez, G., Sebastien, W., Bardy, C., Gabellec, M. M., Torquet, N., et al. (2012). Activation of adult-born neurons facilitates learning and memory. Nature Neuroscience, 15(6), 897–904. doi:10.1038/nn.3108.

    CAS  PubMed  Google Scholar 

  • Bartel, M. A., Weinstein, J. R., & Schaffer, D. V. (2012). Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy, 19(6), 694–700. doi:10.1038/gt.2012.20.

    CAS  PubMed  Google Scholar 

  • Bergami, M., & Berninger, B. (2012). A fight for survival: The challenges faced by a newborn neuron integrating in the adult hippocampus. Developmental Neurobiology, 72(7), 1016–1031. doi:10.1002/dneu.22025.

    PubMed  Google Scholar 

  • Berninger, B., Costa, M. R., Koch, U., Schroeder, T., Sutor, B., Grothe, B., et al. (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. The Journal of Neuroscience, 27(32), 8654–8664. doi:10.1523/JNEUROSCI.1615-07.2007.

    CAS  PubMed  Google Scholar 

  • Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nature Reviews. Neuroscience, 3(7), 517–530. doi:10.1038/nrn874.

    CAS  PubMed  Google Scholar 

  • Boutz, P. L., Stoilov, P., Li, Q., Lin, C. H., Chawla, G., Ostrow, K., et al. (2007). A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes & Development, 21(13), 1636–1652. doi:10.1101/gad.1558107.

    CAS  Google Scholar 

  • Buffo, A., Rite, I., Tripathi, P., Lepier, A., Colak, D., Horn, A. P., et al. (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3581–3586. doi:10.1073/pnas.0709002105.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buganim, Y., Faddah, D. A., Cheng, A. W., Itskovich, E., Markoulaki, S., Ganz, K., et al. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6), 1209–1222. doi:10.1016/j.cell.2012.08.023.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabrera, C. V., & Alonso, M. C. (1991). Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO Journal, 10(10), 2965–2973.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359), 224–227. doi:10.1038/nature10284.

    CAS  PubMed  Google Scholar 

  • Cajal Ry. (1914). Estudios sobre la degeneración y la regeneración del sistema nervioso: Degeneración y regeneración de los centros nerviosos, Volume 2. imp Moya

    Google Scholar 

  • Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655. doi:10.1016/j.cell.2009.01.035.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casarosa, S., Fode, C., & Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral telencephalon. Development, 126(3), 525–534.

    CAS  PubMed  Google Scholar 

  • Castro, D. S., Martynoga, B., Parras, C., Ramesh, V., Pacary, E., Johnston, C., et al. (2011). A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes & Development, 25(9), 930–945. doi:10.1101/gad.627811.

    CAS  Google Scholar 

  • Castro, D. S., Skowronska-Krawczyk, D., Armant, O., Donaldson, I. J., Parras, C., Hunt, C., et al. (2006). Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Developmental Cell, 11(6), 831–844. doi:10.1016/j.devcel.2006.10.006.

    CAS  PubMed  Google Scholar 

  • Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. doi:10.1038/nbt.1529.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cochella, L., & Hobert, O. (2012). Diverse functions of microRNAs in nervous system development. Current Topics in Developmental Biology, 99, 115–143. doi:10.1016/B978-0-12-387038-4.00005-7.

    CAS  PubMed  Google Scholar 

  • Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51(6), 987–1000.

    CAS  PubMed  Google Scholar 

  • de la Serna, I. L., Carlson, K. A., & Imbalzano, A. N. (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nature Genetics, 27(2), 187–190. doi:10.1038/84826.

    PubMed  Google Scholar 

  • Doege, C. A., Inoue, K., Yamashita, T., Rhee, D. B., Travis, S., Fujita, R., et al. (2012). Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature, 488(7413), 652–655. doi:10.1038/nature11333.

    CAS  PubMed  Google Scholar 

  • Englund, C., Fink, A., Lau, C., Pham, D., Daza, R. A., Bulfone, A., et al. (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. The Journal of Neuroscience, 25(1), 247–251. doi:10.1523/JNEUROSCI.2899-04.2005.

