Skip to main content

Abstract

StAR, the Steroidogenic Acute Regulatory protein, was named for its critical role in the acute regulation of steroid hormone biosynthesis in the adrenal and gonads following tropic hormone stimulation. StAR synthesis is required for the first and rate-limiting step in steroid hormone biosynthesis, cholesterol transport into mitochondria. It was a long journey to finding the acute regulator of steroidogenesis, and this chapter provides a historical and personal account of this journey from the perspective of Dr. Douglas M. Stocco. Over the past two decades, we have gained significant insight into the mechanisms that regulate StAR expression, and into StAR structure and function. This chapter also provides a summary of the literature that has led to our current understanding of the cyclic adenosine-3′,5′-monophosphate (cAMP)-protein kinase A-dependent mechanisms that control StAR expression at the transcriptional and post-transcriptional levels in steroidogenic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

adenylyl cyclase

ACTH:

adrenocorticotropic hormone

AMP:

adenosine-3′,5′-monophosphate

AP-1:

activator protein 1

AURE:

adenosine-uridine-rich destabilizing element

Bt2cAMP:

N6,2′-O-dibutyryl-adenosine-3′,5′-monophosphate

bZIP:

basic leucine zipper

cAMP:

cyclic AMP

CBP/p300:

CREB-binding protein

C/EBPβ:

CCAAT enhancer-binding protein-beta

COUP-TF:

chicken ovalbumin upstream promoter transcription factor I and II

CREB:

cyclic-AMP responsive element-binding protein

CREM:

CREB modulator protein

CRH:

corticotropin hormoneDAGdiacylglycerol

DAX-1:

dosage sensitive sex reversal-adrenal hypoplasia congenital gene on the X chromosome gene 1

ER:

endoplasmic reticulum

FSH:

follicule stimulating hormone

GnRH:

gonadotropin-releasing hormone

IP3:

inositol 1, 4, 5 trisphosphate

LH:

luteinizing hormone

NPC:

Niemann Pick type C

NUR77/NGFI-B:

nerve growth factor induced-B

PAP7:

TSPO associated protein 7 (ACBD3)

PIC:

preinitiation complex

PKA:

protein kinase A

PKC:

protein kinase C

Poly(A):

polyadenylation site

RNAPII:

ribonucleic acid polymerase II

SF1:

steroidogenic factor 1

StAR:

steroidogenic acute regulatory protein

START:

StAR-related lipid transfer domain

TSPO:

18 kDa translocator protein

TSS:

transcription start site

UTR:

untranslated region

VDAC1:

voltage-dependent anion channel

References

  1. Macchi IA, Hechter O. Studies of ACTH action upon perfused bovine adrenals; duration of ACTH action. Endocrinology. 1954;55:434–8.

    Article  CAS  PubMed  Google Scholar 

  2. Macchi IA, Hechter O. Studies of ACTH action upon perfused bovine adrenals; minimal ACTH concentration requisite for maximal glandular response. Endocrinology. 1954;55:426–33.

    Article  CAS  PubMed  Google Scholar 

  3. Macchi IA, Hechter O. Studies of ACTH action upon perfused bovine adrenals; corticosteroid biosynthesis in isolated glands maximally stimulated with ACTH. Endocrinology. 1954;55:387–402.

    Article  CAS  PubMed  Google Scholar 

  4. Stone D, Hechter O. Studies on ACTH action in perfused bovine adrenals: the site of action of ACTH in corticosteroidogenesis. Arch Biochem Biophys. 1954;51:457–69.

    Article  CAS  PubMed  Google Scholar 

  5. Ferguson JJ, Jr. Puromycin and adrenal responsiveness to adrenocorticotropic hormone. Biochim Biophys Acta. 1962;57:616–7.

    Article  CAS  Google Scholar 

  6. Ferguson JJ, Jr. Protein synthesis and adrenocorticotropin responsiveness. J Biol Chem. 1963;238:2754–9.

    CAS  PubMed  Google Scholar 

  7. Garren LD, Davis WW, Crocco RM, Ney RL. Puromycin analogs: action of adrenocorticotropic hormone and the role of glycogen. Science. 1966;152:1386–8.

    Article  CAS  PubMed  Google Scholar 

  8. Garren LD, Gill GN, Masui H, Walton GM. On the mechanism of action of ACTH. Recent Prog Horm Res. 1971;27:433–78.

    CAS  PubMed  Google Scholar 

  9. Garren LD, Ney RL, Davis WW. Studies on the role of protein synthesis in the regulation of corticosterone production by adrenocorticotropic hormone in vivo. Proc Natl Acad Sci U S A. 1965;53:1443–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Davis WW, Garren LD. Evidence for the stimulation by adenocorticotropic hormone of the conversion of cholesterol esters to cholesterol in the adrenal, in vivo. Biochem Biophys Res Commun. 1966;24:805–10.

    Article  CAS  PubMed  Google Scholar 

  11. Davis WW, Garren LD. On the mechanism of action of adrenocorticotropic hormone. The inhibitory site of cycloheximide in the pathway of steroid biosynthesis. J Biol Chem. 1968;243:5153–7.

    CAS  PubMed  Google Scholar 

  12. Hall PF, Eik-Nes KB. The action of gonadotropic hormones upon rabbit testis in vitro. Biochim Biophys Acta. 1962;63:411–22.

