Skip to main content

The Interaction Networks of Hsp70 and Hsp90 in the Plasmodium and Leishmania Parasites

  • Chapter
  • First Online:
The Molecular Chaperones Interaction Networks in Protein Folding and Degradation

Abstract

Tropical diseases affect the lives of at least one-tenth of the global population and are among the main global health priorities of the World Health Organization, the United Nations branch concerned with international public health. Most tropical diseases are caused by blood and tissue protozoal parasites, such as those belonging to the Plasmodium and Leishmania genera. Specifically, Leishmania spp. cause human leishmaniasis, and Plasmodium spp. cause malaria. Due to their overlapping geographical regions, these parasites are of great public health concern. They are microscopic, unicellular eukaryotes that are transmitted by blood-sucking insects, and this transmission can be stressful for both the parasites and the host. To cope with this stress, the parasites cycle between different stages in which many proteins are involved. Most of these proteins require assistance to reach their correct conformations; therefore, they are aided by molecular chaperones and Heat Shock Proteins (Hsps). Hsp70 and Hsp90 are the most important Hsps that assist in folding, and they are part of a Protein Quality Control system that helps maintain protein homeostasis. Furthermore, their functions in protozoa have expanded, as both Hsp70 and Hsp90 chaperones play important roles in cell growth and adaptation, allowing life cycle progression. Interaction networks of Hsp70 and Hsp90 in the Plasmodium and Leishmania genera are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiroli-Cepeda AO, Ramos CHI (2011) An overview of the role of molecular chaperones in protein homeostasis. Protein Pept Lett 18(2):101–109

    CAS  PubMed  Google Scholar 

  2. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BBA-Mol Cell Res 1823(3):624–635

    CAS  Google Scholar 

  3. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44(2):229–255

    CAS  PubMed  Google Scholar 

  5. da Silva KP, Borges JC (2011) The molecular chaperone Hsp70 family members function by a bidirectional heterotrophic allosteric mechanism. Protein Pept Lett 18(2):132–142

    CAS  PubMed  Google Scholar 

  6. Shonhai A, Maier A, Przyborski J, Blatch G (2011) Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis. Protein Pept Lett 18(2):143–157

    CAS  PubMed  Google Scholar 

  7. Pallavi R, Roy N, Nageshan RK, Talukdar P, Pavithra SR, Reddy R, Venketesh S, Kumar R, Gupta AK, Singh RK, Yadav SC, Tatu U (2010) Heat shock protein 90 as a drug target against protozoan infections. J Biol Chem 285(49):37964–37975

    CAS  PubMed Central  PubMed  Google Scholar 

  8. WHO (2010) First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases, pp 91

    Google Scholar 

  9. Stuart K, Brun R, Croft S, Fairlamb A, rtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118(4):1301–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lindoso JA, Lindoso AA (2009) Neglected tropical diseases in Brazil. Rev I Med Trop 51:247–253

    Google Scholar 

  11. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, Boer MD, the WHO Leishmaniasis Control Team (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7(5):e35671

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Beattie L, Kaye PM (2011) Leishmania-host interactions: what has imaging taught us? Cell Microbiol 13(11):1659–1667

    PubMed  Google Scholar 

  13. Dostalova A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5(1):276

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Leiriao P, Rodrigues CD, Albuquerque SS, Mota MM (2004) Survival of protozoan intracellular parasites in host cells. EMBO Rep 5(12):1142–1147

    CAS  PubMed Central  PubMed  Google Scholar 

  15. WHO (2012) World malaria report, 2012, pp 195

    Google Scholar 

  16. Tuteja R (2007) Malaria—an overview. FEBS J 274(18):4670–4679

    CAS  PubMed  Google Scholar 

  17. Fujioka H, Aikawa M (2002) Structure and life cycle. In: Perlmann P, Aikawa M (eds) Malaria immunology, Karger, Basel, pp 1–26

    Google Scholar 

  18. Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A, Krueger A, Pollok JM, Menard R, Heussler VT (2006) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313(5791):1287–1290

    CAS  PubMed  Google Scholar 

  19. Baumeister S, Winterberg M, Przyborski J, Lingelbach K (2010) The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences. Protoplasma 240(1–4):3–12

    PubMed  Google Scholar 

  20. Roy N, Nageshan RK, Ranade S, Tatu U (2012) Heat shock protein 90 from neglected protozoan parasites. BBA—Mol Cell Res 1823(3):707–711

