Skip to main content

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

Abstract

Energy-dependent protein degradation ensures protein homeostasis in all organisms. It requires the concerted action of unfoldase and protease components to achieve the processive cleavage of substrate proteins into small peptides. Rapid changes in nutritional sources and oxygen levels are constant challenges of the mycobacterial habitat, and survival under these conditions requires a multitude of adaptive response mechanisms including—as one important cornerstone—protein degradation. Three energy-dependent protease systems invariantly exist in all mycobacteria: the membrane-associated FtsH, the Clp protease complexes, and a bacterial proteasome assembly that is unique to the actinobacterial phylum. In this chapter, structural features, substrate recruitment principles, and cellular roles of all three systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook GM, Berney M, Gebhard S et al (2009) Physiology of Mycobacteria. Adv Microb Physiol 55:81–182, 318 − 189

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Grange JM (1996) The biology of the genus Mycobacterium. Soc Appl Bacteriol Symp Ser 25:1S–9S

    CAS  PubMed  Google Scholar 

  3. Mckinney JD, Gomez JE (2003) Life on the inside for Mycobacterium tuberculosis. Nat Med 9:1356–1357

    CAS  PubMed  Google Scholar 

  4. Schnappinger D, Ehrt S, Voskuil MI et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Rittershaus ES, Baek SH, Sassetti CM (2013) The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13:643–651

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Knipfer N, Seth A, Roudiak SG et al (1999) Species variation in ATP-dependent protein degradation: protease profiles differ between Mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene 231:95–104

    CAS  PubMed  Google Scholar 

  7. Ollinger J, O’malley T, Kesicki EA et al (2012) Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 194:663–668

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Griffin JE, Gawronski JD, Dejesus MA et al (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    CAS  PubMed  Google Scholar 

  10. Gandotra S, Schnappinger D, Monteleone M et al (2007) In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515–1520

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Knipfer N, Shrader TE (1997) Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol Microbiol 25:375–383

    CAS  PubMed  Google Scholar 

  12. Burns KE, Liu WT, Boshoff HI et al (2009) Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069–3075

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Pearce MJ, Mintseris J, Ferreyra J et al (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Striebel F, Imkamp F, Sutter M et al (2009) Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16:647–651

    CAS  PubMed  Google Scholar 

  15. Iyer LM, Abhiman S, Maxwell Burroughs A et al (2009) Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. Mol Biosyst 5:1636–1660

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Iyer LM, Burroughs AM, Aravind L (2008) Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol Direct 3:45

    PubMed Central  PubMed  Google Scholar 

  17. Ozcelik D, Barandun J, Schmitz N et al (2012) Structures of Pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin-like modification pathway. Nat Commun 3:1014

    PubMed  Google Scholar 

  18. Gottesman S, Roche E, Zhou Y et al (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12:1338–1347

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Roche ED, Sauer RT (1999) SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J 18:4579–4589

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Weart RB, Nakano S, Lane BE et al (2005) The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 57:238–249

    CAS  PubMed  Google Scholar 

  21. Flynn JM, Levchenko I, Sauer RT et al (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18:2292–2301

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Striebel F, Kress W, Weber-Ban E (2009) Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 19:209–217

    CAS  PubMed  Google Scholar 

  23. Mogk A, Huber D, Bukau B (2011) Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb Perspect Biol 3:a004366

    PubMed Central  PubMed  Google Scholar 

  24. Schmidt R, Bukau B, Mogk A (2009) Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 160:629–636

    Google Scholar 

  25. Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    CAS  PubMed  Google Scholar 

  26. Snider J, Thibault G, Houry WA (2008) The AAA+ superfamily of functionally diverse proteins. Genome Biol 9:216

    PubMed Central  PubMed  Google Scholar 

  27. Ciechanover A, Stanhill A (2013) The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim Biophys Acta

    Google Scholar 

  28. Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5:815–822

    CAS  PubMed  Google Scholar 

  29. Lander GC, Martin A, Nogales E (2013) The proteasome under the microscope: the regulatory particle in focus. Curr Opin Struct Biol 23:243–251

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Maupin-Furlow JA, Humbard MA, Kirkland PA et al (2006) Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol 75:125–169

    CAS  PubMed  Google Scholar 

  31. Baker TA, Sauer RT (2006) ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci 31:647–653

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Tamura T, Nagy I, Lupas A et al (1995) The first characterization of a Eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol (CB) 5:766–774

    CAS  Google Scholar 

  33. Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Ventura M, Canchaya C, Tauch A et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Valas RE, Bourne PE (2011) The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6:16

