Skip to main content

Yeast Hsp70 and J-protein Chaperones: Function and Interaction Network

  • Chapter
  • First Online:
The Molecular Chaperones Interaction Networks in Protein Folding and Degradation

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

  • 1564 Accesses

Abstract

All heat shock protein (Hsp)70 molecular chaperones use the same fundamental biochemical mechanism of action, cycles of interaction with client proteins driven by adenosine triphosphate (ATP) binding and hydrolysis to maintain cellular proteostasis. However, they do not function alone; the action of co-chaperones is required. Together with Hsp70s, the J-proteins and nucleotide exchange factors (NEF) co-chaperones form Hsp70 networks. These networks are complex assembles with the number of components and their mutual interactions varying from species to species. Here, we consider Hsp70 networks functioning in a single cell eukaryote, baker’s yeast. By combining network theory perspective with available functional data and evolutionary analysis, we argue that it is possible to make sense of these complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

IMS:

Intermembrane space domain

mtDNA:

Mitochondrial deoxyribonucleic acid (DNA)

mtHsp70:

Mitochondrial heat shock protein (Hsp)70

NBD:

Nucleotide-binding domain

NEF:

Nucleotide exchange factor

PDR:

Pleiotropic drug resistance

RAC:

Ribosome-associated complex

SBD:

Substrate-binding domain

WGD:

Whole genome duplication

References

  1. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  2. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microb Mol Biol Rev 76(2):115–158

    Article  CAS  Google Scholar 

  3. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  PubMed  Google Scholar 

  6. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bogumil D, Landan G, Ilhan J, Dagan T (2012) Chaperones divide yeast proteins into classes of expression level and evolutionary rate. Genome Biol Evol 4(5):618–625

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gupta RS, Golding GB (1993) Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37(6):573–582

    Article  CAS  PubMed  Google Scholar 

  9. Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48(6):863–874

    Article  CAS  PubMed  Google Scholar 

  10. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20(7):900–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18(3):345–351

    Article  CAS  PubMed  Google Scholar 

  12. Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, Seidel CA, Neupert W, Lamb DC, Mokranjac D (2010) The conformational dynamics of the mitochondrial Hsp70 chaperone. Mol Cell 38(1):89–100

    Article  CAS  PubMed  Google Scholar 

  13. Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14(7):1697–1709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 26(1):27–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, Lafer EM, Sousa R (2007) Structural basis of J cochaperone binding and regulation of HspMol Cell 28(3):422–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liu Y, Gierasch LM, Bahar I (2010) Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs. PLoS Comput Biol 6(9): e1000931

    Google Scholar 

  17. Cyr DM (2008) Swapping nucleotides, tuning HspCell 133(6):945–947

    Article  CAS  PubMed  Google Scholar 

  18. Kabani M, Beckerich J-M, Brodsky JL (2003) The yeast Sls1p and Fes1p proteins define a new family of Hsp70 nucleotide exchange factors. Curr Genomics 4:465–473

    Article  CAS  Google Scholar 

  19. Kabani M, Beckerich JM, Brodsky JL (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22(13):4677–4689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sondermann H, Ho AK, Listenberger LL, Siegers K, Moarefi I, Wente SR, Hartl FU, Young JC (2002) Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae. J Biol Chem 277(36):33220–33227

    Article  CAS  PubMed  Google Scholar 

  21. Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65(9):1390–1402

    Article  CAS  PubMed  Google Scholar 

  22. Dragovic Z, Shomura Y, Tzvetkov N, Hartl FU, Bracher A (2006) Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol Chem 387(12):1593–1600

    Article  CAS  PubMed  Google Scholar 

  23. Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B (2006) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25(11):2510–2518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303(5654):98–101

    Article  CAS  PubMed  Google Scholar 

  25. Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25(11):2519–2528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shaner L, Morano KA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12(1):1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhuravleva A, Clerico EM, Gierasch LM (2012) An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151(6):1296–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Shaner L, Trott A, Goeckeler JL, Brodsky JL, Morano KA (2004) The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J Biol Chem 279(21):21992–22001

    Article  CAS  PubMed  Google Scholar 

  29. Nollen EA, Brunsting JF, Song J, Kampinga HH, Morimoto RI (2000) Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity. Mol Cell Biol 20(3):1083–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4(9):a011403

    Article  PubMed Central  PubMed  Google Scholar 

  32. Craig EA, Marszalek J (2011) Hsp70 chaperones. Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  33. Landry SJ (2003) Swivels and stators in the Hsp40-Hsp70 chaperone machine. Structure 11(12):1465–1466

    Article  CAS  PubMed  Google Scholar 

  34. Westermann B, Gaume B, Herrmann JM, Neupert W, Schwarz E (1996) Role of the mitochondrial DnaJ homolog Mdj1p as a chaperone for mitochondrially synthesized and imported proteins. Mol Cell Biol 16(12):7063–7071

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Germaniuk A, Liberek K, Marszalek J (2002) A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J Biol Chem 277(31):27801–27808