    Article  CAS  PubMed  Google Scholar 

  13. Hall PF, Koritz S. Influence of interstitial cell-stimulating hormone on the conversion of cholesterol to progesterone by bovine corpus luteum. Biochemistry. 1965;4:1037–43.

    Article  CAS  PubMed  Google Scholar 

  14. Hall PF, Koritz S. Action of ACTH upon steroidogenesis in the chicken-adrenal gland. Endocrinology. 1966;79:652–4.

    Article  CAS  PubMed  Google Scholar 

  15. Koritz SB, Hall PF. Further studies on the locus of action of interstitial cell-stimulating hormone on the biosynthesis of progesterone by bovine corpus luteum. Biochemistry. 1965;4:2740–7.

    Article  CAS  PubMed  Google Scholar 

  16. Brownie AC, Simpson ER, Jefcoate CR, Boyd GS, Orme-Johnson WH, Beinert H. Effect of ACTH on cholesterol side-chain cleavage in rat adrenal mitochondria. Biochem Biophys Res Commun. 1972;46:483–90.

    Article  CAS  PubMed  Google Scholar 

  17. Paul DP, Gallant S, Orme-Johnson NR, Orme-Johnson WH, Brownie AC. Temperature dependence of cholesterol binding to cytochrome P-450scc of the rat adrenal. Effect of adrenocorticotropic hormone and cycloheximide. J Biol Chem. 1976;251:7120–6.

    CAS  PubMed  Google Scholar 

  18. Crivello JF, Jefcoate CR. Mechanisms of corticotropin action in rat adrenal cells. I. The effects of inhibitors of protein synthesis and of microfilament formation on corticosterone synthesis. Biochim Biophys Acta. 1978;542:315–29.

    Article  CAS  PubMed  Google Scholar 

  19. Simpson ER, Trzeciak WH, McCarthy JL, Jefcoate CR, Boyd GS. Factors affecting cholesterol esterase and cholesterol side-chain-cleavage activities in rat adrenal. Biochem J. 1972;129:10P–11P.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Privalle CT, Crivello JF, Jefcoate CR. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci U S A. 1983;80:702–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jefcoate CR, DiBartolomeis MJ, Williams CA, McNamara BC. ACTH regulation of cholesterol movement in isolated adrenal cells. J Steroid Biochem. 1987;27:721–9.

    Article  CAS  PubMed  Google Scholar 

  22. Farese RV. Inhibition of the steroidogenic effect of acth and incorporation of amino acid into rat adrenal protein in vitro by chloramphenicol. Biochim Biophys Acta. 1964;87:699–701.

    CAS  PubMed  Google Scholar 

  23. Farese RV. Effects of actinomycin D on ACTH-induced corticosteroidogenesis. Endocrinology. 1966;78:929–36.

    Article  CAS  PubMed  Google Scholar 

  24. Farese RV. Adrenocorticotrophin-induced changes in the steroidogenic activity of adrenal cell-free preparations. Biochemistry. 1967;6:2052–65.

    Article  CAS  PubMed  Google Scholar 

  25. Farese RV, Prudente WJ. On the requirement for protein synthesis during corticotropin-induced stimulation of cholesterol side chain cleavage in rat adrenal mitochondrial and solubilized desmolase preparations. Biochim Biophys Acta. 1977;496:567–70.

    Article  CAS  PubMed  Google Scholar 

  26. Farese RV, Prudente WJ. On the role of intra-adrenal unesterified cholesterol in the steroidogenic effect of corticotropin. Biochim Biophys Acta. 1978;544:77–84.

    Article  CAS  PubMed  Google Scholar 

  27. Arthur JR, Boyd GS. The effect of inhibitors of protein synthesis on cholesterol side-chain cleavage in the mitochondria of luteinized rat ovaries. Eur J Biochem. 1974;49:117–27.

    Article  CAS  PubMed  Google Scholar 

  28. Robinson J, Stevenson PM, Boyd GS, Armstrong DT. Acute in vivo effects on HCG and LH on ovarian mitochondrial cholesterol utilization. Mol Cell Endocrinol. 1975;2:149–55.

    Article  CAS  PubMed  Google Scholar 

  29. Mason JI, Arthur JR, Boyd GS. Control of sterol metabolism in rat adrenal mitochondria. Biochem J. 1978;174:1045–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Simpson ER, McCarthy JL, Peterson JA. Evidence that the cycloheximide-sensitive site of adrenocorticotropic hormone action is in the mitochondrion. Changes in pregnenolone formation, cholesterol content, and the electron paramagnetic resonance spectra of cytochrome P-450. J Biolo Chem. 1978;253:3135–9.

    CAS  Google Scholar 

  31. Mason JI, Arthur JR, Boyd GS. Regulation of cholesterol metabolism in rat adrenal mitochondria. Mol Cell Endocrinol. 1978;10:209–23.

    Article  CAS  PubMed  Google Scholar 

  32. Haynes RC, Jr., Koritz SB, Peron FG. Influence of adenosine 3′,5′-monophosphate on corticoid production by rat adrenal glands. J Biol Chem. 1959;234:1421–3.

    CAS  PubMed  Google Scholar 

  33. Karaboyas GC, Koritz S. The transformation of delta-5-pregnenolone and progesterone to cortisol by rat adrenal slices and the effect of acth and adenosine 3′-,5′-monophosphate upon it. Biochim Biophys Acta. 1965;100:600–2.