    CAS  Google Scholar 

  21. Shonhai A (2010) Plasmodial heat shock proteins: targets for chemotherapy. FEMS Immunol Med Mic 58(1):61–74

    CAS  Google Scholar 

  22. WHO (2010) Guidelines for the treatment of malaria. 2nd edn. World Health Organization, pp 73. ISBN: 9789241547925

    Google Scholar 

  23. Silva KP, Seraphim TV, Borges JC (2013) Structural and functional studies of Leishmania braziliensis Hsp90. BBA—Proteins Proteom 1834(1):351–361

    CAS  Google Scholar 

  24. Van der Ploeg LH, Giannini SH, Cantor CR (1985) Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science 228(4706):1443–1446

    CAS  PubMed  Google Scholar 

  25. Shapira M, McEwen JG, Jaffe CL (1988) Temperature effects on molecular processes which lead to stage differentiation in Leishmania. EMBO J 7(9):2895–2901

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Brandau S, Dresel A, Clos J (1995) High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem J 310(1):225–232

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E, Clos J, Bruchhaus I (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. PROTEOMICS 3(9):1811–1829

    CAS  PubMed  Google Scholar 

  28. Morales MA, Watanabe R, Dacher M, Chafey P, Fortéa J, Scott DA, Beverley SM, Ommen G, Clos J, Hem S, Lenormand P, Rousselle JC, Namane A, Spath GF (2010) Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci U S A 107(18):8381–8386

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Wiesgigl M, Clos J (2001) Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12(11):3307–3316

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Smejkal RM, Wolff R, Olenick JG (1988) Leishmania braziliensis panamensis: increased infectivity resulting from heat shock. Exp Parasitol 65(1):1–9

    CAS  PubMed  Google Scholar 

  31. Salotra P, Ralhan R, Bhatnagar R (1994) Differential expression of stress proteins in virulent and attenuated promastigotes of Leishmania donovani. Biochem Mol Biol Int 33(4):691–697

    CAS  PubMed  Google Scholar 

  32. Matrangolo FSV, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, Santiago A, Pirovani CP, Silva-Pereira RA, Murta SMF (2013) Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol 190(2):63–75

    CAS  PubMed  Google Scholar 

  33. Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153(2):85–94

    CAS  PubMed  Google Scholar 

  34. Kumar N, Koski G, Harada M, Aikawa M, Zheng H (1991) Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol 48(1):47–58

    CAS  PubMed  Google Scholar 

  35. Külzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER, Blatch GL, Crabb BS, Gilson PR, Przyborski JM (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14(11):1784–1795

    PubMed  Google Scholar 

  36. Külzer S, Rug M, Brinkmann K, Cannon P, Cowman A, Lingelbach K, Blatch GL, Maier AG, Przyborski JM (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12(10):1398–1420

    PubMed  Google Scholar 

  37. Leech JH, Barnwell JW, Aikawa M, Miller LH, Howard RJ (1984) Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. J Cell Biol 98(4):1256–1264

    CAS  PubMed  Google Scholar 

  38. Vonlaufen N, Kanzok SM, Wek RC, Sullivan Jr WJ (2008) Stress response pathways in protozoan parasites. Cell Microbiol 10(12):2387–2399

    CAS  PubMed  Google Scholar 

  39. Edkins AL, Boshoff A (2014) General structural and functional features of molecular chaperones. In: Shonhai A, Blatch GL (eds) Heat shock proteins of malaria. Springer, Netherlands, pp 5–45

    Google Scholar 

  40. Przyborski J (2014) The importance of molecular chaperones in survival and pathogenesis of the malaria parasite plasmodium falciparum. In: Shonhai A, Blatch GL (eds) Heat shock proteins of malaria. Springer, Netherlands, pp 1–3

    Google Scholar 

  41. Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    CAS  PubMed  Google Scholar 

  42. Cano LQ, Lavery DN, Bevan CL (2013) Mini-review: foldosome regulation of androgen receptor action in prostate cancer. Mol Cell Endocrinol 369(1–2):52–62

