Skip to main content

Aging

  • Chapter
  • First Online:
Microglia in Health and Disease

Abstract

Microglial cells undergo multiple morphological and immunophenotypic changes during normal aging. Abnormal morphology, which includes fewer and shorter ramifications, beading and spheroid swellings, has been observed particularly in the cerebral cortex, as well as in and around the white matter. In aged animals, microglia express some surface antigens which are not normally present in their young counterparts, in addition to presenting altered motility and phagocytosis. Aged microglia exhibit an aberrant production of pro- and anti-inflammatory mediators, accompanied by an exacerbated inflammatory response to pathological changes, a phenomenon known as microglial “priming.” Lysosomal dysfunction and mitochondrial DNA oxidative damage further accumulate in aged microglia, resulting in an increased production of reactive oxygen species. These changes could contribute to mediating the neuronal dysfunction observed during normal aging and facilitate the onset of age-associated cognitive decline, as well as neurodegenerative diseases. In this chapter, we describe microglial aging at the cellular and molecular levels, the implications for diseases, and potential strategies to slow down aging based on preserving lysosomal and mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21(24):3244–3257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adler AS, Kawahara TL, Segal E, Chang HY (2008) Reversal of aging by NFkappaB blockade. Cell Cycle 7(5):556–559

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161. doi:10.1126/science.1227901

    PubMed  CAS  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179. doi:10.1146/annurev.iy.12.040194.001041

    PubMed  CAS  Google Scholar 

  • Barrientos RM, Frank MG, Crysdale NY, Chapman TR, Ahrendsen JT, Day HE, Campeau S, Watkins LR, Patterson SL, Maier SF (2011) Little exercise, big effects: reversing aging and infection-induced memory deficits, and underlying processes. J Neurosci 31(32):11578–11586. doi:10.1523/JNEUROSCI.2266-11.2011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW (1996) In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol 157(4):1630–1637

    PubMed  CAS  Google Scholar 

  • Blau CW, Cowley TR, O’Sullivan J, Grehan B, Browne TC, Kelly L, Birch A, Murphy N, Kelly AM, Kerskens CM, Lynch MA (2012) The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiol Aging 33(5):1005. doi:10.1016/j.neurobiolaging.2011.09.035, e23–35

    PubMed  Google Scholar 

  • Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. doi:10.1056/NEJM200005043421807

    PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038

    PubMed  CAS  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392. doi:10.1126/science.1123511

    PubMed  CAS  Google Scholar 

  • Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GC, van der Horst GT, Melton DW, Hoeijmakers JH, Jaarsma D, Elgersma Y (2011) Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 31(35):12543–12553. doi:10.1523/JNEUROSCI.1589-11.2011

    PubMed  CAS  Google Scholar 

  • Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64. doi:10.1038/nm.2999

    PubMed  CAS  Google Scholar 

  • Bye N, Zieba M, Wreford NG, Nichols NR (2001) Resistance of the dentate gyrus to induced apoptosis during ageing is associated with increases in transforming growth factor-beta1 messenger RNA. Neuroscience 105(4):853–862

    PubMed  CAS  Google Scholar 

  • Chen S, Luo D, Streit WJ, Harrison JK (2002) TGF-beta1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J Neuroimmunol 133(1–2):46–55

    PubMed  CAS  Google Scholar 

  • Combrinck MI, Perry VH, Cunningham C (2002) Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112(1):7–11

    PubMed  CAS  Google Scholar 

  • Conde JR, Streit WJ (2006a) Effect of aging on the microglial response to peripheral nerve injury. Neurobiol Aging 27(10):1451–1461. doi:10.1016/j.neurobiolaging.2005.07.012

    PubMed  CAS  Google Scholar 

  • Conde JR, Streit WJ (2006b) Microglia in the aging brain. J Neuropathol Exp Neurol 65(3):199–203. doi:10.1097/01.jnen.0000202887.22082.6300005072-200603000-00001

    PubMed  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329. doi:10.1038/ng1292-324

    PubMed  CAS  Google Scholar 

  • Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216(3):672–682

    PubMed  CAS  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284. doi:10.1523/JNEUROSCI.2614-05.2005