    Article  CAS  PubMed  Google Scholar 

  34. Cooke BA, Janszen FH, Clotscher WF, van der Molen HJ. Effect of protein-synthesis inhibitors on testosterone production in rat testis interstitial tissue and Leydig-cell preparations. Biochem J. 1975;150:413–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cooke BA, Lindh LM, van der Molen HJ. The mechanism of action of lutropin on regulator protein(s) involved in Leydig-cell steroidogenesis. Biochem J. 1979;184:33–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Janszen FH, Cooke BA, van der Molen HJ. Specific protein synthesis in isolated rat testis leydig cells. Influence of luteinizing hormone and cycloheximide. Biochem J. 1977;162:341–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Janszen FH, Cooke BA, van Driel MJ, van der Molen HJ. The effect of lutropin on specific protein synthesis in tumour Leydig cells and in Leydig cells from immature rats. Biochem J. 1978;172:147–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Alberta JA, Epstein LF, Pon LA, Orme-Johnson NR. Mitochondrial localization of a phosphoprotein that rapidly accumulates in adrenal cortex cells exposed to adrenocorticotropic hormone or to cAMP. J Biol Chem. 1989;264:2368–72.

    CAS  PubMed  Google Scholar 

  39. Epstein LF, Orme-Johnson NR. Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem. 1991;266:19739–45.

    CAS  PubMed  Google Scholar 

  40. Epstein LF, Orme-Johnson NR. Acute action of luteinizing hormone on mouse Leydig cells: accumulation of mitochondrial phosphoproteins and stimulation of testosterone synthesis. Mol Cell Endocrinol. 1991;81:113–126.

    Article  CAS  PubMed  Google Scholar 

  41. Krueger RJ, Orme-Johnson NR. Acute adrenocorticotropic hormone stimulation of adrenal corticosteroidogenesis. Discovery of a rapidly induced protein. J Biol Chem. 1983;258:10159–67.

    CAS  PubMed  Google Scholar 

  42. O’Farrell PH, O’Farrell PZ. Two-dimensional polyacrylamide gel electrophoretic fractionation. Methods Cell Biol. 1977;16:407–20.

    Article  PubMed  Google Scholar 

  43. O’Farrell PZ, Goodman HM, O’Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977;12:1133–41.

    Article  PubMed  Google Scholar 

  44. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol Chem. 1986;261:13309–16.

    CAS  PubMed  Google Scholar 

  45. Pon LA, Orme-Johnson NR. Acute stimulation of steroidogenesis in corpus luteum and adrenal cortex by peptide hormones. Rapid induction of a similar protein in both tissues. J Biol Chem. 1986;261:6594–9.

    CAS  PubMed  Google Scholar 

  46. Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology. 1981;108:88–95.

    Article  CAS  PubMed  Google Scholar 

  47. Stocco DM. Further evidence that the mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are involved in the acute regulation of steroidogenesis. J Steroid Biochem Mol Biol. 1992;43:319–33.

    Article  CAS  PubMed  Google Scholar 

  48. Stocco DM, Ascoli M. The use of genetic manipulation of MA-10 Leydig tumor cells to demonstrate the role of mitochondrial proteins in the acute regulation of steroidogenesis. Endocrinology. 1993;132:959–67.

    CAS  PubMed  Google Scholar 

  49. Stocco DM, Chen W. Presence of identical mitochondrial proteins in unstimulated constitutive steroid-producing R2 C rat Leydig tumor and stimulated nonconstitutive steroid-producing MA-10 mouse Leydig tumor cells. Endocrinology. 1991;128:1918–26.

    Article  CAS  PubMed  Google Scholar 

  50. Stocco DM, Kilgore MW. Induction of mitochondrial proteins in MA-10 Leydig tumour cells with human choriogonadotropin. Biochem J. 1988;249:95–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Stocco DM, King S, Clark BJ. Differential effects of dimethylsulfoxide on steroidogenesis in mouse MA-10 and rat R2 C Leydig tumor cells. Endocrinology. 1995;136:2993–9.

    CAS  PubMed  Google Scholar 

  52. Stocco DM, Sodeman TC. The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem. 1991;266:19731–8.

    CAS  PubMed  Google Scholar 

  53. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.

    CAS  PubMed  Google Scholar 

  54. Lin D, Gitelman SE, Saenger P, Miller WL. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipoid adrenal hyperplasia. J Clin Invest. 1991;88:1955–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lin D, Sugawara T, Strauss JF, 3rd, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267:1828–31.

    Article  CAS  PubMed  Google Scholar 

  56. Caron KM, Soo SC, Wetsel WC, Stocco DM, Clark BJ, Parker KL. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S Am. 1997;94:11540–5.

    Article  CAS  Google Scholar 

  57. Gucev ZS, Tee MK, Chitayat D, Wherrett DK, Miller WL. Distinguishing deficiencies in the steroidogenic acute regulatory protein and the cholesterol side chain cleavage enzyme causing neonatal adrenal failure. J Pediatr. 2013;162:819–22.

    Article  CAS  PubMed  Google Scholar 

  58. Sahakitrungruang T, Tee MK, Blackett PR, Miller WL. Partial defect in the cholesterol side-chain cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 2011;96:792–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tee MK, Abramsohn M, Loewenthal N, Harris M, Siwach S, Kaplinsky A, Markus B, Birk O, Sheffield VC, Pavari R, Hershkovitz E, Miller WL. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc. J Clin Endocrinol Metab. 2013;98:713–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213.