    CAS  PubMed  Google Scholar 

  • Fineberg, S. K., Kosik, K. S., & Davidson, B. L. (2009). MicroRNAs potentiate neural development. Neuron, 64(3), 303–309. doi:10.1016/j.neuron.2009.10.020.

    CAS  PubMed  Google Scholar 

  • Fong, A. P., Yao, Z., Zhong, J. W., Cao, Y., Ruzzo, W. L., Gentleman, R. C., et al. (2012). Genetic and epigenetic determinants of neurogenesis and myogenesis. Developmental Cell, 22(4), 721–735. doi:10.1016/j.devcel.2012.01.015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Bellido, A. (1979). Genetic Analysis of the Achaete-Scute System of DROSOPHILA MELANOGASTER. Genetics, 91(3), 491–520.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ge, W. P., Miyawaki, A., Gage, F. H., Jan, Y. N., & Jan, L. Y. (2012). Local generation of glia is a major astrocyte source in postnatal cortex. Nature, 484(7394), 376–380. doi:10.1038/nature10959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgetti, A., Marchetto, M. C., Li, M., Yu, D., Fazzina, R., Mu, Y., et al. (2012). Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12556–12561. doi:10.1073/pnas.1209523109.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goll, M. G., & Bestor, T. H. (2005). Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry, 74, 481–514. doi:10.1146/annurev.biochem.74.010904.153721.

    CAS  PubMed  Google Scholar 

  • Gonzalez, F., Romani, S., Cubas, P., Modolell, J., & Campuzano, S. (1989). Molecular analysis of the asense gene, a member of the achaete-scute complex of Drosophila melanogaster, and its novel role in optic lobe development. EMBO Journal, 8(12), 3553–3562.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goritz, C., Dias, D. O., Tomilin, N., Barbacid, M., Shupliakov, O., & Frisen, J. (2011). A pericyte origin of spinal cord scar tissue. Science, 333(6039), 238–242. doi:10.1126/science.1203165.

    PubMed  Google Scholar 

  • Gotz, M., Stoykova, A., & Gruss, P. (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21(5), 1031–1044.

    CAS  PubMed  Google Scholar 

  • Graf, T. (2011). Historical origins of transdifferentiation and reprogramming. Cell Stem Cell, 9(6), 504–516. doi:10.1016/j.stem.2011.11.012.

    CAS  PubMed  Google Scholar 

  • Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A. N., Kwiatkowski, W., et al. (2002). Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature, 420(6916), 636–642. doi:10.1038/nature01245.

    CAS  PubMed  Google Scholar 

  • Guillemot, F., & Joyner, A. L. (1993). Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mechanisms of Development, 42(3), 171–185.

    CAS  PubMed  Google Scholar 

  • Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423–434. doi:10.1016/j.cell.2011.03.022.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 10, 622–640.

    CAS  PubMed  Google Scholar 

  • Heinrich, C., Blum, R., Gascon, S., Masserdotti, G., Tripathi, P., Sanchez, R., et al. (2010). Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biology, 8(5), e1000373. doi:10.1371/journal.pbio.1000373.

    PubMed Central  PubMed  Google Scholar 

  • Heinrich, C., Gascon, S., Masserdotti, G., Lepier, A., Sanchez, R., Simon-Ebert, T., et al. (2011). Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nature Protocols, 6(2), 214–228. doi:10.1038/nprot.2010.188.

    CAS  PubMed  Google Scholar 

  • Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K. L., Hack, M. A., et al. (2002). Glial cells generate neurons: The role of the transcription factor Pax6. Nature Neuroscience, 5(4), 308–315. doi:10.1038/nn828.

    CAS  PubMed  Google Scholar 

  • Hevner, R. F., Hodge, R. D., Daza, R. A., & Englund, C. (2006). Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus. Neuroscience Research, 55(3), 223–233. doi:10.1016/j.neures.2006.03.004.