    PubMed  Google Scholar 

  43. Borges JC, Ramos CHI (2005) Protein folding assisted by chaperones. Protein Pept Lett 12(3):257–261

    CAS  PubMed  Google Scholar 

  44. Hohfeld J, Minami Y, Hartl FU (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83(4):589–598

    CAS  PubMed  Google Scholar 

  45. Angeletti PC, Walker D, anganiban AT (2002) Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperon 7(3):258–268

    CAS  Google Scholar 

  46. Li Z, Hartl FU, Bracher A (2013) Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struct Mol Biol 20(8):929–935

    CAS  PubMed  Google Scholar 

  47. Ommen G, Chrobak M, Clos J (2010) The co-chaperone SGT of Leishmania donovani is essential for the parasite’s viability. Cell Stress Chaperon 15(4):443–455

    CAS  Google Scholar 

  48. Worrall LJ, Wear MA, Page AP, Walkinshaw MD (2008) Cloning, purification and characterization of the Caenorhabditis elegans small glutamine-rich tetratricopeptide repeat-containing protein. BBA—Proteins Proteom 1784(3):496–503

    CAS  Google Scholar 

  49. Liou ST, Wang C (2005) Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 435(2):253–263

    CAS  PubMed  Google Scholar 

  50. Li J, Richter K, Reinstein J, Buchner J (2013) Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20(3):326–331

    PubMed  Google Scholar 

  51. Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J (2010) Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1. Mol Cell 37(3):344–354

    CAS  PubMed  Google Scholar 

  52. Pratt WB, Morishima Y, Osawa Y (2008) The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem 283(34):22885–22889

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D, Lee WC (2009) Heat shock protein 90: inhibitors in clinical trials. J Med Chem 53(1):3–17

    Google Scholar 

  54. Arndt V, Rogon C, Hohfeld J (2007) To be, or not to be—molecular chaperones in protein degradation. Cell Mol Life Sci 64(19–20):2525–2541

    CAS  PubMed  Google Scholar 

  55. Meimaridou E, Gooljar SB, Chapple JP (2009) From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol 42(1–2):1–9

    CAS  PubMed  Google Scholar 

  56. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    Google Scholar 

  57. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ERP (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106(21):8471–8476

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18(3):345–135

    CAS  PubMed  Google Scholar 

  59. Borges JC, Ramos CHI (2009) Characterization of nucleotide-induced changes on the quaternary structure of human 70 kDa heat shock protein Hsp70.1 by analytical ultracentrifugation. BMB Rep 42(3):166–171

    CAS  PubMed  Google Scholar 

  60. Bhattacharya A, Kurochkin AV, Yip GNB, Zhang YB, Bertelsen EB, Zuiderweg ERP (2009) Allostery in Hsp70 chaperones is transduced by subdomain rotations. J Mol Biol 388(3):475–490

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    CAS  PubMed  Google Scholar 

  62. Matambo TS, Odunuga OO, Boshoff A, Blatch GL (2004) Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70. Protein Expres Purif 33(2):214–222

    CAS  Google Scholar 

  63. Misra G, Ramachandran R (2009) Hsp70 − 1 from Plasmodium falciparum: protein stability, domain analysis and chaperone activity. Biophys Chem 142(1–3):55 − 64

    CAS  PubMed  Google Scholar 

  64. Shonhai A, Botha M, de Beer TAP, Boshoff A, Blatch GL (2008) Structure-function study of a Plasmodium falciparum Hsp70 using three dimensional modelling and in vitro analyses. Protein Pept Lett 15:1117–1125

    CAS  PubMed  Google Scholar 

  65. Shonhai A, Boshoff A, Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16(9):1803–1818

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Cockburn IL, Pesce E, Pryzborski JM, Davies-Coleman MT, Clark Peter GK, Keyzers RA, Stephens LL, Blatch GL (2011) Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 392(5):431–438

    CAS  PubMed  Google Scholar 

  67. Grover M, Chaubey S, Ranade S, Tatu U (2013) Identification of an exported heat shock protein 70 in Plasmodium falciparum. Parasite 20:2

    PubMed Central  PubMed  Google Scholar 

  68. Folgueira C, Carrión J, Moreno J, Saugar J, Cañavate C, Requena J (2008) Effects of the disruption of the HSP70-II gene on the growth, morphology, and virulence of Leishmania infantum promastigotes. Int Microbiol 11(2):81–89

    CAS  PubMed  Google Scholar 

  69. Helmbrecht K, Zeise E, Rensing L (2000) Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 33(6):341–365

    CAS  PubMed  Google Scholar 

  70. Brochu C, Haimeur A, Ouellette M (2004) The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperon 9(3):294–303

    CAS  Google Scholar 

  71. Louw CA, Ludewig MH, Mayer J, Blatch GL (2010) The Hsp70 chaperones of the tritryps are characterized by unusual features and novel members. Parasitol Inter 59(4):497–505