    Article  CAS  PubMed  Google Scholar 

  61. King SR, Bhangoo A, Stocco DM. Functional and physiological consequences of StAR deficiency: role in lipoid congenital adrenal hyperplasia. Endocr Dev. 2011;20:47–53.

    CAS  PubMed  Google Scholar 

  62. Arakane F, Sugawara T, Nishino H, Liu Z, Holt JA, Pain D, Stocco DM, Miller WL, Strauss JF, 3rd. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc Natl Acad Sci U S A. 93:13731–6.

    Google Scholar 

  63. Caron KM, Soo SC, Wetsel WC, Stocco DM, Clark BJ, Parker KL. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S A. 1997;94:11540–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sasaki G, Ishii T, Jeyasuria P, Jo Y, Bahat A, Orly J, Hasegawa T, Parker KL. Complex role of the mitochondrial targeting signal in the function of steroidogenic acute regulatory protein revealed by bacterial artificial chromosome transgenesis in vivo. Mol Endocrinol. 2008;22:951–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Aoyagi S, Archer TK. Dynamics of coactivator recruitment and chromatin modifications during nuclear receptor mediated transcription. Mol Cell Endocrinol. 2008;280:1–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lonard DM, O’Malley B W. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27:691–700.

    Article  CAS  PubMed  Google Scholar 

  67. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006;20:1405–28.

    Article  CAS  PubMed  Google Scholar 

  68. Savkur RS, Burris TP. The coactivator LXXLL nuclear receptor recognition motif. J Pep Res. 2004;63:207–12.

    Article  CAS  Google Scholar 

  69. Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet, Dev. 1999;9:140–47.

    Article  CAS  Google Scholar 

  70. Xu W, Kasper LH, Lerach S, Jeevan T, Brindle PK. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. Embo J. 2007;26:2890–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Plevin MJ, Mills MM, Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 2005;30:66–69.

    Article  CAS  PubMed  Google Scholar 

  72. Wysocka J, Allis CD, Coonrod S. Histone arginine methylation and its dynamic regulation. Front Biosci. 2006;11:344–55.

    Article  CAS  PubMed  Google Scholar 

  73. Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000;14:55–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Downes M, Ordentlich P, Kao HY, Alvarez JG, Evans RM. Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci U S A. 2000;97:10330–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C. STARD3/STARD3NL and VAP make a novel molecular tether between late endosomes and the ER. J Cell Sci. 2013;126:5500–12.

    Article  CAS  PubMed  Google Scholar 

  76. Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol. 2012;350:151–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Li J, Feltzer RE, Dawson KL, Hudson EA, Clark BJ. Janus kinase 2 and calcium are required for angiotensin II-dependent activation of steroidogenic acute regulatory protein transcription in H295R human adrenocortical cells. J Biol Chem. 2003;278:52355–62.

    Article  CAS  PubMed  Google Scholar 

  78. Meier RK, Clark BJ. Angiotensin II-dependent transcriptional activation of human steroidogenic acute regulatory protein gene by a 25-kDa cAMP-responsive element modulator protein isoform and Yin Yang 1. Endocrinology. 2012;153:1256–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Nogueira EF, Bollag WB, Rainey WE. Angiotensin II regulation of adrenocortical gene transcription. Mol Cell Endocrinol. 2009;302:230–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Nogueira EF, Rainey WE. Regulation of aldosterone synthase by activator transcription factor/cAMP response element-binding protein family members. Endocrinology. 2010;151:1060–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM, Strauss JF, 3rd. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997;272:32656–62.

    Article  CAS  PubMed  Google Scholar 

  82. Baker BY, Epand RF, Epand RM, Miller WL. Cholesterol binding does not predict activity of the steroidogenic acute regulatory protein, StAR. J Biol Chem. 2007;282:10223–32.

    Article  CAS  PubMed  Google Scholar 

  83. Jo Y, King SR, Khan SA, Stocco DM. Involvement of protein kinase C and cyclic adenosine 3′,5′-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells. Biol Reprod. 2005;73:244–55.

    Article  CAS  PubMed  Google Scholar 

  84. Clark BJ, Soo SC, Caron KM, Ikeda Y, Parker KL, Stocco DM. Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol Endocrinol. 1995;9:1346–55.

    CAS  PubMed  Google Scholar 

  85. Sugawara T, Lin D, Holt JA, Martin KO, Javitt NB, Miller WL, Strauss JF, 3rd. Structure of the human steroidogenic acute regulatory protein (StAR) gene: StAR stimulates mitochondrial cholesterol 27-hydroxylase activity. Biochemistry. 1995;34:12506–12.

    Article  CAS  PubMed  Google Scholar 

  86. Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem. 1993;268:7494–502.

    CAS  PubMed  Google Scholar 

  87. Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol. 1992;6:1249–58.

    CAS  PubMed  Google Scholar 

  88. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77:481–90.

    Article  CAS  PubMed  Google Scholar 

  89. Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, Omura T. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrinol. 1993;7:1196–204.

    CAS  PubMed  Google Scholar 

  90. Hoivik EA, Bjanesoy TE, Bakke M. Epigenetic regulation of the gene encoding steroidogenic factor-1. Mol Cell Endocrinol. 2013;371:133–9.