    PubMed Central  PubMed  Google Scholar 

  36. Valas RE, Bourne PE (2008) Rethinking proteasome evolution: two novel bacterial proteasomes. J Mol Evol 66:494–504

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Dougan DA, Mogk A, Zeth K et al (2002) AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 529:6–10

    CAS  PubMed  Google Scholar 

  38. Reid BG, Fenton WA, Horwich AL et al (2001) ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci U S A 98:3768–3772

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Weber-Ban EU, Reid BG, Miranker AD et al (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401:90–93

    CAS  PubMed  Google Scholar 

  40. Eisenstadt J, Hall GS (1995) Microbiology and classification of Mycobacteria. Clin Dermatol 13:197–206

    CAS  PubMed  Google Scholar 

  41. Pieters J (2001) Entry and survival of pathogenic Mycobacteria in macrophages. Microbes Infect 3:249–255 (Institut Pasteur)

    CAS  PubMed  Google Scholar 

  42. Rastogi N, Legrand E, Sola C (2001) The Mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech 20:21–54

    CAS  PubMed  Google Scholar 

  43. Ribeiro-Guimaraes ML, Pessolani MC (2007) Comparative genomics of mycobacterial proteases. Microb Pathog 43:173–178

    CAS  PubMed  Google Scholar 

  44. Yu AY, Houry WA (2007) ClpP: a distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett 581:3749–3757

    Google Scholar 

  45. Kress W, Maglica Z, Weber-Ban E (2009) Clp chaperone-proteases: structure and function. Res Microbiol 160:618–628

    CAS  PubMed  Google Scholar 

  46. Katayama-Fujimura Y, Gottesman S, Maurizi MR (1987) A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem 262:4477–4485

    CAS  PubMed  Google Scholar 

  47. Desantis ME, Shorter J (2012) The elusive middle domain of Hsp104 and ClpB: location and function. Biochim Biophys Acta 1823:29–39

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Liu J, Mei Z, Li N et al (2013) Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. J Biol Chem 288:17597–17608

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Ortega J, Lee HS, Maurizi MR et al (2002) Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J 21:4938–4949

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kirstein J, Moliere N, Dougan DA et al (2009) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7:589–599

    CAS  PubMed  Google Scholar 

  51. Kim YI, Levchenko I, Fraczkowska K et al (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8:230–233

    CAS  PubMed  Google Scholar 

  52. Kessel M, Maurizi MR, Kim B et al (1995) Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26S proteasome. J Mol Biol 250:587–594

    CAS  PubMed  Google Scholar 

  53. Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91:447–456

    CAS  PubMed  Google Scholar 

  54. De Crecy-Lagard VServant-Moisson, Viala J et al (1999) Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol Microbiol 32:505–517

    CAS  PubMed  Google Scholar 

  55. Engels S, Schweitzer JE, Ludwig C et al (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302

    CAS  PubMed  Google Scholar 

  56. Benaroudj N, Raynal B, Miot M et al (2011) Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2. BMC Biochem 12:61

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kirstein J, Schlothauer T, Dougan DA et al (2006) Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J 25:1481–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Schlothauer T, Mogk A, Dougan DA et al (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proc Natl Acad Sci U S A 100:2306–2311

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kar NP, Sikriwal D, Rath P et al (2008) Mycobacterium tuberculosis ClpC1: characterization and role of the N-terminal domain in its function. FEBS J 275:6149–6158

    CAS  PubMed  Google Scholar 

  60. Bellier A, Mazodier P (2004) ClgR, a novel regulator of clp and lon expression in Streptomyces. J Bacteriol 186:3238–3248

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Bellier A, Gominet M, Mazodier P (2006) Post-translational control of the Streptomyces lividans ClgR regulon by ClpP. Microbiology 152:1021–1027

    CAS  PubMed  Google Scholar 

  62. Sherrid AM, Rustad TR, Cangelosi GA et al (2010) Characterization of a Clp protease gene regulator and the reaeration response in Mycobacterium tuberculosis. PloS ONE 5:e11622

    PubMed Central  PubMed  Google Scholar 

  63. Russo S, Schweitzer JE, Polen T et al (2009) Crystal structure of the caseinolytic protease gene regulator, a transcriptional activator in actinomycetes. J Biol Chem 284:5208–5216

    CAS  PubMed  Google Scholar 

  64. Engels S, Ludwig C, Schweitzer JE et al (2005) The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591

    CAS  PubMed  Google Scholar 

  65. Estorninho M, Smith H, Thole J et al (2010) ClgR regulation of chaperone and protease systems is essential for Mycobacterium tuberculosis parasitism of the macrophage. Microbiology 156:3445–3455