    CAS  Google Scholar 

  72. Folgueira C, Requena JM (2007) A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev 31(4):359–377

    CAS  PubMed  Google Scholar 

  73. Shonhai A (2014). The role of Hsp70 s in the development and pathogenicity of plasmodium species. In: Shonhai A, Blatch GL (eds) Heat shock proteins of malaria. Springer, Netherlands, pp 47–69

    Google Scholar 

  74. Wiesgigl M, Clos J (2001) The heat shock protein 90 of Leishmania donovani. Med Microbiol Immun 190(1–2):27–31

    CAS  Google Scholar 

  75. Pavithra SR, Banumathy G, Joy O, Singh V, Tatu U (2004) Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279(45):46692–46699

    CAS  PubMed  Google Scholar 

  76. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473–18477

    CAS  PubMed  Google Scholar 

  77. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89(2):239–250

    CAS  PubMed  Google Scholar 

  78. Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17(16):4829–4836

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Obermann WMJ, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis. J Cell Biol 143(4):901–910

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Prodromou C, Panaretou B, Chohan S, Siligardi G, O’Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19(16):4383–4392

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Ali MMU, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440(7087):1013–1017

    CAS  PubMed  Google Scholar 

  82. Owen BAL, Sullivan WP, Felts SJ, Toft DO (2002) Regulation of Heat Shock protein 90 ATPase activity by sequences in the carboxyl terminus. J Biol Chem 277(9):7086–7091

    CAS  PubMed  Google Scholar 

  83. Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658

    CAS  PubMed  Google Scholar 

  84. Hawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WMJ (2006) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26(22):8385–8395

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Cunningham CN, Krukenberg KA, Agard DA (2008) Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90. J Biol Chem 283(30):21170–21178

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16(3):287–293

    CAS  PubMed  Google Scholar 

  87. Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16(3):281–286

    CAS  PubMed  Google Scholar 

  88. Ratzke C, Berkemeier F, Hugel T (2012) Heat shock protein 90s mechanochemical cycle is dominated by thermal fluctuations. Proc Natl Acad Sci U S A 109(1):161–166

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Hainzl O, Lapina MC, Buchner J, Richter K (2009) The charged linker region is an important regulator of Hsp90 function. J Biol Chem 284(34):22559–22567

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Janin YL (2010) ATPase inhibitors of heat-shock protein 90 s season. Drug Discov Today 15(9–10):342–353

    CAS  PubMed  Google Scholar 

  91. Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Mal J 2(1):30

    Google Scholar 

  92. Banumathy G, Singh V, Pavithra SR, Tatu U (2003) Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278(20):18336–18345

    CAS  PubMed  Google Scholar 

  93. Wider D, Peli-Gulli MP, Briand PA, Tatu U, Picard D (2009) The complementation of yeast with human or Plasmodium falciparum Hsp90 confers differential inhibitor sensitivities. Mol Biochem Parasitol 164(2):147–152

    CAS  PubMed  Google Scholar 

  94. Corbett KD, Berger JM (2010) Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Proteins 78(13):2738–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Shahinas D, Taldone T, Chiosis G, Pillai DR (2010) A structure based drug design approach to repurpose drugs against Plasmodium Falciparum Hsp90 (Pfhsp90). Am J Trop Med Hyg 83(5):77–78

    Google Scholar 

  96. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RMR, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Müller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schäfer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309(5733):436–442

    PubMed Central  PubMed  Google Scholar 

  97. Shahinas D, Pillai DR (2014). Role of Hsp90 in Plasmodium falciparum malaria. In: Shonhai A, Blatch GL (eds) Heat shock proteins of malaria. Springer, Netherlands, pp 87–97

    Google Scholar 

  98. Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 3(9):e168

    PubMed Central  Google Scholar 

  99. Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions—to Tpr or not to Tpr. Trends Biochem Sci 20(7):257–259

    CAS  PubMed  Google Scholar 

  100. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101(2):199–210

    CAS  PubMed  Google Scholar 

  101. Odunuga OO, Longshaw VM, Blatch GL (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 26(10):1058–1068

    CAS  PubMed  Google Scholar 

  102. Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperon 8(4):309–316

    CAS  Google Scholar 

  103. Karzai AW, McMacken R (1996) A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J Biol Chem 271(19):11236–11246

    CAS  PubMed  Google Scholar 

  104. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukau B (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci U S A 96(10):5452–5457