    PubMed  CAS  Google Scholar 

  • Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10(2):263–276. doi:10.1111/j.1474-9726.2010.00660.x

    PubMed  CAS  PubMed Central  Google Scholar 

  • DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149(2):329–340. doi:10.1006/exnr.1997.6738

    PubMed  CAS  Google Scholar 

  • Dinardo MM, Musicco C, Fracasso F, Milella F, Gadaleta MN, Gadaleta G, Cantatore P (2003) Acetylation and level of mitochondrial transcription factor A in several organs of young and old rats. Biochem Biophys Res Commun 301(1):187–191

    PubMed  CAS  Google Scholar 

  • Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320(5876):674–677. doi:10.1126/science.1156995

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drachman DA (2006) Aging of the brain, entropy, and Alzheimer disease. Neurology 67(8):1340–1352. doi:10.1212/01.wnl.0000240127.89601.83

    PubMed  CAS  Google Scholar 

  • Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6(3):361–370. doi:10.1111/j.1474-9726.2007.00294.x

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361. doi:10.1038/nature08938

    PubMed  CAS  PubMed Central  Google Scholar 

  • Enciu AM, Gherghiceanu M, Popescu BO (2013) Triggers and effectors of oxidative stress at blood-brain barrier level: relevance for brain ageing and neurodegeneration. Oxid Med Cell Longev 2013:297512. doi:10.1155/2013/297512

    PubMed  PubMed Central  Google Scholar 

  • Fadel PJ, Barman SM, Phillips SW, Gebber GL (2004) Fractal fluctuations in human respiration. J Appl Physiol 97(6):2056–2064. doi:10.1152/japplphysiol.00657.2004

    PubMed  Google Scholar 

  • Flanary B (2005) The role of microglial cellular senescence in the aging and Alzheimer diseased brain. Rejuvenation Res 8(2):82–85. doi:10.1089/rej.2005.8.82

    PubMed  CAS  Google Scholar 

  • Flanary BE, Streit WJ (2004) Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45(1):75–88. doi:10.1002/glia.10301

    PubMed  Google Scholar 

  • Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ (2007) Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 10(1):61–74. doi:10.1089/rej.2006.9096

    PubMed  CAS  Google Scholar 

  • Floden AM, Combs CK (2011) Microglia demonstrate age-dependent interaction with amyloid-beta fibrils. J Alzheimers Dis 25(2):279–293. doi:10.3233/JAD-2011-101014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flores B, von Bernhardi R (2012) Transforming growth factor beta1 modulates amyloid beta-induced glial activation through the Smad3-dependent induction of MAPK phosphatase-1. J Alzheimers Dis 32(2):417–429. doi:10.3233/JAD-2012-120721

    PubMed  CAS  Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 93(10):4765–4769

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23(8):1327–1333

    PubMed  Google Scholar 

  • Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 4(7):827–831

    PubMed  CAS  Google Scholar 

  • Glenn CF, Chow DK, David L, Cooke CA, Gami MS, Iser WB, Hanselman KB, Goldberg IG, Wolkow CA (2004) Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci 59(12):1251–1260

    PubMed  PubMed Central  Google Scholar 

  • Godbout JP, Johnson RW (2004) Interleukin-6 in the aging brain. J Neuroimmunol 147(1–2):141–144

    PubMed  CAS  Google Scholar 

  • Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19(10):1329–1331. doi:10.1096/fj.05-3776fje

    PubMed  CAS  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36. doi:10.1006/nimg.2001.0786

    PubMed  CAS  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865. doi:10.1038/ni.1636

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139(3):313–326. doi:10.1016/j.pharmthera.2013.04.013

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12(2):123–137

    PubMed  CAS  Google Scholar 

  • Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26(5):754–765. doi:10.1016/j.bbi.2011.11.006

    PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Yoshida M, Yamato M, Ide T, Wu Z, Ochi-Shindou M, Kanki T, Kang D, Sunagawa K, Tsutsui H, Nakanishi H (2008) Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci 28(34):8624–8634. doi:10.1523/JNEUROSCI.1957-08.2008

    PubMed  CAS  Google Scholar 

  • He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R, Shen Y (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841. doi:10.1083/jcb.200705042

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M (2013) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13(1):60–69. doi:10.1111/acel.12149

    PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. doi:10.1038/nature11729

    PubMed  CAS  Google Scholar 

  • Hentze H, Lin XY, Choi MS, Porter AG (2003) Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ 10(9):956–968. doi:10.1038/sj.cdd.44012644401264

    PubMed  CAS  Google Scholar 

  • Herrera-Molina R, von Bernhardi R (2005) Transforming growth factor-beta 1 produced by hippocampal cells modulates microglial reactivity in culture. Neurobiol Dis 19(1–2):229–236. doi:10.1016/j.nbd.2005.01.003

    PubMed  CAS  Google Scholar 

  • Herrera-Molina R, Flores B, Orellana JA, von Bernhardi R (2012) Modulation of interferon-gamma-induced glial cell activation by transforming growth factor beta1: a role for STAT1 and MAPK pathways. J Neurochem 123(1):113–123. doi:10.1111/j.1471-4159.2012.07887.x

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360. doi:10.1523/JNEUROSCI.0616-08.2008

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hooper C, Fry VA, Sevastou IG, Pocock JM (2009) Scavenger receptor control of chromogranin A-induced microglial stress and neurotoxic cascades. FEBS Lett 583(21):3461–3466. doi:10.1016/j.febslet.2009.09.049

    PubMed  CAS  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856. doi:10.1038/ni.1631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hu S, Sheng WS, Peterson PK, Chao CC (1995) Cytokine modulation of murine microglial cell superoxide production. Glia 13(1):45–50. doi:10.1002/glia.440130106

    PubMed  CAS  Google Scholar 

  • Huang Y, Henry CJ, Dantzer R, Johnson RW, Godbout JP (2008) Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol Aging 29(11):1744–1753. doi:10.1016/j.neurobiolaging.2007.04.012

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T, Kubota T, Fujiwara T, Hamasaki N, Takeshita A, Sunagawa K, Tsutsui H (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112(5):683–690. doi:10.1161/CIRCULATIONAHA.104.524835

    PubMed  CAS  Google Scholar 

  • Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28(9):1317–1327

    PubMed  CAS  Google Scholar 

  • Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22(4):581–594

    PubMed  CAS  Google Scholar 

  • Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11(6):996–1004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, Huang Z, Srinivasan A, Tomaselli KJ, Thornberry NA, Moskowitz MA, Yuan J (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 149(3):613–622

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang D, Kim SH, Hamasaki N (2007) Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7(1–2):39–44. doi:10.1016/j.mito.2006.11.017

    PubMed  CAS  Google Scholar 

  • Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N, Kang D (2004) Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 24(22):9823–9834. doi:10.1128/MCB.24.22.9823-9834.2004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18. doi:10.1016/j.neuron.2012.12.023

    PubMed  CAS  Google Scholar 

  • Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91(3):1341–1349

    PubMed  CAS  Google Scholar 

  • Kohman RA, Bhattacharya TK, Wojcik E, Rhodes JS (2013) Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J Neuroinflammation 10:114. doi:10.1186/1742-2094-10-114

    PubMed  PubMed Central  Google Scholar 

  • Le Y, Iribarren P, Gong W, Cui Y, Zhang X, Wang JM (2004) TGF-beta1 disrupts endotoxin signaling in microglial cells through Smad3 and MAPK pathways. J Immunol 173(2):962–968

    PubMed  CAS  Google Scholar 

  • Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146(1):248–254. doi:10.1016/j.neuroscience.2007.01.004

    PubMed  CAS  Google Scholar 

  • Lieb K, Engels S, Fiebich BL (2003) Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem Int 42(2):131–137, S0197018602000761 [pii]

    PubMed  CAS  Google Scholar 

  • Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet 11(2):133–145

    PubMed  CAS  Google Scholar 

  • Lindenberger U, Marsiske M, Baltes PB (2000) Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychol Aging 15(3):417–436

    PubMed  CAS  Google Scholar 

  • Lipsitz LA (2002) Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci 57(3):B115–B125

    PubMed  Google Scholar 

  • Lipsitz LA, Goldberger AL (1992) Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA 267(13):1806–1809