    CAS  PubMed  Google Scholar 

  • Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., et al. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron, 29(2), 353–366.

    CAS  PubMed  Google Scholar 

  • Hobert, O. (2008). Regulatory logic of neuronal diversity: Terminal selector genes and selector motifs. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20067–20071. doi:10.1073/pnas.0806070105.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito, S., D'Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133. doi:10.1038/nature09303.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245–254. doi:10.1038/ng1089.

    CAS  PubMed  Google Scholar 

  • Jin, Y., Hoskins, R., & Horvitz, H. R. (1994). Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature, 372(6508), 780–783. doi:10.1038/372780a0.

    CAS  PubMed  Google Scholar 

  • Johnson, J. E., Birren, S. J., & Anderson, D. J. (1990). Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature, 346(6287), 858–861. doi:10.1038/346858a0.

    CAS  PubMed  Google Scholar 

  • Jordan, T., Hanson, I., Zaletayev, D., Hodgson, S., Prosser, J., Seawright, A., et al. (1992). The human PAX6 gene is mutated in two patients with aniridia. Nature Genetics, 1(5), 328–332. doi:10.1038/ng0892-328.

    CAS  PubMed  Google Scholar 

  • Kallin, E. M., Rodriguez-Ubreva, J., Christensen, J., Cimmino, L., Aifantis, I., Helin, K., et al. (2012). Tet2 facilitates the derepression of myeloid target genes during CEBPalpha-induced transdifferentiation of pre-B cells. Molecular Cell, 48(2), 266–276. doi:10.1016/j.molcel.2012.08.007.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kao, H. Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C. R., et al. (1998). A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes & Development, 12(15), 2269–2277.

    CAS  Google Scholar 

  • Karow, M., Sanchez, R., Schichor, C., Masserdotti, G., Ortega, F., Heinrich, C., et al. (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4), 471–476. doi:10.1016/j.stem.2012.07.007.

    CAS  PubMed  Google Scholar 

  • Kim, J., Su, S. C., Wang, H., Cheng, A. W., Cassady, J. P., Lodato, M. A., et al. (2011). Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell, 9(5), 413–419. doi:10.1016/j.stem.2011.09.011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 32, 149–184. doi:10.1146/annurev.neuro.051508.135600.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., et al. (2012). Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods, 9(6), 575–578. doi:10.1038/nmeth.1972.

    CAS  PubMed  Google Scholar 

  • Lassar, A. B., Paterson, B. M., & Weintraub, H. (1986). Transfection of a DNA locus that mediates the conversion of 10 T1/2 fibroblasts to myoblasts. Cell, 47(5), 649–656.

    CAS  PubMed  Google Scholar 

  • Lessard, J. A., & Crabtree, G. R. (2010). Chromatin regulatory mechanisms in pluripotency. Annual Review of Cell and Developmental Biology, 26, 503–532. doi:10.1146/annurev-cellbio-051809-102012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, B., Carey, M., & Workman, J. L. (2007). The role of chromatin during transcription. Cell, 128(4), 707–719. doi:10.1016/j.cell.2007.01.015.

    CAS  PubMed  Google Scholar 

  • Li, X., & Jin, P. (2010). Roles of small regulatory RNAs in determining neuronal identity. Nature Reviews Neuroscience, 11(5), 329–338. doi:10.1038/nrn2739.

    CAS  PubMed  Google Scholar 

  • Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1), 51–63. doi:10.1016/j.stem.2010.04.014.

    CAS  PubMed  Google Scholar 

  • Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T., & Anderson, D. J. (1991). Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes & Development, 5(9), 1524–1537.

    CAS  Google Scholar 

  • Ma, Q., Sommer, L., Cserjesi, P., & Anderson, D. J. (1997). Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. The Journal of Neuroscience, 17(10), 3644–3652.

    CAS  PubMed  Google Scholar 

  • Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27(3), 435–448. doi:10.1016/j.molcel.2007.07.015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malatesta, P., & Gotz, M. (2013). Radial glia - from boring cables to stem cell stars. Development, 140(3), 483–486. doi:10.1242/dev.085852.