    Article  CAS  PubMed  Google Scholar 

  91. Hoivik EA, Witsoe SL, Bergheim IR, Xu Y, Jakobsson I, Tengholm A, Doskeland SO, Bakke M. DNA methylation of alternative promoters directs tissue specific expression of epac2 isoforms. PLoS One. 2013;8:e67925.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Parker KL, Rice DA, Lala DS, Ikeda Y, Luo X, Wong M, Bakke M, Zhao L, Frigeri C, Hanley NA, Stallings N, Schimmer BP. Steroidogenic factor. 1: an essential mediator of endocrine development. Recent Prog Horm Res. 2002;57:19–36.

    Article  CAS  PubMed  Google Scholar 

  93. Xu B, Yang W-H, Gerin I, Hu C-D, Hammer GD, Koenig RJ. Dax-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor 1 in steroidogenesis. Mol Cell Biol. 2009;29:1719–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Schimmer BP, White PC. Minireview: steroidogenic factor. 1: its roles in differentiation, development, and disease. Mol Endocrinol. 2010;24:1322–37.

    Article  CAS  PubMed  Google Scholar 

  95. Giguere V. Orphan nuclear receptors: from gene to function. Endocr Rev. 1999;20:689–725.

    CAS  PubMed  Google Scholar 

  96. Davis IJ, Lau LF. Endocrine and neurogenic regulation of the orphan nuclear receptors Nur77 and Nurr-1 in the adrenal glands. Mol Cell Biol. 1994;14:3469–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Li W, Amri H, Huang H, Wu C, Papadopoulos V. Gene and protein profiling of the response of MA-10 Leydig tumor cells to human chorionic gonadotropin. J Androl. 2004;25:900–13.

    CAS  PubMed  Google Scholar 

  98. Martin LJ, Tremblay JJ. The human 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase type 2 promoter is a novel target for the immediate early orphan nuclear receptor Nur77 in steroidogenic cells. Endocrinology. 2005;146:861–9.

    Article  CAS  PubMed  Google Scholar 

  99. Bassett MH, Suzuki T, Sasano H, White PC, Rainey WE. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Mol Endocrinol. 2004;18:279–90.

    Article  CAS  PubMed  Google Scholar 

  100. Havelock JC, Smith AL, Seely JB, Dooley CA, Rodgers RJ, Rainey WE, Carr BR. The NGFI-B family of transcription factors regulates expression of 3beta-hydroxysteroid dehydrogenase type 2 in the human ovary. Mol Hum Reprod. 2005;11:79–85.

    Article  CAS  PubMed  Google Scholar 

  101. Martin LJ, Taniguchi H, Robert NM, Simard J, Tremblay JJ, Viger RS. GATA factors and the nuclear receptors, steroidogenic factor 1/liver receptor homolog 1, are key mutual partners in the regulation of the human 3beta-hydroxysteroid dehydrogenase type 2 promoter. Mol Endocrinol. 2005;19:2358–70.

    Article  CAS  PubMed  Google Scholar 

  102. Martin LJ, Tremblay JJ. The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter. J Mol Endocrinol. 2009;42:119–29.

    Article  CAS  PubMed  Google Scholar 

  103. Abdou HS, Villeneuve G, Tremblay JJ. The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology. 2013;154:511–20.

    Article  CAS  PubMed  Google Scholar 

  104. Martin LJ, Boucher N, Brousseau C, Tremblay JJ. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol Endocrinol. 2008;22:2021–37.

    Article  CAS  PubMed  Google Scholar 

  105. Nogueira EF, Xing Y, Morris CA, Rainey WE. Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis. J Mol Endocrinol. 2009;42:319–30.

    Article  CAS  PubMed  Google Scholar 

  106. Sugawara T, Holt JA, Kiriakidou M, Strauss JF, 3rd. Steroidogenic factor 1-dependent promoter activity of the human steroidogenic acute regulatory protein (StAR) gene. Biochemistry. 1996;35:9052–9.

    Article  CAS  PubMed  Google Scholar 

  107. Clark BJ, Combs R. Angiotensin II and cyclic adenosine 3′,5′-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinology. 1999;140:4390–8.

    CAS  PubMed  Google Scholar 

  108. Sugawara T, Kiriakidou M, McAllister JM, Kallen CB, Strauss JF, 3rd. Multiple steroidogenic factor 1 binding elements in the human steroidogenic acute regulatory protein gene 5′-flanking region are required for maximal promoter activity and cyclic AMP responsiveness. Biochemistry. 1997;36:7249–55.

    Article  CAS  PubMed  Google Scholar 

  109. Sugawara T, Saito M, Fujimoto S. Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression. Endocrinology. 2000;141:2895–903.

    CAS  PubMed  Google Scholar 

  110. Sugawara T, Sakuragi N, Minakami H. CREM confers cAMP responsiveness in human steroidogenic acute regulatory protein expression in NCI-H295R cells rather than SF-1/Ad4BP. J Endocrinol. 2006;191:327–37.

    Article  CAS  PubMed  Google Scholar 

  111. Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993;13:2235–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and - 6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 2000;275:38949–52.

    Article  CAS  PubMed  Google Scholar 

  113. Zaytouni T, Efimenko EE, Tevosian S. GATA transcription factors in the developing reproductive system. Adv Genet. 2011;76:93–134.