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20(5):1042–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Summers DW, Douglas PM, Ramos CHI, Cyr DM (2009) Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends Biochem Sci 34(5):230–233

    CAS  PubMed  Google Scholar 

  107. Szabo A, Langer T, Schroder H, Flanagan J, Bukau B, Hartl FU (1994) The Atp hydrolysis-dependent reaction cycle of the Escherichia-Coli Hsp70 system—Dnak, Dnaj, and Grpe. Proc Natl Acad Sci U S A 91(22):10345–10349

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci U S A 95(11):6108–6113

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Borges JC, Seraphim TV, Mokry DZ, Almeida FCL, Cyr DM, Ramos CHI (2012) Identification of regions involved in substrate binding and dimer stabilization within the central domains of yeast Hsp40 Sis1. PLoS ONE 7(12):e50927

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Silva JC, Borges JC, Cyr DM, Ramos CHI, Torriani IL (2011) Central domain deletions affect the SAXS solution structure and function of Yeast Hsp40 proteins Sis1 and Ydj1. BMC Struct Biol 11(1):40

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Inter J Biochem Cell B 39(10):1781–1803

    CAS  Google Scholar 

  112. Fan CY, Lee S, Ren HY, Cyr DM (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15(2):761–773

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Borges JC, Fischer H, Craievich AF, Ramos CHI (2005) Low resolution structural study of two human HSP40 chaperones in solution—DjA1 from subfamily A and DjB4 from subfamily B have different quaternary structures. J Biol Chem 280(14):13671–13681

    CAS  PubMed  Google Scholar 

  114. 114. Ramos CHI, Oliveira CLP, Fan CY, Torriani IL, Cyr DM (2008) Conserved central domains control the quaternary structure of type I and type II Hsp40 molecular chaperones. J Mol Biol 383(1):155–166

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Acharya P, Chaubey S, Grover M, Tatu U (2012) An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS ONE 7(9):e44605

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Watanabe J (1997) Cloning and characterization of heat shock protein DnaJ homologues from Plasmodium falciparum and comparison with ring infected erythrocyte surface antigen. Mol Biochem Parasitol 88(1–2):253–258

    CAS  PubMed  Google Scholar 

  117. Pesce ER, Acharya P, Tatu U, Nicoll WS, Shonhai A, Hoppe HC, Blatch GL (2008) The Plasmodium falciparum heat shock protein 40, Pfj4, associates with heat shock protein 70 and shows similar heat induction and localisation patterns. Int J Biochem Cell B 40(12):2914–2926

    CAS  Google Scholar 

  118. Nicoll WS, Botha M, McNamara C, Schlange M, Pesce ER, Boshoff A, Ludewig MH, Zimmermann R, Cheetham ME, Chapple JP, Blatch GL (2007) Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK. Int J Biochem Cell B 39(4):736–751

    CAS  Google Scholar 

  119. Botha M, Chiang A, Needham P, Stephens L, Hoppe H, Külzer S, Przyborski J, Lingelbach K, Wipf P, Brodsky J, Shonhai A, Blatch G (2011) Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperon 16(4):389–401

    CAS  Google Scholar 

  120. Louw CA, Ludewig MH, Blatch GL (2010) Overproduction, purification and characterisation of Tbj1, a novel Type III Hsp40 from Trypanosoma brucei, the African sleeping sickness parasite. Protein Expres Purif 69(2):168–177

    CAS  Google Scholar 

  121. Edkins AL, Ludewig MH, Blatch GL (2004) A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40. Int J Biochem Cell B 36(8):1585–1598

    CAS  Google Scholar 

  122. Rug M, Maier AG (2011) The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 63(12):1081–1086

    CAS  PubMed  Google Scholar 

  123. Pesce ER, Maier AG, Blatch GL (2014) Role of the Hsp40 family of proteins in the survival and pathogenesis of the malaria parasite. In: Shonhai A, Blatch GL (eds) Heat shock proteins of malaria. Springer, Netherlands, pp 71–85

    Google Scholar 

  124. Koulov AV, LaPointe P, Lu BW, Razvi A, Coppinger J, Dong MQ, Matteson J, Laister R, Arrowsmith C, Yates JR, Balch WE (2010) Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 21(6):871–884