    PubMed  CAS  Google Scholar 

  • Loncarevic-Vasiljkovic N, Pesic V, Todorovic S, Popic J, Smiljanic K, Milanovic D, Ruzdijic S, Kanazir S (2012) Caloric restriction suppresses microglial activation and prevents neuroapoptosis following cortical injury in rats. PLoS One 7(5):e37215. doi:10.1371/journal.pone.0037215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Otin C, Biasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lukiw WJ (2004) Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem Res 29(6):1287–1297

    PubMed  CAS  Google Scholar 

  • Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18(4):1490–1496

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marques F, Sousa JC, Sousa N, Palha JA (2013) Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener 8:38. doi:10.1186/1750-1326-8-38

    PubMed  PubMed Central  Google Scholar 

  • Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904. doi:10.1038/ni.1935

    PubMed  CAS  PubMed Central  Google Scholar 

  • Masuyama M, Iida R, Takatsuka H, Yasuda T, Matsuki T (2005) Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochim Biophys Acta 1723(1–3):302–308. doi:10.1016/j.bbagen.2005.03.001

    PubMed  CAS  Google Scholar 

  • McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 26(37):9365–9375. doi:10.1523/JNEUROSCI.1504-06.2006

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D (2002) Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-beta and membrane components. Glia 37(2):169–177. doi:10.1002/glia.10029

    PubMed  Google Scholar 

  • Morgan TE, Wong AM, Finch CE (2007) Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip Top Gerontol 35:83–97. doi:10.1159/000096557

    PubMed  CAS  Google Scholar 

  • Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88(4):594–604. doi:10.1016/j.bcp.2014.01.008

    PubMed  CAS  Google Scholar 

  • Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, Anisman H, Hayley S, Park DS (2007) Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 27(12):3328–3337. doi:10.1523/JNEUROSCI.5321-06.2007

    PubMed  CAS  Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230. doi:10.1038/ni.1980

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakanishi H (2003) Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2(4):367–381

    PubMed  CAS  Google Scholar 

  • Nakanishi H, Wu Z (2009) Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res 201(1):1–7. doi:10.1016/j.bbr.2009.02.001

    PubMed  CAS  Google Scholar 

  • Nakanishi H, Hayashi Y, Wu Z (2011) The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior. Neuron Glia Biol 7(1):17–23. doi:10.1017/S1740925X1100010X

    PubMed  Google Scholar 

  • Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282(4):R985–R992. doi:10.1152/ajpregu.00537.2001

    PubMed  CAS  Google Scholar 

  • Neymotin A, Petri S, Calingasan NY, Wille E, Schafer P, Stewart C, Hensley K, Beal MF, Kiaei M (2009) Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 220(1):191–197. doi:10.1016/j.expneurol.2009.08.028

    PubMed  CAS  PubMed Central  Google Scholar 

  • Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ (2012) Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33(1):195. doi:10.1016/j.neurobiolaging.2010.05.008, e191-112

    PubMed  PubMed Central  Google Scholar 

  • Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252(5008):965–969

    PubMed  CAS  Google Scholar 

  • Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77(4):540–551. doi:10.1002/jnr.20180

    PubMed  CAS  Google Scholar 

  • Perry VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 18(5):407–413. doi:10.1016/j.bbi.2004.01.004S0889159104000261

    PubMed  CAS  Google Scholar 

  • Perry VH, Matyszak MK, Fearn S (1993) Altered antigen expression of microglia in the aged rodent CNS. Glia 7(1):60–67. doi:10.1002/glia.440070111

    PubMed  CAS  Google Scholar 

  • Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2):103–112. doi:10.1038/nrn1032nrn1032

    PubMed  CAS  Google Scholar 

  • Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2):161–167. doi:10.1038/nri2015

    PubMed  CAS  Google Scholar 

  • Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AM (2012) Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. Age (Dordr) 35(5):1607–1620. doi:10.1007/s11357-012-9465-z

    Google Scholar 

  • Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, Hong JS, Block ML (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52(1):78–84. doi:10.1002/glia.20225

    PubMed  Google Scholar 

  • Raj DDA, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM, de Waard MC, van der Pluijm I, Brandt R, Kreft KL, Laman JD, de Haan G, Biber KPH, Hoeijmakers JHJ, Eggen BJL, Boddeke HWGM (2014) Priming of Microglia in a DNA-Repair Deficient Model of Accelerated Aging. Neurobiol Aging 35(9):2147–2160