    CAS  PubMed  Google Scholar 

  • Malatesta, P., Hartfuss, E., & Gotz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127(24), 5253–5263.

    CAS  PubMed  Google Scholar 

  • Marin-Burgin, A., & Schinder, A. F. (2012). Requirement of adult-born neurons for hippocampus-dependent learning. Behavioural Brain Research, 227(2), 391–399. doi:10.1016/j.bbr.2011.07.001.

    PubMed  Google Scholar 

  • Marro, S., Pang, Z. P., Yang, N., Tsai, M. C., Qu, K., Chang, H. Y., et al. (2011). Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell, 9(4), 374–382. doi:10.1016/j.stem.2011.09.002.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massari, M. E., & Murre, C. (2000). Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology, 20(2), 429–440.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeill, E., & Van Vactor, D. (2012). MicroRNAs shape the neuronal landscape. Neuron, 75(3), 363–379. doi:10.1016/j.neuron.2012.07.005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mu, L., Berti, L., Masserdotti, G., Covic, M., Michaelidis, T. M., Doberauer, K., et al. (2012). SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. The Journal of Neuroscience, 32(9), 3067–3080. doi:10.1523/JNEUROSCI.4679-11.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., et al. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1), 188–201. doi:10.1016/j.cell.2012.01.046.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narlikar, G. J., Fan, H. Y., & Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell, 108(4), 475–487.

    CAS  PubMed  Google Scholar 

  • Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409(6821), 714–720. doi:10.1038/35055553.

    CAS  PubMed  Google Scholar 

  • Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223. doi:10.1038/nature10202.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel, T., Tursun, B., Rahe, D. P., & Hobert, O. (2012). Removal of Polycomb Repressive Complex 2 Makes C. elegans Germ Cells Susceptible to Direct Conversion into Specific Somatic Cell Types. Cell Reports, 2(5), 1178–1186. doi:10.1016/j.celrep.2012.09.020.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., et al. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10343–10348. doi:10.1073/pnas.1105135108.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136(4), 629–641. doi:10.1016/j.cell.2009.02.006.

    CAS  PubMed  Google Scholar 

  • Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 485(7400), 593–598. doi:10.1038/nature11044.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiang, L., Fujita, R., Yamashita, T., Angulo, S., Rhinn, H., Rhee, D., et al. (2011). Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. Cell, 146(3), 359–371. doi:10.1016/j.cell.2011.07.007.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richmond, T. J., & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature, 423(6936), 145–150. doi:10.1038/nature01595.

    CAS  PubMed  Google Scholar 

  • Ridet, J. L., Malhotra, S. K., Privat, A., & Gage, F. H. (1997). Reactive astrocytes: Cellular and molecular cues to biological function. Trends in Neurosciences, 20(12), 570–577.

    CAS  PubMed  Google Scholar 

  • Ring, K. L., Tong, L. M., Balestra, M. E., Javier, R., Andrews-Zwilling, Y., Li, G., et al. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell, 11(1), 100–109. doi:10.1016/j.stem.2012.05.018.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robel, S., Berninger, B., & Gotz, M. (2011). The stem cell potential of glia: Lessons from reactive gliosis. Nature Reviews Neuroscience, 12(2), 88–104. doi:10.1038/nrn2978.

    CAS  PubMed  Google Scholar 

  • Seo, S., Richardson, G. A., & Kroll, K. L. (2005). The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development, 132(1), 105–115. doi:10.1242/dev.01548.

    CAS  PubMed  Google Scholar 

  • Simon, C., Gotz, M., & Dimou, L. (2011). Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury. Glia, 59(6), 869–881. doi:10.1002/glia.21156.

    PubMed  Google Scholar 

  • Singhal, N., Graumann, J., Wu, G., Arauzo-Bravo, M. J., Han, D. W., Greber, B., et al. (2010). Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell, 141(6), 943–955. doi:10.1016/j.cell.2010.04.037.