    Article  CAS  PubMed  Google Scholar 

  114. Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;15:321–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Manna PR, Dyson MT, Stocco DM. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol Cell Endocrinol. 2009;302:1–11.

    Article  CAS  PubMed  Google Scholar 

  116. Murphy NC, Biankin AV, Millar EK, McNeil CM, O’Toole SA, Segara D, Crea P, Olayioye MA, Lee CS, Fox SB, Morey AL, Christie M, Musgrove EA, Daly RJ, Lindeman GJ, Henshall SM, Visvader JE, Sutherland RL. Loss of STARD10 expression identifies a group of poor prognosis breast cancers independent of HER2/Neu and triple negative status. Int J Cancer. 2009;126:1445–53.

    Google Scholar 

  117. Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011;12:141–51.

    Article  CAS  PubMed  Google Scholar 

  118. Della Fazia MA, Servillo G, Sassone-Corsi P. Cyclic AMP signalling and cellular proliferation: regulation of CREB and CREM. FEBS Lett. 1997;410:22–4.

    Article  CAS  PubMed  Google Scholar 

  119. Hummler E, Cole TJ, Blendy JA, Ganss R, Aguzzi A, Schmid W, Beermann F, Schutz G. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci U S A. 1994;91:5647–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Meyer TE, Habener JF. Cyclic AMP response element binding protein CREB and modulator protein CREM are products of distinct genes. Nucleic Acids Res. 1992;20:6106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Sassone-Corsi P. CREM: a master-switch regulating the balance between differentiation and apoptosis in male germ cells. Mol Reprod Dev. 2000;56:228–9.

    Article  CAS  PubMed  Google Scholar 

  122. Clem BF, Hudson EA, Clark BJ. Cyclic adenosine 3′,5′-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology. 2005;146:1348–56.

    Article  CAS  PubMed  Google Scholar 

  123. Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, Zeleznik AJ, Stocco DM. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol. 2002;16:184–99.

    Article  CAS  PubMed  Google Scholar 

  124. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072:129–57.

    CAS  PubMed  Google Scholar 

  125. Hai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sciences U S A. 1991;88:3720–4.

    Article  CAS  Google Scholar 

  126. O’Shea EK, Rutkowski R, Kim PS. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell. 1992;68:699–708.

    Article  PubMed  Google Scholar 

  127. Manna PR, Eubank DW, Stocco DM. Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol. 2004;18:558–73.

    Article  CAS  PubMed  Google Scholar 

  128. Manna PR, Stocco DM. Crosstalk of CREB and Fos/Jun on a single cis-element: transcriptional repression of the steroidogenic acute regulatory protein gene. J Mol Endocrinol. 2007;39:261–77.

    Article  CAS  PubMed  Google Scholar 

  129. Manna PR, Stocco DM. The role of JUN in the regulation of PRKCC-mediated STAR expression and steroidogenesis in mouse Leydig cells. J Mol Endocrinol. 2008;41:329–41.

    Article  CAS  PubMed  Google Scholar 

  130. Shea-Eaton W, Sandhoff TW, Lopez D, Hales DB, McLean MP. Transcriptional repression of the rat steroidogenic acute regulatory (StAR) protein gene by the AP-1 family member c-Fos. Mol Cell Endocrinol. 2002;188:161–70.

    Article  CAS  PubMed  Google Scholar 

  131. Rincon Garriz JM, Suarez C, Capponi AM. c-Fos mediates angiotensin ii-induced aldosterone production and protein synthesis in bovine adrenal glomerulosa cells. Endocrinology. 2009;150:1294–302.

    Article  PubMed  CAS  Google Scholar 

  132. Osada S, Yamamoto H, Nishihara T, Imagawa M. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem. 1996;271:3891–6.

    Article  CAS  PubMed  Google Scholar 

  133. Grimm SL, Rosen JM. The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 2003;8:191–204.

    Article  PubMed  Google Scholar 

  134. Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chemi. 1998;273:28545–8.

    Article  CAS  Google Scholar 

  135. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Nalbant D, Williams SC, Stocco DM, Khan S. Luteinizing hormone-dependent gene regulation in Leydig cells may be mediated by CCAAT/enhancer-binding protein-β. Endocrinology. 1998;139:272–9.

    CAS  PubMed  Google Scholar 

  137. Silverman E, Eimerl S, Orly J. CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J Biol Chem. 1999;274:17987–96.

    Article  CAS  PubMed  Google Scholar 

  138. Silverman E, Yivgi-Ohana N, Sher N, Bell M, Eimerl S, Orly J. Transcriptional activation of the steroidogenic acute regulatory protein (StAR) gene: GATA-4 and CCAAT/enhancer-binding protein beta confer synergistic responsiveness in hormone-treated rat granulosa and HEK293 cell models. Mol Cell Endocrinol. 2006;252:92–101.

    Article  CAS  PubMed  Google Scholar 

  139. Reinhart AJ, Williams SC, Clark BJ, Stocco DM. SF-1 (steroidogenic factor-1) and C/EBP beta (CCAAT/enhancer binding protein-beta) cooperate to regulate the murine StAR (steroidogenic acute regulatory) promoter. Mol Endocrinol. 1999;13:729–41.

    CAS  PubMed  Google Scholar 

  140. Tremblay JJ, Hamel F, Viger RS. Protein kinase A-dependent cooperation between GATA and CCAAT/enhancer-binding protein transcription factors regulates steroidogenic acute regulatory protein promoter activity. Endocrinology. 2002;143:3935–45.