    PubMed  CAS  Google Scholar 

  • Ramirez G, Rey S, von Bernhardi R (2008) Proinflammatory stimuli are needed for induction of microglial cell-mediated AbetaPP and Abeta-neurotoxicity in hippocampal cultures. J Alzheimers Dis 15(1):45–59

    PubMed  CAS  Google Scholar 

  • Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40(2):260–269. doi:10.1002/glia.10153

    PubMed  Google Scholar 

  • Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730. doi:10.1093/cercor/bhh032bhh032

    PubMed  Google Scholar 

  • Salat DH, Tuch DS, Hevelone ND, Fischl B, Corkin S, Rosas HD, Dale AM (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 1064:37–49. doi:10.1196/annals.1340.009

    PubMed  CAS  Google Scholar 

  • Salminen A, Ojala J, Kaarniranta K, Kauppinen A (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69(18):2999–3013. doi:10.1007/s00018-012-0962-0

    PubMed  CAS  Google Scholar 

  • Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8(12):970–982. doi:10.1038/nrm2297

    PubMed  CAS  Google Scholar 

  • Seidel-Rogol BL, Shadel GS (2002) Modulation of mitochondrial transcription in response to mtDNA depletion and repletion in HeLa cells. Nucleic Acids Res 30(9):1929–1934

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95(3):229–234

    PubMed  CAS  Google Scholar 

  • Sheng WS, Hu S, Feng A, Rock RB (2013) Reactive oxygen species from human astrocytes induce functional impairment and oxidative damage. Neurochem Res 38(10):2148–2159

    PubMed  CAS  Google Scholar 

  • Shock N, Greulich R, Costa P, Andres R, Lakatta E, Arenberg D, Tobin J (1984) Normal human aging: the baltimore longitudinal study of aging. US Department of Health and Human Services, Baltimore

    Google Scholar 

  • Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55(4):412–424. doi:10.1002/glia.20468

    PubMed  Google Scholar 

  • Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495. doi:10.1016/j.stem.2010.08.014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6. doi:10.3389/fncel.2013.00006

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siskova Z, Tremblay ME (2013) Microglia and synapse: interactions in health and neurodegeneration. Neural Plast 2013:425845

    PubMed  PubMed Central  Google Scholar 

  • Smith RG, Betancourt L, Sun Y (2005) Molecular endocrinology and physiology of the aging central nervous system. Endocr Rev 26(2):203–250. doi:10.1210/er.2002-0017

    PubMed  CAS  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315. doi:10.1038/nn1008nn1008

    PubMed  CAS  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16(11):1474–1476. doi:10.1096/fj.02-0216fje02-0216fje

    PubMed  CAS  Google Scholar 

  • Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29(9):506–510. doi:10.1016/j.tins.2006.07.001

    PubMed  CAS  Google Scholar 

  • Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45(2):208–212. doi:10.1002/glia.10319

    PubMed  Google Scholar 

  • Sun L, Wu Z, Hayashi Y, Peters C, Tsuda M, Inoue K, Nakanishi H (2012) Microglial cathepsin B contributes to the initiation of peripheral inflammation-induced chronic pain. J Neurosci 32(33):11330–11342. doi:10.1523/JNEUROSCI.0677-12.2012

    PubMed  CAS  Google Scholar 

  • Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3:5. doi:10.1101/cshperspect.a004440

    Google Scholar 

  • Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, Nakanishi H (2010) Involvement of cathepsin B in the processing and secretion of interleukin-1beta in chromogranin A-stimulated microglia. Glia 58(1):114–124. doi:10.1002/glia.20906

    PubMed  Google Scholar 

  • Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116(11):3060–3069. doi:10.1172/JCI27341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson LV (2009) Age-related muscle dysfunction. Exp Gerontol 44(1–2):106–111. doi:10.1016/j.exger.2008.05.003

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tichauer JE, von Bernhardi R (2012) Transforming growth factor-beta stimulates beta amyloid uptake by microglia through Smad3-dependent mechanisms. J Neurosci Res 90(10):1970–1980. doi:10.1002/jnr.23082