    CAS  PubMed  Google Scholar 

  66. Viala J, Rapoport G, Mazodier P (2000) The clpP multigenic family in Streptomyces lividans: conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol 38:602–612

    CAS  PubMed  Google Scholar 

  67. Viala J, Mazodier P (2002) ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans. Mol Microbiol 44:633–643

    CAS  PubMed  Google Scholar 

  68. Schubert OT, Mouritsen J, Ludwig C et al. (2013) The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 13:602–612

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Dziedzic R, Kiran M, Plocinski P et al (2010) Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PloS ONE 5:e11058

    PubMed Central  PubMed  Google Scholar 

  70. Misra N, Habib S, Ranjan A et al (1996) Expression and functional characterisation of the clpC gene of Mycobacterium leprae: ClpC protein elicits human antibody response. Gene 172:99–104

    CAS  PubMed  Google Scholar 

  71. Barik S, Sureka K, Mukherjee P et al (2010) RseA, the SigE specific anti-sigma factor of Mycobacterium tuberculosis, is inactivated by phosphorylation-dependent ClpC1P2 proteolysis. Mol Microbiol 75:592–606

    CAS  PubMed  Google Scholar 

  72. Turgay K, Hahn J, Burghoorn J et al (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17:6730–6738

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Moliere N, Turgay K (2013) General and regulatory proteolysis in Bacillus subtilis. Subcell Biochem 66:73–103

    CAS  PubMed  Google Scholar 

  74. Jenal U, Fuchs T (1998) An essential protease involved in bacterial cell-cycle control. EMBO J 17:5658–5669

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Viala J, Mazodier P (2003) The ATPase ClpX is conditionally involved in the morphological differentiation of Streptomyces lividans. Mol Genet Genomics (MGG) 268:563–569

    CAS  Google Scholar 

  76. Personne Y, Brown AC, Schuessler DL et al (2013) Mycobacterium tuberculosis ClpP proteases are co-transcribed but exhibit different substrate specificities. PloS ONE 8:e60228

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Raju RM, Unnikrishnan M, Rubin DH et al (2012) Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 8:e1002511

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Bewley MC, Graziano V, Griffin K et al (2006) The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J Struct Biol 153:113–128

    CAS  PubMed  Google Scholar 

  79. Geiger SR, Bottcher T, Sieber SA et al (2011) A conformational switch underlies ClpP protease function. Angew Chem 50:5749–5752

    CAS  Google Scholar 

  80. Gersch M, List A, Groll M et al (2012) Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein. J Biol Chem 287:9484–9494

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Gribun A, Kimber MS, Ching R et al (2005) The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 280:16185–16196

    CAS  PubMed  Google Scholar 

  82. Kimber MS, Yu AY, Borg M et al (2010) Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations. Structure 18:798–808

    CAS  PubMed  Google Scholar 

  83. Lee BG, Kim MK, Song HK (2011) Structural insights into the conformational diversity of ClpP from Bacillus subtilis. Mol Cells 32:589–595

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Szyk A, Maurizi MR (2006) Crystal structure at 1.9 A of E. coli ClpP with a peptide covalently bound at the active site. J Struct Biol 156:165–174

    CAS  PubMed  Google Scholar 

  85. Zhang J, Ye F, Lan L et al (2011) Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics. J Biol Chem 286:37590–37601

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Ingvarsson H, Mate MJ, Hogbom M et al (2007) Insights into the inter-ring plasticity of caseinolytic proteases from the X-ray structure of Mycobacterium tuberculosis ClpP1. Acta Crystallogr D Biol Crystallogr 63:249–259

    CAS  PubMed  Google Scholar 

  87. Alexopoulos JA, Guarne A, Ortega J (2012) ClpP: a structurally dynamic protease regulated by AAA+ proteins. J Struct Biol 179:202–210

    CAS  PubMed  Google Scholar 

  88. Akopian T, Kandror O, Raju RM et al (2012) The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO J 31:1529–1541

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Thompson MW, Singh SK, Maurizi MR (1994) Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J Biol Chem 269:18209–18215

    CAS  PubMed  Google Scholar 

  90. De Mot R, Nagy I, Baumeister W (1998) A self-compartmentalizing protease in Rhodococcus: the 20S proteasome. Antonie Van Leeuwenhoek 74:83–87