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lotz GP, Lin H, Harst A, Obermann WMJ (2003) Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 278(19):17228–17235

    CAS  PubMed  Google Scholar 

  126. Meyer P, Prodromou C, Liao C, Hu B, Mark Roe S, Vaughan CK, Vlasic I, Panaretou B, Piper PW, Pearl LH (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(3):511–519

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S, Millson SH, Clarke PA, Naaby-Hansen S, Stein R, Cramer R, Mollapour M, Workman P, Piper PW, Pearl LH, Prodromou C (2002) Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Mol Cell 10(6):1307–1318

    CAS  PubMed  Google Scholar 

  128. Seraphim TV, Alves MM, Silva IM, Gomes FER, Silva KP, Murta SMF, Barbosa LRS, Borges JC (2013) Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90. PLoS ONE 8(6):e66822

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Chua CS, Low H, Lehming N, Sim TS (2012) Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite. Int J Biochem Cell B 44(1):233–245

    CAS  Google Scholar 

  130. Harst A, Lin HY, Obermann WMJ (2005) Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem J 387:789–796

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Zurawska A, Urbanski J, Matuliené J, Baraniak J, Klejman MP, Filipek S, Matulis D, Bieganowski P (2010) Mutations that increase both Hsp90 ATPase activity in vitro and Hsp90 drug resistance in vivo. BBA-Mol Cell Res 1803(5):575–583

    CAS  Google Scholar 

  132. Holmes JL, Sharp SY, Hobbs S, Workman P (2008) Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 68(4):1187–1196

    CAS  Google Scholar 

  133. Weikl T, Abelmann K, Buchner J (1999) An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. J Mol Biol 293(3):685–691

    CAS  PubMed  Google Scholar 

  134. Weaver AJ, Sullivan WP, Felts SJ, Owen BAL, Toft DO (2000) Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J Biol Chem 275(30):23045–23052

    CAS  PubMed  Google Scholar 

  135. Forafonov F, Toogun OA, Grad I, Suslova E, Freeman BC, Picard D (2008) p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol Cell Biol 28(10):3446–3456

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Martinez-Yamout MA, Venkitakrishnan RP, Preece NE, Kroon G, Wright PE, Dyson HJ (2006) Localization of sites of interaction between p23 and Hsp90 in solution. J Biol Chem 281(20):14457–14464

    CAS  PubMed  Google Scholar 

  137. Johnson JL, Toft DO (1994) A novel chaperone complex for steroid-receptors involving heat-shock proteins, immunophilins, and P23. J Biol Chem 269(40):24989–24993

    CAS  PubMed  Google Scholar 

  138. Johnson JL, Beito TG, Krco CJ, Toft DO (1994) Characterization of a novel 23-kilodalton protein of unactive progesterone-receptor complexes. Mol Cell Biol 14(3):1956–1963

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem 273(49):32973–32979

    CAS  PubMed  Google Scholar 

  140. Richter K, Walter S, Buchner J (2004) The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342(5):1403–1413

    CAS  PubMed  Google Scholar 

  141. Karagoz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R, Rudiger SGD (2011) N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci U S A 108(2):580–585

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2(10):885–890

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Pearl LH, Prodromou C (2002) Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59:157–186

    CAS  Google Scholar 

  144. McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol 315(4):787–798

    CAS  PubMed  Google Scholar 

  145. Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB (1997) Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery - The role of p23 is to stabilize receptor-hsp90 heterocomplexes formed by hsp90-p60-hsp70. J Biol Chem 272(34):21213–21220

    CAS  PubMed  Google Scholar 

  146. Echtenkamp FJ, Zelin E, Oxelmark E, Woo JI, Andrews BJ, Garabedian M, Freeman BC (2011) Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol Cell 43(2):229–241

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Chua CS, Low H, Goo KS, Sim TS (2010) Characterization of Plasmodium falciparum co-chaperone p23: its intrinsic chaperone activity and interaction with Hsp90. Cell Mol Life Sci 67(10):1675–1686

    CAS  PubMed  Google Scholar 

  148. Wiser M (2003) A Plasmodium homologue of cochaperone p23 and its differential expression during the replicative cycle of the malaria parasite. Parasitol Res 90(2):166–170

    PubMed  Google Scholar 

  149. McLaughlin SH, Sobott F, Yaol ZP, Zhang W, Nielsen PR, Grossmann JG, Laue ED, Robinson CV, Jackson SE (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356(3):746–758