    PubMed  CAS  Google Scholar 

  • Tichauer JE, Flores B, Soler B, Eugenin-von Bernhardi L, Ramirez G, von Bernhardi R (2014) Age-dependent changes on TGFbeta1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 37:187–196. doi:10.1016/j.bbi.2013.12.018

    PubMed  CAS  Google Scholar 

  • Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60(4):541–558. doi:10.1002/glia.22287

    PubMed  PubMed Central  Google Scholar 

  • Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. doi:10.1038/nri2725

    PubMed  CAS  Google Scholar 

  • Ueberham U, Ueberham E, Gruschka H, Arendt T (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci 24(8):2327–2334. doi:10.1111/j.1460-9568.2006.05109.x

    PubMed  Google Scholar 

  • Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J (1998) Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438(3):150–158, doi:S0014-5793(98)01275-7 [pii]

    PubMed  CAS  Google Scholar 

  • VanGuilder HD, Bixler GV, Brucklacher RM, Farley JA, Yan H, Warrington JP, Sonntag WE, Freeman WM (2011) Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J Neuroinflammation 8:138. doi:10.1186/1742-2094-8-138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454(7208):1065–1071. doi:10.1038/nature07216

    PubMed  CAS  PubMed Central  Google Scholar 

  • von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12(4):215–232

    Google Scholar 

  • von Bernhardi R, Eugenin J (2004) Microglial reactivity to beta-amyloid is modulated by astrocytes and proinflammatory factors. Brain Res 1025(1–2):186–193. doi:10.1016/j.brainres.2004.07.084

    Google Scholar 

  • von Bernhardi R, Ramirez G (2001) Microglia-astrocyte interaction in Alzheimer’s disease: friends or foes for the nervous system? Biol Res 34(2):123–128

    Google Scholar 

  • von Bernhardi R, Ramirez G, Toro R, Eugenin J (2007) Pro-inflammatory conditions promote neuronal damage mediated by Amyloid Precursor Protein and decrease its phagocytosis and degradation by microglial cells in culture. Neurobiol Dis 26(1):153–164. doi:10.1016/j.nbd.2006.12.006

    Google Scholar 

  • Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA, Lee ME (2000) Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275(47):36653–36658. doi:10.1074/jbc.M004536200M004536200

    PubMed  CAS  Google Scholar 

  • Wong WT (2013) Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Front Cell Neurosci 7:22

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu Z, Sun L, Hashioka S, Yu S, Schwab C, Okada R, Hayashi Y, McGeer PL, Nakanishi H (2013) Differential pathways for interleukin-1beta production activated by chromogranin A and amyloid beta in microglia. Neurobiol Aging 34(12):2715–2725. doi:10.1016/j.neurobiolaging.2013.05.018

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618. doi:10.1038/87945

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Shimokawa T, Yi H, Isobe K, Kojima T, Loskutoff DJ, Saito H (2002) Aging accelerates endotoxin-induced thrombosis: increased responses of plasminogen activator inhibitor-1 and lipopolysaccharide signaling with aging. Am J Pathol 161(5):1805–1814, doi:S0002-9440(10)64457-4 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ye SM, Johnson RW (1999) Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 93(1–2):139–148

    PubMed  CAS  Google Scholar 

  • Ye SM, Johnson RW (2001) An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation 9(4):183–192

    PubMed  CAS  Google Scholar 

  • Yung RL, Julius A (2008) Epigenetics, aging, and autoimmunity. Autoimmunity 41(4):329–335. doi:10.1080/08916930802024889

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang H, Spapen H, Nguyen DN, Benlabed M, Buurman WA, Vincent JL (1994) Protective effects of N-acetyl-L-cysteine in endotoxemia. Am J Physiol 266(5 Pt 2):H1746–H1754

    PubMed  CAS  Google Scholar 

  • Zhang Q, Wu Y, Zhang P, Sha H, Jia J, Hu Y, Zhu J (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205:10–17. doi:10.1016/j.neuroscience.2011.12.053

    PubMed  CAS  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. doi:10.1038/nature09663

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommy von Bernhardi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

von Bernhardi, R., Flores, B., Nakanishi, H. (2014). Aging. In: Tremblay, MÈ., Sierra, A. (eds) Microglia in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1429-6_13

Download citation

Publish with us

Policies and ethics