    CAS  PubMed  Google Scholar 

  91. Wolf S, Nagy I, Lupas A et al (1998) Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J Mol Biol 277:13–25

    CAS  PubMed  Google Scholar 

  92. Nagy I, Tamura T, Vanderleyden J et al (1998) The 20S proteasome of Streptomyces coelicolor. J Bacteriol 180:5448–5453

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Benoist P, Muller A, Diem HG et al (1992) High-molecular-mass multicatalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR. J Bacteriol 174:1495–1504

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Pouch MN, Cournoyer B, Baumeister W (2000) Characterization of the 20S proteasome from the actinomycete Frankia. Mol Microbiol 35:368–377

    CAS  PubMed  Google Scholar 

  95. Kwon YD, Nagy I, Adams PD et al (2004) Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol 335:233–245

    CAS  PubMed  Google Scholar 

  96. Hu G, Lin G, Wang M et al (2006) Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 59:1417–1428

    CAS  PubMed  Google Scholar 

  97. Darwin KH, Ehrt S, Gutierrez-Ramos JC et al (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966

    CAS  PubMed  Google Scholar 

  98. Lamichhane G, Raghunand TR, Morrison NE et al (2006) Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues. J Infect Dis 194:1233–1240

    CAS  PubMed  Google Scholar 

  99. Lin G, Li D, De Carvalho LP et al (2009) Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:621–626

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Sutter M, Striebel F, Damberger FF et al (2009) A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS lett 583:3151–3157

    CAS  PubMed  Google Scholar 

  101. Chen X, Solomon WC, Kang Y et al (2009) Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J Mol Biol 392:208–217

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Liao S, Shang Q, Zhang X et al (2009) Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem J 422:207–215

    CAS  PubMed  Google Scholar 

  103. Imkamp F, Rosenberger T, Striebel F et al (2010) Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol 75:744–754

    CAS  PubMed  Google Scholar 

  104. Barandun J, Delley CL, Ban N et al (2013) Crystal structure of the complex between prokaryotic ubiquitin-like protein and its ligase PafA. J Am Chem Soc 135:6794–6797

    CAS  PubMed  Google Scholar 

  105. Guth E, Thommen M, Weber-Ban E (2011) Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated pup intermediate. J Biol Chem 286:4412–4419

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Sutter M, Damberger FF, Imkamp F et al (2010) Prokaryotic ubiquitin-like protein (Pup) is coupled to substrates via the side chain of its C-terminal glutamate. J Am Chem Soc 132:5610–5612

    CAS  PubMed  Google Scholar 

  107. Imkamp F, Striebel F, Sutter M et al (2010) Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep 11:791–797

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Burns KE, Cerda-Maira FA, Wang T et al (2010) “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol Cell 39:821–827

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Cerda-Maira FA, Pearce MJ, Fuortes M et al (2010) Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol Microbiol 77:1123–1135

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Festa RA, Mcallister F, Pearce MJ et al (2010) Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PloS ONE 5:e8589

    PubMed Central  PubMed  Google Scholar 

  111. Poulsen C, Akhter Y, Jeon AH et al (2010) Proteome-wide identification of mycobacterial pupylation targets. Mol Syst Biol 6:386

    PubMed Central  PubMed  Google Scholar 

  112. Watrous J, Burns K, Liu WT et al (2010) Expansion of the mycobacterial “PUPylome”. Mol Biosyst 6:376–385

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Pearce MJ, Arora P, Festa RA et al (2006) Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J 25:5423–5432

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Delley CL, Striebel F, Heydenreich FM et al. (2012) Activity of the mycobacterial proteasomal ATPase Mpa is reversibly regulated by pupylation. J Biol Chem 287:7907–7914

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Wang T, Darwin KH, Li H (2010) Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 17:1352–1357

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Striebel F, Hunkeler M, Summer H et al (2010) The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup’s N-terminus. EMBO J 29:1262–1271

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Burns KE, Pearce MJ, Darwin KH (2010) Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates. J Bacteriol 192:2933–2935

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Begg KJ, Tomoyasu T, Donachie WD et al (1992) Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J Bacteriol 174:2416–2417

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Lüdke A, Krämer R, Burkovski A et al (2007) A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH. BMC Microbiol 7:6

    PubMed Central  PubMed  Google Scholar 

  120. Ayuso-Tejedor S, Nishikori S, Okuno T et al (2010) FtsH cleavage of non-native conformations of proteins. J Struct Biol 171:117–124

    CAS  PubMed  Google Scholar 

  121. Herman C, Prakash S, Lu CZ et al (2003) Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol cell 11:659–669

    CAS  PubMed  Google Scholar 

  122. Koodathingal P, Jaffe NE, Kraut DA et al (2009) ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J Biol Chem 284:18674–18684