    Article  CAS  PubMed  Google Scholar 

  141. Yivgi-Ohana N, Sher N, Melamed-Book N, Eimerl S, Koler M, Manna PR, Stocco DM, Orly J. Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: alternative modes of cyclic adenosine 3′, 5′-monophosphate dependent and independent regulation. Endocrinology. 2009;150:977–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Hiroi H, Christenson LK, Chang L, Sammel MD, Berger SL, Strauss JF, 3rd. Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (stAR) locus associated with stAR transcription. Mol Endocrinol. 2004;18:791–806.

    Article  CAS  PubMed  Google Scholar 

  143. Clem BF, Clark BJ. Association of the mSin3A-histone deacetylase 1/2 corepressor complex with the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol. 2006;20:100–113.

    Article  CAS  PubMed  Google Scholar 

  144. Ito M, Yu R, Jameson JL. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol. 1997;17:1476–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Ahn SW, Gang G-T, Kim YD, Ahn R-S, Harris RA, Lee C-H, Choi H-S. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J Biol Chem. 2013;288:15937–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Jo Y, Stocco DM. Regulation of Steroidogenesis and steroidogenic acute regulatory protein in R2 C cells by DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene-1). Endocrinology. 2004;145:5629–37.

    Article  CAS  PubMed  Google Scholar 

  147. Manna PR, Dyson MT, Jo Y, Stocco DM. Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 in protein kinase A- and protein kinase C-mediated regulation of the steroidogenic acute regulatory protein expression in mouse Leydig tumor cells: mechanism of action. Endocrinology. 2009;150:187–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Shimizu T, Sudo N, Yamashita H, Murayama C, Miyazaki H, Miyamoto A. Histone H3 acetylation of StAR and decrease in DAX-1 is involved in the luteinization of bovine granulosa cells during in vitro culture. Mol Cell Biochem. 2009;328:41–7.

    Article  CAS  PubMed  Google Scholar 

  149. Li W, Pandey AK, Yin X, Chen JJ, Stocco DM, Grammas P, Wang X. Effects of apigenin on steroidogenesis and steroidogenic acute regulatory gene expression in mouse Leydig cells. J Nutr Biochem. 2011;22:212–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Pandey AK, Li W, Yin X, Stocco DM, Grammas P, Wang X. Blocking L-type calcium channels reduced the threshold of cAMP-induced steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. J Endocrinol. 2010;204:67–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Yu C-C, Li P-H. In vivo inhibition of steroidogenic acute regulatory protein expression by dexamethasone parallels induction of the negative transcription factor DAX-1. Endocrine. 2006;30:313–23.

    Article  CAS  PubMed  Google Scholar 

  152. Ragazzon B, Lefrançois-Martinez A-M, Val P, Sahut-Barnola I, Tournaire C, Chambon C, Gachancard-Bouya J-L, Begue R-J, Veyssière G, Martinez A. Adrenocorticotropin-dependent changes in SF-1/DAX-1 ratio influence steroidogenic genes expression in a novel model of glucocorticoid-producing adrenocortical cell lines derived from targeted tumorigenesis. Endocrinology. 2006;147:1805–18.

    Article  CAS  PubMed  Google Scholar 

  153. Sandhoff TW, McLean MP. Repression of the rat steroidogenic acute regulatory (StAR) protein gene by PGF2alpha is modulated by the negative transcription factor DAX-1. Endocrine. 1999;10:83–91.

    Article  CAS  PubMed  Google Scholar 

  154. Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature. 1997;390:311–5.

    Article  CAS  PubMed  Google Scholar 

  155. Tajima K, Dantes A, Yao Z, Sorokina K, Kotsuji F, Seger R, Amsterdam A. Down-regulation of steroidogenic response to gonadotropins in human and rat preovulatory granulosa cells involves mitogen-activated protein kinase activation and modulation of DAX-1 and steroidogenic factor-1. J Clin Endocrinol Metab. 2003;88:2288–99.

    Article  CAS  PubMed  Google Scholar 

  156. Ehrlund A, Anthonisen EH, Gustafsson N, Venteclef N, Robertson Remen K, Damdimopoulos AE, Galeeva A, Pelto-Huikko M, Lalli E, Steffensen KR, Gustafsson J-Å, Treuter E. E3 ubiquitin ligase RNF31 cooperates with DAX-1 in transcriptional repression of steroidogenesis. Mol Cell Biol. 2009;29:2230–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Saito I, Saruta T. Regulation of differential COUP-TF-coregulator interactions in adrenal cortical steroidogenesis. J Steroid Biochem Mol Biol. 2003;85:449–56.

    Article  CAS  PubMed  Google Scholar 

  158. Shibata H, Ikeda Y, Mukai T, Morohashi K, Kurihara I, Ando T, Suzuki T, Kobayashi S, Murai M, Saito I, Saruta T. Expression profiles of COUP-TF, DAX-1, and SF-1 in the human adrenal gland and adrenocortical tumors: possible implications in steroidogenesis. Mol Genet Metab. 2001;74:206–16.

    Article  CAS  PubMed  Google Scholar 

  159. Bakke M, Lund J. Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3′,5′-monophosphate-responsive sequence in the bovine CYP17 gene. Mol Endocrinol. 1995;9:327–39.