    CAS  PubMed  Google Scholar 

  • Sirko, S., Behrendt, G., Johansson, P., Tripathi, P., Costa, M., Bek, S., et al. (2013). Reactive glia acquire stem cell properties in response to Sonic Hedgehog in injured brain. Cell Stem Cell, 12(4), 426–39.

    CAS  PubMed  Google Scholar 

  • Son, E. Y., Ichida, J. K., Wainger, B. J., Toma, J. S., Rafuse, V. F., Woolf, C. J., et al. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 9(3), 205–218. doi:10.1016/j.stem.2011.07.014.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604. doi:10.1038/nature11139.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935. doi:10.1126/science.1170116.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi:10.1016/j.cell.2006.07.024.

    CAS  PubMed  Google Scholar 

  • Taylor, S. M., & Jones, P. A. (1979). Multiple new phenotypes induced in 10 T1/2 and 3 T3 cells treated with 5-azacytidine. Cell, 17(4), 771–779.

    CAS  PubMed  Google Scholar 

  • Thier, M., Munst, B., Mielke, S., & Edenhofer, F. (2012). Cellular reprogramming employing recombinant sox2 protein. Stem Cells International, 2012, 549846. doi:10.1155/2012/549846.

    PubMed Central  PubMed  Google Scholar 

  • Tsai, C. J., & Nussinov, R. (2011). Gene-specific transcription activation via long-range allosteric shape-shifting. Biochemical Journal, 439(1), 15–25. doi:10.1042/BJ20110972.

    CAS  PubMed  Google Scholar 

  • Turan, S., & Bode, J. (2011). Site-specific recombinases: From tag-and-target- to tag-and-exchange-based genomic modifications. FASEB Journal, 25(12), 4088–4107. doi:10.1096/fj.11-186940.

    CAS  PubMed  Google Scholar 

  • Tursun, B., Patel, T., Kratsios, P., & Hobert, O. (2011). Direct conversion of C. elegans germ cells into specific neuron types. Science, 331(6015), 304–308. doi:10.1126/science.1199082.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041. doi:10.1038/nature08797.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vierbuchen, T., & Wernig, M. (2012). Molecular roadblocks for cellular reprogramming. Molecular Cell, 47(6), 827–838. doi:10.1016/j.molcel.2012.09.008.

    CAS  PubMed  Google Scholar 

  • Villares, R., & Cabrera, C. V. (1987). The achaete-scute gene complex of D. melanogaster: Conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell, 50(3), 415–424.

    CAS  PubMed  Google Scholar 

  • Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630. doi:10.1016/j.stem.2010.08.012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wetherington, J., Serrano, G., & Dingledine, R. (2008). Astrocytes in the epileptic brain. Neuron, 58(2), 168–178. doi:10.1016/j.neuron.2008.04.002.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie, H., Ye, M., Feng, R., & Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell, 117(5), 663–676.

    CAS  PubMed  Google Scholar 

  • Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., et al. (2013). Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits. Cell, 152(1–2), 82–96. doi:10.1016/j.cell.2012.11.045.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo, A. S., Staahl, B. T., Chen, L., & Crabtree, G. R. (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature, 460(7255), 642–646. doi:10.1038/nature08139.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., et al. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359), 228–231. doi:10.1038/nature10323.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng, S., Gray, E. E., Chawla, G., Porse, B. T., O'Dell, T. J., & Black, D. L. (2012). PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nature Neuroscience, 15(3), 381–388. doi:10.1038/nn.3026. S381.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455(7213), 627–632. doi:10.1038/nature07314.

    CAS  PubMed  Google Scholar 

  • Zimmerman, K., Shih, J., Bars, J., Collazo, A., & Anderson, D. J. (1993). XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate. Development, 119(1), 221–232.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Berninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Masserdotti, G., Berninger, B. (2015). Direct Reprogramming of Somatic Cells into Induced Neuronal Cells: Where We Are and Where We Want to Go. In: Kuhn, H., Eisch, A. (eds) Neural Stem Cells in Development, Adulthood and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1908-6_10

Download citation

Publish with us

Policies and ethics