    CAS  PubMed  Google Scholar 

  150. Echeverria PC, Figueras MJ, Vogler M, Kriehuber T, de Miguel N, Deng B, Dalmasso MC, Matthews DE, Matrajt M, Haslbeck M, Buchner J, Angel SO (2010) The Hsp90 co-chaperone p23 of Toxoplasma gondii: identification, functional analysis and dynamic interactome determination. Mol Biochem Parasitol 172(2):129–140

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Felts SJ, Toft DO (2003) P23, a simple protein with complex activities. Cell Stress Chaperon 8(2):108–113

    CAS  Google Scholar 

  152. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228(2):111–133

    CAS  Google Scholar 

  153. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates hsp70/hsp90 interactions in protein folding. J Biol Chem 273(6):3679–3686

    CAS  PubMed  Google Scholar 

  154. Wegele H, Haslbeck M, Reinstein J, Buchner J (2003) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278(28):25970–25976

    CAS  PubMed  Google Scholar 

  155. Hernandez MP, Sullivan WP, Toft DO (2002) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277(41):38294–38304

    CAS  PubMed  Google Scholar 

  156. Schmid AB, Lagleder S, Grawert MA, Rohl A, Hagn F, Wandinger SK, Cox MB, Demmer O, Richter K, Groll M, Kessler H, Buchner J (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31(6):1506–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Carrigan PE, Nelson GM, Roberts PJ, Stoffer JN, Riggs DL, Smith DF (2004) Multiple domains of the co-chaperone Hop are important for Hsp70 binding. J Biol Chem 279(16):16185–16193

    CAS  PubMed  Google Scholar 

  158. Nelson GM, Huffman H, Smith DF (2003) Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip. Cell Stress Chaperon 8(2):125–133

    CAS  Google Scholar 

  159. Demand J, Luders J, Hohfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18(4):2023–2028

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Flom G, Behal RH, Rosen L, Cole DG, Johnson JL (2007) Definition of the minimal fragments of Sti1 required for dimerization, interaction with Hsp70 and Hsp90 and in vivo functions. Biochem J 404:159–167

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Lee CT, Graf C, Mayer FJ, Richter SM, Mayer MP (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J 31(6):1518–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Prodromou C, Siligardi G, O’Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18(3):754–762

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Onuoha SC, Couistock ET, Grossmann JG, Jackson SE (2008) Structural studies on the co-chaperone hop and its complexes with Hsp90. J Mol Biol 379(4):732–744

    CAS  PubMed  Google Scholar 

  164. Borges JC, Ramos CHI (2011) Analysis of molecular targets of mycobacterium tuberculosis by analytical ultracentrifugation. Curr Med Chem 18(9):1276–1285

    CAS  PubMed  Google Scholar 

  165. Yi F, Doudevski I, Regan L (2010) HOP is a monomer: investigation of the oligomeric state of the co-chaperone HOP. Protein Sci 19(1):19–25

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Webb JR, Campos-Neto A, Skeiky YAW, Reed SG (1997) Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol 89(2):179–193

    CAS  PubMed  Google Scholar 

  167. Gitau G, Mandal P, Blatch G, Przyborski J, Shonhai A (2012) Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperon 17(2):191–202

    CAS  Google Scholar 

  168. Schmidt JC, Soares MJ, Goldenberg S, Pavoni DP, Krieger MA (2011) Characterization of TcSTI-1, a homologue of stress-induced protein-1, in Trypanosoma cruzi. Mem I Oswaldo Cruz 106:70–77

    CAS  Google Scholar 

  169. Hombach A, Ommen G, Chrobak M, Clos J (2013) The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cell Microbiol 15(4):585–600

    CAS  PubMed Central  Google Scholar 

  170. Wiser MF, Jennings GJ, Uparanukraw P, Van Belkum A, Van Doorn LJ, Kumar N (1996) Further characterization of a 58 kDa Plasmodium berghei phosphoprotein as a cochaperone. Mol Biochem Parasitol 83(1):25–33

    CAS  PubMed  Google Scholar 

  171. Wiser MF, Plitt B (1987) Plasmodium berghei, P. chabaudi, and P. falciparum: similarities in phosphoproteins and protein kinase activities and their stage specific expression. Exp Parasitol 64(3):328–335

    CAS  PubMed  Google Scholar 

  172. Ommen G, Lorenz S, Clos J (2009) One-step generation of double-allele gene replacement mutants in Leishmania donovani. Inter J Parasitol 39(5):541–546