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Bieniossek C, Schalch T, Bumann M et al (2006) The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci U S A 103:3066–3071

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Suno R, Niwa H, Tsuchiya D et al (2006) Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol cell 22:575–585

    CAS  PubMed  Google Scholar 

  125. Anilkumar G, Srinivasan R, Ajitkumar P (2004) Genomic organization and in vivo characterization of proteolytic activity of FtsH of Mycobacterium smegmatis SN2. Microbiology 150:2629–2639 (Reading England)

    CAS  PubMed  Google Scholar 

  126. Ogura T, Okuno T, Suno R et al (2013) FtsH protease. Handbook of proteolytic enzymes, pp 685–692

    Google Scholar 

  127. Srinivasan R, Anilkumar G, Rajeswari H et al. (2006) Functional characterization of AAA family FtsH protease of Mycobacterium tuberculosis. FEMS Microbiol Lett 259:97–105

    CAS  PubMed  Google Scholar 

  128. Anilkumar G, Srinivasan R, Anand S et al (2001) Bacterial cell division protein FtsZ is a specific substrate for the AAA family protease FtsH. Microbiology 147:515–517

    Google Scholar 

  129. Kiran M, Chauhan A, Dziedzic R et al (2009) Mycobacterium tuberculosis ftsH expression in response to stress and viability. Tuberculosis (Edinb, Scotland) 89(Suppl 1):S70–S73

    Google Scholar 

  130. Strösser J, Lüdke A, Schaffer S et al (2004) Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 54:132–147

    PubMed  Google Scholar 

  131. Skuce RA, McCorry TP, McCarroll JF et al (2002) Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology 148:519–528

    CAS  PubMed  Google Scholar 

  132. Belkum AV, Scherer S, Alphen LV et al (1998) Short-sequence DNA repeats in prokaryotic genomes short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293

    PubMed Central  PubMed  Google Scholar 

  133. Moxon R, Bayliss C, Hood D (2006) Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333

    CAS  PubMed  Google Scholar 

  134. Tantivitayakul P, Panapruksachat S, Billamas P et al (2010) Variable number of tandem repeat sequences act as regulatory elements in Mycobacterium tuberculosis. Tuberculosis (Edinb) 90:311–318

    CAS  Google Scholar 

  135. Peloquin CA, Berning SE (1994) Infection caused by Mycobacterium tuberculosis. Ann Pharmacother 28:72–84

    CAS  PubMed  Google Scholar 

  136. Tufariello JM, Chan J, Flynn JL (2003) Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis 3:578–590

    CAS  PubMed  Google Scholar 

  137. Zahrt TC (2003) Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect 5:159–167 (Institut Pasteur)

    CAS  PubMed  Google Scholar 

  138. Michel A, Agerer F, Hauck CR et al (2006) Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 188:5783–5796

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Kirstein J, Hoffmann A, Lilie H et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1:37–49

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Lee BG, Park EY, Lee KE et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17:471–478

    CAS  PubMed  Google Scholar 

  141. Li DH, Chung YS, Gloyd M et al (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17:959–969

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Bottcher T, Sieber SA (2008) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130:14400–14401

    PubMed  Google Scholar 

  143. Bottcher T, Sieber SA (2009) Structurally refined beta-lactones as potent inhibitors of devastating bacterial virulence factors. Chembiochem 10:663–666 (A European Journal of Chemical Biology)

    PubMed  Google Scholar 

  144. Gersch M, Gut F, Korotkov VS et al (2013) The mechanism of caseinolytic protease (ClpP) inhibition. Angew Chem 52:3009–3014

    CAS  Google Scholar 

  145. Compton CL, Schmitz KR, Sauer RT et al (2013) Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS Chem Biol 20:2669–2677

    Google Scholar 

  146. Schmitt EK, Riwanto M, Sambandamurthy V et al (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem 50:5889–5891

    CAS  Google Scholar 

  147. Vasudevan D, Rao SP, Noble CG (2013) Structural basis of mycobacterial inhibition by Cyclomarin A. J Biol Chem 288:30883–30891

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Weber-Ban group for critically reading the manuscript. This work was supported by the Swiss National Science Foundation (SNSF), the National Centre of Excellence in Research (NCCR) Structural Biology program of the SNSF and an ETH research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilika Weber-Ban PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laederach, J., Leodolter, J., Warweg, J., Weber-Ban, E. (2014). Chaperone-Proteases of Mycobacteria. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_16

Download citation

Publish with us

Policies and ethics