    Article  CAS  PubMed  Google Scholar 

  36. Ciesielski GL, Plotka M, Manicki M, Schilke BA, Dutkiewicz R, Sahi C, Marszalek J, Craig EA (2013) Nucleoid localization of Hsp40 Mdj1 is important for its function in maintenance of mitochondrial DNA. Biochim Biophys Acta 1833(10):2233–2243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Spelbrink JN (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62(1):19–32

    CAS  PubMed  Google Scholar 

  38. Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD (2006) A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 12(1):128–132

    Article  CAS  PubMed  Google Scholar 

  39. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  CAS  PubMed  Google Scholar 

  40. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138(4):628–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Clements A, Bursac D, Gatsos X, Perry AJ, Civciristov S, Celik N, Likic VA, Poggio S, Jacobs-Wagner C, Strugnell RA, Lithgow T (2009) The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci U S A 106(37):15791–15795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, Sickmann A, Meyer HE, Truscott KN, Guiard B, Pfanner N, Rehling P (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and TimCell 120(6):817–829

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi M, Schilke B, Marszalek J, Williams B, Craig EA (2011) Ancient gene duplication provided a key molecular step for anaerobic growth of baker’s yeast. Mol Biol Evol 28(7):2005–2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Westermann B, Neupert W (1997) Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast Saccharomyces cerevisiae. J Mol Biol 272(4):477–483

    Article  CAS  PubMed  Google Scholar 

  45. Mokranjac D, Sichting M, Neupert W, Hell K (2003) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22(19):4945–4956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823(9):1491–1508

    Article  CAS  PubMed  Google Scholar 

  47. Schilke B, Williams B, Knieszner H, Pukszta S, D’Silva P, Craig EA, Marszalek J (2006) Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr Biol 16(16):1660–1665

    Article  CAS  PubMed  Google Scholar 

  48. Vickery LE, Cupp-Vickery JR (2007) Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit Rev Biochem Mol Biol 42(2):95–111

    Article  CAS  PubMed  Google Scholar 

  49. Pukszta S, Schilke B, Dutkiewicz R, Kominek J, Moczulska K, Stepien B, Reitenga KG, Bujnicki JM, Williams B, Craig EA, Marszalek J (2010) Co-evolution-driven switch of J-protein specificity towards an Hsp70 partner. EMBO Rep 11(5):360–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Scannell DR, Wolfe KH (2008) A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. Genome Res 18(1):137–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pareek G, Samaddar M, D’Silva P (2011) Primary sequence that determines the functional overlap between mitochondrial heat shock protein 70 Ssc1 and Ssc3 of Saccharomyces cerevisiae. J Biol Chem 286(21):19001–19013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hittinger CT, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci U S A 101(39):14144–14149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921–931

    Article  CAS  PubMed  Google Scholar 

  54. Espinosa-Soto C, Wagner A (2010) Specialization can drive the evolution of modularity. PLoS Comput Biol 6(3):e1000719

    Article  PubMed Central  PubMed  Google Scholar 

  55. Yamada T, Bork P (2009) Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol 10(11):791–803

    Article  CAS  PubMed  Google Scholar 

  56. Wagner A (2008) Gene duplications, robustness and evolutionary innovations. Bioessays 30(4):367–373

    Article  CAS  PubMed  Google Scholar 

  57. Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38(1):1–17

    Article  CAS  PubMed  Google Scholar 

  58. Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of Hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7(7):2568–2577

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Brown CR, McCann JA, Chiang HL (2000) The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 150(1):65–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sharma D, Masison DC (2011) Single methyl group determines prion propagation and protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and Ssa2p. Proc Natl Acad Sci U S A 108(33):13665–13670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Brownridge P, Lawless C, Payapilly AB, Lanthaler K, Holman SW, Harman VM, Grant CM, Beynon RJ, Hubbard SJ (2013) Quantitative analysis of chaperone network throughput in budding yeast. Proteomics 13(8):1276–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Sahi C, Craig EA (2007) Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci U S A 104(17):7163–7168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Sahi C, Kominek J, Ziegelhoffer T, Yu HY, Baranowski M, Marszalek J, Craig EA (2013) Sequential duplications of an ancient member of the DnaJ-family expanded the functional chaperone network in the eukaryotic cytosol. Mol Biol Evol 30(5):985–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lu Z, Cyr DM (1998) Protein folding activity of Hsp70 is modified differentially by the Hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem 273(43):27824–27830

    Article  CAS  PubMed  Google Scholar 

  65. Johnson JL, Craig EA (2001) An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 152(4):851–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhong T, Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73(6):1175–1186

    Article  CAS  PubMed  Google Scholar 

  67. Higurashi T, Hines JK, Sahi C, Aron R, Craig EA (2008) Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc Natl Acad Sci U S A 105(43):16596–16601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Papic D, Elbaz-Alon Y, Koerdt SN, Leopold K, Worm D, Jung M, Schuldiner M, Rapaport D (2013) The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol Cell Biol 33(20):4083–4094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Meyer AE, Hoover LA, Craig EA (2010) The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J Biol Chem 285(2):961–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH (2004) Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 24(21):9487–9497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Pishvaee B, Costaguta G, Yeung BG, Ryazantsev S, Greener T, Greene LE, Eisenberg E, McCaffery JM, Payne GS (2000) A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nature Cell Biol 2(12):958–963