    CAS  Google Scholar 

  173. Dores-Silva PR, Silva ER, Gomes FER, Silva KP, Barbosa LRS, Borges JC (2012) Low resolution structural characterization of the Hsp70-interacting protein—Hip—from Leishmania braziliensis emphasizes its high asymmetry. Arch Biochem Biophys 520(2):88–98

    CAS  PubMed  Google Scholar 

  174. Prapapanich V, Chen SY, Toran EJ, Rimerman RA, Smith DF (1996) Mutational analysis of the hsp70-interacting protein hip. Mol Cell Biol 16(11):6200–6207

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Irmer H, Hohfeld J (1997) Characterization of functional domains of the eukaryotic co-chaperone hip. J Biol Chem 272(4):2230–2235

    CAS  PubMed  Google Scholar 

  176. Velten M, Villoutreix BO, Ladjimi MM (2000) Quaternary structure of the HSC70 cochaperone HIP. BioChemistry 39(2):307–315

    CAS  PubMed  Google Scholar 

  177. Velten M, Gomez-Vrielynck N, Chaffotte A, Ladjimi MM (2002) Domain Structure of the HSC70 Cochaperone, HIP. J Biol Chem 277(1):259–266

    CAS  PubMed  Google Scholar 

  178. Gebauer M, Zeiner M, Gehring U (1997) Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett 417(1):109–113

    CAS  PubMed  Google Scholar 

  179. Hohfeld J, Jentsch S (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16(20):6209–6216

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Prapapanich V, Chen SY, Nair SC, Rimerman RA, Smith DF (1996) Molecular cloning of human p48, a transient component of progesterone receptor complexes and an hsp70-binding protein. Mol Endocrinol 10(4):420–431

    CAS  PubMed  Google Scholar 

  181. Dores-Silva PR, Minari K, Ramos CHI, Barbosa LRS, Borges JC (2013) Structural and stability studies of the human mtHsp70-escort protein 1: an essential mortalin co-chaperone. Int J Biol Macromol 56(0):140–148

    CAS  PubMed  Google Scholar 

  182. Tobaben S, Varoqueaux F, Brose N, Stahl B, Meyer G (2003) A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J Biol Chem 278(40):38376–38383

    CAS  PubMed  Google Scholar 

  183. Yin H, Wang H, Zong H, Chen X, Wang Y, Yun X, Wu Y, Wang J, Gu J (2006) SGT, a Hsp90 binding partner, is accumulated in the nucleus during cell apoptosis. Biochem Biophys Res Comm 343(4):1153–1158

    CAS  PubMed  Google Scholar 

  184. Liou S, Cheng M, Wang C (2007) GT2 and MDY2 interact with molecular chaperone YDJ1 in Saccharomyces cerevisiae. Cell Stress Chaperon 12(1):59–70

    CAS  Google Scholar 

  185. Oliveira CLP, Borges JC, Torriani IL, Ramos CHI (2006) Low resolution structure and stability studies of human GrpE#2, a mitochondrial nucleotide exchange factor. Arch Biochem Biophys 449(1–2):77–86

    CAS  PubMed  Google Scholar 

  186. Kang CB, Hong Y, Dhe-Paganon S, Yoon HS (2008) FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16(4):318–325

    CAS  PubMed  Google Scholar 

  187. Lee J, Kim SS (2010) An overview of cyclophilins in human cancers. J Inter Med Res 38(5):1561–1574

    CAS  Google Scholar 

  188. Benham AM (2012) The protein disulfide isomerase family: key players in health and disease. Antioxid Redox Sign 16(8):781–789

    CAS  Google Scholar 

  189. Golden T, Swingle M, Honkanen R (2008) The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metast Rev 27(2):169–178

    CAS  Google Scholar 

  190. Kutuzov MA, Andreeva AV (2008) Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 161(2):81–90

    CAS  PubMed  Google Scholar 

  191. Shahinas D, Liang M, Datti A, Pillai DR (2010) A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90. J Med Chem 53(9):3552–3557

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo à pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos H. I. Ramos PhD or Júlio César Borges PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seraphim, T., Ramos, C., Borges, J. (2014). The Interaction Networks of Hsp70 and Hsp90 in the Plasmodium and Leishmania Parasites. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_17

Download citation

Publish with us

Policies and ethics