    CAS  PubMed  Google Scholar 

  160. Buholzer CF, Arrighi JF, Abraham S, Piguet V, Capponi AM, Casal AJ. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) is a negative regulator of steroidogenesis in bovine adrenal glomerulosa cells. Mol Endocrinol. 2004;19:65–75.

    Article  PubMed  CAS  Google Scholar 

  161. Osman H, Murigande C, Nadakal A, Capponi AM. Repression of DAX-1 and induction of SF-1 expression. Two mechanisms contributing to the activation of aldosterone biosynthesis in adrenal glomerulosa cells. J Biol Chem. 2002;277:41259–67.

    Article  CAS  PubMed  Google Scholar 

  162. Pisarska MD, Bae J, Klein C, Hsueh AJ. Forkhead L2 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene. Endocrinology. 2004;145:3424–33.

    Article  CAS  PubMed  Google Scholar 

  163. Nackley AC, Shea-Eaton W, Lopez D, McLean MP. Repression of the steroidogenic acute regulatory gene by the multifunctional transcription factor Yin Yang 1. Endocrinology. 2002;143:1085–96.

    Article  CAS  PubMed  Google Scholar 

  164. Liu Q, Merkler KA, Zhang X, McLean MP. Prostaglandin F2{alpha} suppresses rat steroidogenic acute regulatory protein expression via induction of Yin Yang 1 protein and recruitment of histone deacetylase 1 protein. Endocrinology. 2007;148:5209–19.

    Article  CAS  PubMed  Google Scholar 

  165. Ariyoshi N, Kim YC, Artemenko I, Bhattacharyya KK, Jefcoate CR. Characterization of the rat Star gene that encodes the predominant 3.5-kilobase pair mRNA. ACTH stimulation of adrenal steroids in vivo precedes elevation of Star mRNA and protein. J Biol Chem. 1998;273:7610–19.

    Article  CAS  PubMed  Google Scholar 

  166. Sandhoff TW, McLean MP. Hormonal regulation of steroidogenic acute regulatory (StAR) protein messenger ribonucleic acid expression in the rat ovary. Endocrine. 1996;4:259–67.

    Article  CAS  PubMed  Google Scholar 

  167. Cherradi N, Brandenburger Y, Rossier MF, Vallotton MB, Stocco DM, Capponi AM. Atrial natriuretic peptide inhibits calcium-induced steroidogenic acute regulatory protein gene transcription in adrenal glomerulosa cells. Mol Endocrinol. 1998;12:962–72.

    Article  CAS  PubMed  Google Scholar 

  168. Hartung S, Rust W, Balvers M, Ivell R. Molecular cloning and in vivo expression of the bovine steroidogenic acute regulatory protein. Biochem Biophys Res Commun. 1995;215:646–53.

    Article  CAS  PubMed  Google Scholar 

  169. Burrows JAJ, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. Proc Natl Acad Sci U S A. 2000;97:1796–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Duan H, Cherradi N, Feige JJ, Jefcoate C. cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TIS11b. Mol Endocrinol. 2009;23:497–509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Duan H, Jefcoate CR. The predominant cAMP-stimulated 3 × 5 kb StAR mRNA contains specific sequence elements in the extended 3′UTR that confer high basal instability. J Mol Endocrinol. 2007;38:159–79.

    Article  CAS  PubMed  Google Scholar 

  172. Zhao D, Duan H, Kim YC, Jefcoate CR. Rodent StAR mRNA is substantially regulated by control of mRNA stability through sites in the 3′-untranslated region and through coupling to ongoing transcription. J Steroid Biochem Mol Biol. 2005;96:155–73.

    Article  CAS  PubMed  Google Scholar 

  173. Jefcoate CR, Lee J, Cherradi N, Takemori H, Duan H. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol Cell Endocrinol. 2011;336:53–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Grozdanov PN, Stocco DM. Short RNA molecules with high binding affinity to the KH motif of A-kinase anchoring protein 1 (AKAP1): implications for the regulation of steroidogenesis. Mol Endocrinol. 2012;26:2104–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Ginsberg MD, Feliciello A, Jones JK, Avvedimento EV, Gottesman ME. PKA-dependent Binding of mRNA to the Mitochondrial AKAP121 Protein. J Mol Biol. 2003;327:885–97.

    Article  CAS  PubMed  Google Scholar 

  176. Feliciello A, Gottesman ME, Avvedimento EV. The biological functions of A-kinase anchor proteins. J Mol Biol. 2001;308:99–114.

    Article  CAS  PubMed  Google Scholar 

  177. Liu J, Rone MB, Papadopoulos V. Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem. 2006;281:38879–93.

    Article  CAS  PubMed  Google Scholar 

  178. Dyson MT, Jones JK, Kowalewski MP, Manna PR, Alonso M, Gottesman ME, Stocco DM. Mitochondrial A-kinase anchoring protein 121 binds type II protein kinase A and enhances steroidogenic acute regulatory protein-mediated steroidogenesis in MA-10 mouse leydig tumor cells. Biol Reprod. 2008;78:267–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Clark Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, B., Stocco, D. (2014). The Steroidogenic Acute Regulatory Protein (StAR). In: Clark, B., Stocco, D. (eds) Cholesterol Transporters of the START Domain Protein Family in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1112-7_2

Download citation

Publish with us

Policies and ethics