    Article  CAS  PubMed  Google Scholar 

  72. Sahi C, Lee T, Inada M, Pleiss JA, Craig EA (2010) Cwc23, an essential J protein critical for pre-mRNA splicing with a dispensable J domain. Mol Cell Biol 30(1):33–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Pfund C, Huang P, Lopez-Hoyo N, Craig EA (2001) Divergent functional properties of the ribosome-associated molecular chaperone Ssb compared with other Hsp70s. Mol Biol Cell 12(12):3773–3782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Rakwalska M, Rospert S (2004) The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol Cell Biol 24(20):9186–9197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Huang P, Gautschi M, Walter W, Rospert S, Craig EA (2005) The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 12(6):497–504

    Article  CAS  PubMed  Google Scholar 

  76. Leidig C, Bange G, Kopp J, Amlacher S, Aravind A, Wickles S, Witte G, Hurt E, Beckmann R, Sinning I (2013) Structural characterization of a eukaryotic chaperone-the ribosome-associated complex. Nat Struct Mol Biol 20(1):23–28

    Article  CAS  PubMed  Google Scholar 

  77. Prunuske AJ, Waltner JK, Kuhn P, Gu B, Craig EA (2012) Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1. Proc Natl Acad Sci U S A 109(2):472–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Ducett JK, Peterson FC, Hoover LA, Prunuske AJ, Volkman BF, Craig EA (2013) Unfolding of the C-terminal domain of the J-protein Zuo1 releases autoinhibition and activates Pdr1-dependent transcription. J Mol Biol 425(1):19–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131(1):106–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA (2012) Hsp110 is required for spindle length control. J Cell Biol 198(4):623–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Yam AY, Albanese V, Lin HT, Frydman J (2005) Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem 280(50):41252–41261

    Article  CAS  PubMed  Google Scholar 

  82. Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q (2012) Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem 287(8):5661–5672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P (2013) Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with hsp70 to solubilize protein aggregates. J Biol Chem 288(29):21399–21411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Verghese J, Morano KA (2012) A lysine-rich region within fungal BAG domain-containing proteins mediates a novel association with ribosomes. Eukaryot Cell 11(8):1003–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17(3):367–379

    CAS  PubMed  Google Scholar 

  86. Gowda NK, Kandasamy G, Froehlich MS, Dohmen RJ, Andreasson C (2013) Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A 110(15):5975–5980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Nei M (2007) The new mutation theory of phenotypic evolution. Proc Natl Acad Sci U S A 104(30):12235–12242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256(1346):119–124

    Article  CAS  PubMed  Google Scholar 

  89. Silberstein S, Schlenstedt G, Silver PA, Gilmore R (1998) A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol 143(4):921–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Brodsky JL (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151(6):1163–1167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Johnson N, Powis K, High S (2013) Post-translational translocation into the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2403–2409

    Article  CAS  PubMed  Google Scholar 

  92. Nishikawa S, Endo T (1997) The yeast JEM1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J Biol Chem 272(20):12889–12892

    Article  CAS  PubMed  Google Scholar 

  93. Carla Fama M, Raden D, Zacchi N, Lemos DR, Robinson AS, Silberstein S (2007) The Saccharomyces cerevisiae YFR041 C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. Biochim Biophys Acta 1773(2):232–242

    Article  CAS  PubMed  Google Scholar 

  94. Hale SJ, Lovell SC, de Keyzer J, Stirling CJ (2010) Interactions between Kar2p and its nucleotide exchange factors Sil1p and Lhs1p are mechanistically distinct. J Biol Chem 285(28):21600–21606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Kominek J, Marszalek J, Neuveglise C, Craig EA, Williams BL (2013) The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective. Genome Biol Evol. doi:10.1093/gbe/evt192

    Google Scholar 

  96. Nikolaidis N, Nei M (2004) Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Mol Biol Evol 21(3):498–505

    Article  CAS  PubMed  Google Scholar 

  97. Wada S, Hamada M, Satoh N (2006) A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis. Cell Stress Chaperones 11(1):23–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Brocchieri L, Conway deME, Macario AJ (2008) Hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19

    Article  PubMed Central  PubMed  Google Scholar 

  99. Louw CA, Ludewig MH, Mayer J, Blatch GL (2010) The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol Int 59(4):497–505

    Article  CAS  PubMed  Google Scholar 

  100. Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6(3):201–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of E.A. Craig was supported by the National Institutes of Health grants GM31107 and GM27870 (E.A.C.); work in the laboratory of J. Marszalek was supported by Foundation for Polish Science grant TEAM/2009−3/5 and Polish National Science Center grant Maestro DEC-2012/06/A/NZ1/000

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Craig PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Craig, E., Marszalek, J. (2014). Yeast Hsp70 and J-protein Chaperones: Function and Interaction Network. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_3

Download citation

Publish with us

Policies and ethics